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ABSTRACT
In the framework of mean-field electrodynamics the coefficients defining the mean electro-
motive force in Galloway–Proctor flows are determined. These flows show a two-dimensional
pattern and are helical. The pattern wobbles in its plane. Apart from one exception a circu-
larly polarized Galloway–Proctor flow, i.e. a circular motion of the flow pattern is assumed.
This corresponds to one of the cases considered recently by Courvoisier, Hughes & Tobias.
An analytic theory of the α effect and related effects in this flow is developed within the
second-order correlation approximation and a corresponding fourth-order approximation. In
the validity range of these approximations there is an α effect but no γ effect, or pumping
effect. Numerical results obtained with the test-field method, which are independent of these
approximations, confirm the results for α and show that γ is in general non-zero. Both α and
γ show a complex dependency on the magnetic Reynolds number and other parameters that
define the flow, that is, amplitude and frequency of the circular motion. Some results for the
magnetic diffusivity ηt and a related quantity are given, too. Finally, a result for α in the case
of a randomly varying linearly polarized Galloway–Proctor flow, without the aforementioned
circular motion, is presented. The flows investigated show quite interesting effects. There
is, however, no straightforward way to relate these flows to turbulence and to use them for
studying properties of the α effect and associated effects under realistic conditions.
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1 IN T RO D U C T I O N

In astrophysical context, turbulent flows are of interest as occurring
for example in stellar convection zones, accretion discs and galaxies.
They deviate in general markedly from isotropic turbulence, and the
time-dependence of the flow is important. Although not much direct
observational evidence for the nature of the turbulence in these ob-
jects is available, the reasons for anisotropies are compelling. They
include strong density stratification and rapid rotation. Both tend to
make the turbulence two-dimensional in the sense that the variation
of the velocity components is negligible along the directions of the
density gradient and/or the axis of rotation. Such flows are referred
to as geostrophic (Liao, Zhang & Feng 2005). As for the Sun, obser-
vations of the supergranulation and local helioseismology provide
direct evidence for time dependence (Švanda, Kosovichev & Zhao
2007).

Simple models of flows showing such anisotropies and time
dependencies are the circularly and linearly polarized flows of
Galloway & Proctor (1992). These flows are two-dimensional in the
sense that they depend only on two Cartesian coordinates, e.g. x and
y. This can simplify the analysis significantly, even in dynamo prob-
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lems that are inherently three-dimensional. The Galloway–Proctor
(GP) flows are related to a flow considered by Roberts (1972). By
contrast to the GP flows the Roberts flow1 is steady. It is an early
example of a spatially periodic flow that acts as a dynamo and pro-
duces a magnetic field with a significant non-zero xy average. In
mean-field electrodynamics this is understood as a consequence of
the α effect. The α term in the mean-field induction equation is
crucial to model the generation of large-scale magnetic fields from
small-scale helical fluid motions in stars and galaxies; see, for ex-
ample, Moffatt (1978), Parker (1979) and Krause & Rädler (1980)
for standard references.

Like the Roberts flow the GP flow has frequently been used
to study dynamo action and mean-field transport coefficients. A
comprehensive review of these and other aspects of the GP flow is
given in the thesis of Wilkinson (2004). Particularly important has
been the study of the dependence of the quenching of the α effect
on the field strength and the value of the magnetic Reynolds number
(Cattaneo & Hughes 1996). The GP flow has also been used to study
the decay of a magnetic field in two dimensions as a function of
field strength and magnetic Reynolds number (Silvers 2005).

1 As usual, the term Roberts flow refers to the flow given by equation (5.1)
of Roberts (1972).
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114 K.-H. Rädler and A. Brandenburg

The main motivation for the present paper were the results re-
ported by Courvoisier, Hughes & Tobias (2006, hereafter CHT06)
and Courvoisier (2008) on α and γ effects in GP flows. They
found that there is a complicated dependence of α on the mag-
netic Reynolds number Rm and on parameters defining the flow,
with sign changes and no indication of convergence with increasing
Rm, and ‘no clear relation between α and the helicity of the flow,
contrary to what is often assumed for the parametrization of mean-
field dynamo models’. In addition to the α effect a γ effect has been
observed, too.

At first glance these results are surprising and very different
from those for comparable cases. For the Roberts flow a smooth
dependence of α on Rm was found without any sign changes and
with α tending to zero as Rm → ∞ (Soward 1987, 1989; Rädler et al.
2002a,b). There are further recent studies in which astrophysical
turbulence is modelled by random forcing. In the case of helical
isotropic turbulence such investigations show that α approaches a
finite value as soon as Rm exceeds a value of the order of unity.
This has been observed at least for Reynolds numbers up to 200
(Sur, Brandenburg & Subramanian 2008). Both examples provide
no reasons to doubt the proportionality of α with the helicity of the
flow, and any γ effect can be excluded.

The purpose of the paper is to study the mean-field effects of
specific GP flows in more detail. We focus attention here on the
simplest case considered in CHT06 with a flow being purely peri-
odic in time and add a few results for a simple flow with random
time dependence.

The main tool of our investigations is the test-field method which
allows to calculate numerically all components of the α and ηt

tensors defining the mean electromotive force E for a given flow
(Schrinner et al. 2005, 2007). If, as we assume here, too, the mean
magnetic field B depends only on one of the Cartesian coordinates,
say z, only two 2 × 2 tensors for α and ηt are of interest. The test-
field method has recently been used to calculate diagonal and off-
diagonal components of ηt (Brandenburg et al. 2008a), the magnetic
Reynolds number dependence of α and ηt (Sur et al. 2008), as well as
their scale dependence (Brandenburg, Rädler & Schrinner 2008b).

We begin by exploring general properties of the mean electro-
motive force in the GP flow and present analytical results for coef-
ficients like α and γ , which are crucial for the electromotive force,
gained in the second-order correlation approximation (SOCA) and
in a corresponding fourth-order approximation. After explaining
the test-field method we give a series of numerical results for such
coefficients, which are independent of approximations of that kind,
and discuss them in detail.

2 MEA N - F IELD ELECTRODYNAMICS W IT H
GALLOWAY –PROCTO R FLOW

2.1 Definition of the problem

Consider a magnetic field B in an infinitely extended homogeneous
conducting fluid with constant magnetic diffusivity η moving with
a velocity u. Its behaviour is governed by

∂t B − η∇2 B − ∇ × (u × B) = 0, ∇ · B = 0. (1)

Referring to a Cartesian coordinate system (x, y, z) the velocity u is
specified by

u = − ẑ × ∇ψ − ẑ kH ψ (2)

with

ψ = u0

kH
[cos(kHx + ϕx) + cos(kHy + ϕy)]. (3)

Here ẑ means the unit vector in the z direction, kH is a positive
constant such that 2 π/kH is the length of the diagonal of a flow cell
and ϕx and ϕy are functions of time to be specified later. Further we
have u0 = urms/

√
2. In the special case ϕx = ϕy = 0 the flow agrees

with a Roberts flow. For non-zero ϕx or ϕy a properly moving frame
of reference can be found in which we have again a steady Roberts
flow pattern. In our original frame each point of this pattern moves
with the velocity −k−1

H (∂t ϕx , ∂t ϕy) in the xy plane. In (2) the ratio
of the flow components in the xy plane and in z direction has been
fixed such that the modulus of the average of the kinetic helicity
u · (∇ × u) over all x and y for given u0 takes its maximum. With
the signs chosen this average is equal to −2u2

0kH.
In view of the first example treated in CHT06 we specify the flow

generally defined by (2) and (3) further to be a circularly polarized
GP flow and put

ϕx = ε cos ωt, ϕy = ε sin ωt, (4)

where ε and ω are considered as non-negative constants. We label
this flow in what follows by (i). Each point of this pattern moves
with the frequency ω/2π on a circle with the radius ε/kH.

To come closer to a turbulent situation CHT06 added a random
function of time to the arguments ωt in (4). We do not follow this
line here but consider briefly a linearly polarized random GP flow,
interpreting ϕx and ϕy immediately as random functions. (The plane
of polarization is therefore also random.) More precisely we put

ϕx = εφx(t/τc), ϕy = εφy(t/τc), (5)

where ε is again a constant, φx and φy are two independent but
statistically equivalent random functions, which take positive and
negative values between −1 and 1 and tend to zero with growing
moduli of the argument, and τ c is some correlation time. We label
this random flow by (ii).

2.2 Mean-field concept

Adopting the mean-field concept, we denote mean fields by an
overbar and define them as averages over all x and y. We have then
u = 0. Taking the average of (1) we find

∂t B − η∇2 B − ∇ × E = 0, ∇ · B = 0, (6)

with the mean electromotive force

E = u × b, (7)

where b = B − B. From (1) and (6) we conclude that b has to obey

(∂t − η∇2)b = (B · ∇)u − (u · ∇)B

+∇ × (u × b − u × b), ∇ · b = 0. (8)

We adopt here the assumption that the mean electromotive force
E is, apart from u and η, completely determined by B and its first
spatial derivatives. (This assumption will be relaxed in Section 4.)
This implies that there is no small-scale dynamo and that sufficient
time has elapsed since the initial instant so that E no longer depends
on any initial conditions. Since B is by definition independent of
x and y its spatial derivatives can be represented by ∇ × B. We
write simply J instead of ∇ × B, being aware that the mean electric
current density is really ∇ × B/μ (rather than J), where μ is
magnetic permeability of the conducting fluid. Clearly, we have
now J = (−∂By/∂z, ∂Bx/∂z, 0). For the sake of simplicity we
further assume that B is steady. In the so defined framework we
may write

E i = αijBj − ηij J j (9)
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with tensors αij and ηij determined by u and η only. Both αij and
ηij , and so E i , too, depend in general on time.

We see from (8) that, if B is a uniform field, b and therefore E
are independent of Bz. Hence we have αi3 = 0. Furthermore, since
J z = 0, clearly ηi3 is without interest, and we put ηi3 = 0.

2.3 Mean electromotive force in case (i)

For a more detailed investigation of E we focus on the fluid flow
of type (i). In this case αij and ηij are periodic in time with a basic
period equal to that of u, that is 2 π/ω, or (as we will see below) a
fraction of it.

Remarkably the velocity field u = u(x, y, t) defined by (2), (3)
and (4) is invariant under a 90◦ rotation about the z-axis and a simul-
taneous retarding by π/2 ω (that is, ωt → ωt − π/2). Consequently
the αij in the correspondingly rotated coordinate system, which we
denote by α′

ij , have to satisfy the relation

α′
ij (t − π/2ω) = αij (t) . (10)

If we consider for a moment the change of the spatial coordi-
nate system only and ignore any time dependence we have α′

11 =
α22, α′

12 = −α21, α′
21 = −α12, α′

22 = α11, α′
31 = −α32 and α′

32 =
α31. Hence (10) provides us with

α11(t) = +α22(t − π/2ω), α22(t) = +α11(t − π/2ω),

α12(t) = −α21(t − π/2ω), α21(t) = −α12(t − π/2ω),

α31(t) = −α32(t − π/2ω), α32(t) = +α31(t − π/2ω). (11)

From the first two lines we conclude first that α11, α12, α21 and α22

have as functions of time a basic period of π/ω (not 2π/ω) and that
α22(t) = α11(t ± π/2ω) and α21(t) = −α12(t ± π/2ω). The last line
of (11) tells us that the averages of α31 and α32 over the period 2π/ω

vanish so that α31 and α32 are simply oscillations around zero, and
that they change their signs under time shifts by π/ω. Our reasoning
for αij applies analogously to ηij .

We write down the result of these considerations in the form

α11 = α̃(t), α22 = α̃(t − π/2ω),

α12 = −γ̃ (t), α21 = γ̃ (t − π/2ω),

α31 = κ̃(t), α32 = κ̃(t − π/2ω),

η11 = η̃t(t), η22 = η̃t(t − π/2ω),

η12 = −δ̃(t), η21 = δ̃(t − π/2ω),

η31 = λ̃(t), η32 = λ̃(t − π/2ω). (12)

Here α̃, γ̃ , η̃t and δ̃ are in general periodic functions of time with
the basic period π/ω, but κ̃ and λ̃ are periodic functions with period
2π/ω, which show sign changes under any time shift by π/ω and
vanish under averaging over the period 2π/ω.

From (9) and (12) we conclude

E = α̃(x̂ · B)x̂ + α̃†( ŷ · B) ŷ

− γ̃ ( ŷ · B)x̂ + γ̃ †(x̂ · B) ŷ

− η̃t(x̂ · J)x̂ − η̃
†
t ( ŷ · J) ŷ

+ δ̃( ŷ · J)x̂ − δ̃†(x̂ · J) ŷ

+ [
κ̃(x̂ · B) + κ̃†( ŷ · B) + λ̃(x̂ · J) + λ̃†( ŷ · J)

]
ẑ. (13)

Here α̃†, γ̃ †, η̃
†
t and δ̃† differ only by a phase shift of π/2 from

α̃, γ̃ , η̃t and δ̃, respectively, and κ̃† and λ̃† by a phase shift of π

from κ̃ and λ̃.
In addition to fields as defined above by averaging over x and y

we consider also time-averaged mean fields defined by additional

averaging over a time interval of length 2 π/ω (but we refer to them
only if explicitly indicated). When speaking of time averaging in
what follows we always refer to this interval. For time-averaged
mean fields (13) turns into

E = α
[

B − ( ẑ · B) ẑ
] + γ ẑ × B − ηt J − δ ẑ × J, (14)

where α, γ , ηt and δ are time averages of α̃, γ̃ , η̃t and δ̃.2

In the special case of the Roberts flow, i.e. ε = 0, the coefficient
α̃ is independent of time and so coincides with α̃†, and this applies
analogously to γ̃ , η̃, δ̃, κ̃ and λ̃. Moreover, in this case the flow
field offers no possibility to distinguish between the two directions
given by ẑ or − ẑ if no other quantities depending on u than averages
over all x and y are available. Consequently E as given by (14) must
be even in ẑ. Therefore, we have then γ = δ = 0. In a circularly
polarized GP flow, however, this symmetry between ẑ or − ẑ no
longer exists. The circular motion of the flow pattern allows to
define a preferred direction. That is, there is no longer a general
reason to assume that γ or δ vanish.

We override for a moment our restriction to non-negative values
of the frequency ω and admit also negative ones. For ω > 0 the
circular motion of the flow pattern defines, together with ẑ, a right-
handed screw, and for ω < 0 a left-handed one. We conclude from
this fact that inversion of the sign of ω has no other consequences
than inversion of the signs of γ and δ.

2.3.1 Second-order approximation

The task of determination of E is now reduced to the determination
of the six functions α̃, γ̃ , η̃t, δ̃, κ̃ and λ̃ which occur in (12)
and (13). As a first step in that direction we investigate E within
the SOCA. Later we will proceed to a corresponding fourth-order
approximation.

SOCA is defined by the neglect of the term with u × b − u × b
on the right-hand side of equation (8) for b, which turns so into

(∂t − η∇2)b = (B · ∇)u − (u · ∇)B, ∇ · b = 0. (15)

With u given by (2) and (3), we may solve this equation analytically
and then obtain E , see Appendix B. When choosing the form (13)
of the result we have

α̃ = u0Rmχ (2)(t),

η̃t = 1

2
u0k

−1
H Rm

[
χ (2)(t) + χ (2)(t − π/2ω)

]
,

γ̃ = δ̃ = κ̃ = λ̃ = 0. (16)

Here we have used the definition

Rm = u0/ηkH, (17)

and χ (2) is given by

χ (2)(t) =
∫ ∞

0
CC(ωt, ωt − qτ ) e−τ dτ, (18)

where

CC(a, b) = cos [ε(cos a − cos b)] (19)

and

q = ω/ηk2
H. (20)

The parameter q gives, apart from a factor 2π, the ratio of the
decay time of a magnetic structure with a length scale 2π/kH, that

2 In view of the signs of α and γ we deviate here from representations as
given, e.g. in Rädler et al. (2002a), but follow CHT06.
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is (2π)2/ηk2
H, and the wobble period 2π/ω of the flow pattern. In

the case of small q the magnetic field follows the fluid motion
immediately, but for large q it does so only with large delay. These
two cases are sometimes labelled as ‘low-conductivity limit’ and
‘high-conductivity limit’, respectively.

In agreement with the general findings summarized in (12), the
function χ (2) is periodic in time with a basic period π/ω. Whereas
α̃ and α̃† differ by a phase shift of π/2, η̃t and η̃

†
t coincide. χ (2)

satisfies |χ (2)| ≤ 1. It must be positive as long as ε ≤ π/4 but may
otherwise take negative values, too. If ε = 0, or ε 
= 0 and q = 0
(what corresponds to the low-conductivity limit), χ (2) is indepen-
dent of time and equal to unity. In Appendix B some numerically
determined values of χ (2) are given. We note further that

χ (2)(t) = 1 − (εq)2 sin2 ωt if εq � 1 and q � 1 (21)

and

χ (2)(t) → 0 as q → ∞. (22)

For time-averaged mean fields we have again (14), now with

α = u0Rmχ
(2)
0 , ηt = u0k

−1
H Rmχ

(2)
0 , γ = δ = 0, (23)

where χ
(2)
0 means the time average of χ (2) over the period π/ω. We

point out that the time average of a function of ωt, say f (ωt), over
an interval of the length π/ω is independent of ω. This is obvious
from (ω/π )

∫ π/ω

0 f (ωt) dt = (1/π )
∫ π

0 f (ϕ) dϕ. Hence χ
(2)
0 does

not explicitly, but only in an indirect way via q, depend on ω.
If ε = 0, or ε 
= 0 and q = 0, we have χ

(2)
0 = 1. For ε = 0 we

fall back to the Roberts flow. Indeed, the result (23) with χ
(2)
0 = 1

agrees with earlier results for this flow; see Appendix A. In view of
(23) we note further

χ
(2)
0 = 1 − 1

2
(εq)2 if εq � 1 and q � 1 (24)

and

χ
(2)
0 → 0 as q → ∞. (25)

The last statement implies α/u0Rm → 0 as q → ∞.
As we know from general considerations on SOCA (e.g. Krause

& Rädler 1980) the range of applicability of SOCA depends on q.
For small q a sufficient condition for its validity reads Rm � 1. For
large q such a condition is Rm/q � 1.

2.3.2 Higher order approximations

Going now beyond SOCA we start again with equation (8) for b
and put

b = b(1) + b(2) + b(3) + · · · (26)

with b(n) being of the order n in u, and correspondingly

E = E (2) + E (3) + E (4) + · · · , E (n+1) = 〈
u × b(n)〉 , n ≥ 1. (27)

In that sense b in (15) and the corresponding E have to be interpreted

as b(1) and E (2)
, respectively.

From (8) and (26) we obtain, apart from (15) with b(1) instead
of b,

(∂t − η∇2)b(n+1) = (b(n) · ∇)u − (u · ∇)b(n)

−∇ × (u × b(n)),

∇ · b(n+1) = 0, n ≥ 1. (28)

Using our result for b(1) and (28) we have calculated b(2). It

turns out that the average of u × b(2) vanishes, that is E (3) = 0.

In the same way we may calculate b(3) and E (4)
. However, these

calculations are rather tedious. For the sake of simplicity we have

ignored all contributions to E (4)
resulting from derivatives of B, that

is, the terms with η̃t, δ̃ and λ̃ in (13). Some details of the calculations
are explained in Appendix C.

Considering the results of all approximations up to the fourth
order and referring again to (13) we have now

α̃ = u0Rm

[
χ (2)(t) − 1

2
R2

mχ (4α)(t)

]
,

γ̃ = 1

2
u0R

3
mχ (4γ )(t), κ̃ = 0. (29)

The functions χ (4α) and χ (4γ ) are given by

χ (4α) = 2
∫ ∞

0

∫ ∞

0

∫ ∞

0
CC[ωt, ωt − q(τ ′ + τ ′′ + τ ′′′)]

× CS[ωt − qτ ′, ωt − q(τ ′ + τ ′′)]

× exp[−(τ ′ + 2τ ′′ + τ ′′′)] dτ ′ dτ ′′ dτ ′′′,

χ (4γ ) = 2
∫ ∞

0

∫ ∞

0

∫ ∞

0
SC[ωt, ωt − q(τ ′ + τ ′′)]

× SS[ωt − qτ ′, ωt − q(τ ′ + τ ′′ + τ ′′′)]

× exp[−(τ ′ + 2τ ′′ + τ ′′′)] dτ ′ dτ ′′ dτ ′′′, (30)

with CC as defined by (19) and analogously defined quantities
CS, SC and SS,

CS (a, b) = cos [ε(sin a − sin b)] ,

SC (a, b) = sin [ε(cos a − cos b)] ,

SS (a, b) = sin [ε(sin a − sin b)] . (31)

Note that CC and CS are symmetric but SC and SS antisymmetric
in the two arguments.

Like χ (2) both χ (4α) and χ (4γ ) oscillate with a basic period π/ω.
They satisfy |χ (4α)| ≤ 1 and |χ (4γ )| ≤ 1. Further χ (4α) is positive as
long as |ε| < π/4. In contrast to χ (4α), however, the time average
of χ (4γ ) over a period π/ω is equal to zero. Whereas χ (4α) is even,
χ (4γ ) is odd in ω. We have further

χ (4α) = 1 − 1

4
(εq)2(1 + 16 sin2 ωt),

χ (4γ ) = 5

2
(εq)2 sin ωt cos ωt if εq � 1 and q � 1 (32)

and

χ (4α), χ (4γ ) → 0 as q → ∞. (33)

For time-averaged mean fields again relation (14) applies, now
with

α = u0Rm

[
χ

(2)
0 − 1

2
R2

mχ
(4α)
0

]
, γ = 0, (34)

where χ
(4α)
0 is the time average of χ (4α). Like χ

(2)
0 also χ

(4α)
0 does

not explicitly depend on ω. The ηt and δ have not been calculated.
It turns out that

χ
(4α)
0 = 1 − 9

4
(εq)2, χ

(4γ )
0 = 0 if εq � 1 and q � 1 (35)

and

χ
(4α)
0 , χ

(4γ )
0 → 0 as q → ∞. (36)

With (34) we find then

α = u0Rm

{
1 − 1

2
(εq)2 − 1

2
R2

m

[
1 − 9

4
(εq)2

]}
if εq � 1 and q � 1. (37)
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Figure 1. Dependence of χ
(2)
0 in case (ii) on q for two different ε, calculated

numerically on the basis of equation (38). The dashed line shows that χ
(2)
0

with ε = π behaves like q−1 for large q.

Results of higher approximations are very desirable but require
heavy efforts. We suspect that in the approximation of sixth order in
u the time average of γ̃ and so γ no longer vanish. This presumption
is supported by numerical results (see below).

2.4 Mean electromotive force in case (ii)

Modifying the considerations on case (i) properly we may conclude
that relation (14), again considered for time-averaged fields, applies
for the fluid flow of type (ii) with γ = δ = 0. By contrast to
case (i) the correlation between velocity components at different
times vanishes if the time difference becomes very large.

Modifying also the SOCA calculations described above and in
Appendix B correspondingly we find again (23), but with χ

(2)
0 being

the time average of

χ (2)(t) =
∫ ∞

0
cos{ε[φx(t/τc) − φx(t/τc − qτ )]} e−τ dτ, (38)

where q is now defined by

q = (τcηk2
H)−1. (39)

We have here again χ (2) = 1 for q = 0, and χ (2) → 0 as q → ∞.
Like χ (2) also χ

(2)
0 depends on ε and q but no longer explicitly on

τ c. We have calculated χ
(2)
0 on the basis of equation (38) under the

assumption that φx is always constant over time intervals of a given
length. Fig. 1 shows dependencies on ε and q.

3 TEST-FIELD METHOD

We will determine numerically the elements of the tensors αij and
ηij introduced with (9), employing the test-field method of Schrinner
et al. (2005, 2007). By reasons indicated above we restrict ourselves
to 1 ≤ i, j ≤ 2 only.

We will calculate E = u × b from numerical solutions b of (8),
with B replaced by one out of four test fields B

pq
,

B
1c = B (cos kz, 0, 0), B

2c = B (0, cos kz, 0),

B
1s = B (sin kz, 0, 0), B

2s = B (0, sin kz, 0), (40)

where B and k are constants. Repeating this for all test fields, de-
noting the E that belongs to a given B

pq
by Epq

, and using (9) we

find

Epc
i (z) = B

(
αip cos kz − η

†
ipk sin kz

)
,

Eps
i (z) = B

(
αip sin kz + η

†
ipk cos kz

)
(41)

for 1 ≤ i, j ≤ 2, where

η
†
ip = ηilεlp3 =

( −η12 η11

−η22 η21

)
. (42)

From this we conclude

αij = B−1
[
E j c

i (z) cos kz + E j s
i (z) sin kz

]
,

η
†
ij = −(kB)−1

[
E j c

i (z) sin kz − E j s
i (z) cos kz

]
(43)

again for 1 ≤ i, j ≤ 2.
We point out that, although the Epq

depend on z, the αij and ηij

have to be independent of z. We further note that relation (9), on
which these considerations are based, can only be justified under
the assumption that all higher than first-order spatial derivatives of
B are negligible. The derivatives of order n of our test fields B

pq

are proportional to kn. For this reason the results (43) apply in a
strict sense only in the limit k → 0 (cf. Brandenburg et al. 2008b).

Let us focus here on case (i). After having calculated the αij and
ηij in the way indicated above we may determine the α̃, γ̃ , η̃t and
δ̃ according to (12), that is,

α̃(t) = 1
2 [α11(t) + α22(t + π/2ω)] ,

γ̃ (t) = − 1
2 [α12(t) − α21(t + π/2ω)] ,

η̃t(t) = 1
2 [η11(t) + η22(t + π/2ω)] ,

δ̃(t) = − 1
2 [η12(t) − η21(t + π/2ω)] .

(44)

We are, however, mainly interested in the time-independent coeffi-
cients α, γ , η and δ that are relevant for time-averaged mean fields
as addressed in (14). They are just time averages of the α̃, γ̃ , η̃t

and δ̃, that is,

α = 1
2 (〈α11〉 + 〈α22〉), γ = − 1

2 (〈α12〉 − 〈α21〉),
ηt = 1

2 (〈η11〉 + 〈η22〉), δ = − 1
2 (〈η12〉 − 〈η21〉), (45)

where 〈· · ·〉 means averaging over a time interval of length π/ω. In
case (ii) the relations (45) apply with 〈· · ·〉 interpreted as averaging
over a sufficiently long time.

4 A GENERALI ZATI ON

So far we have assumed that the mean electromotive force E in
a given point is completely determined by B and its first spatial
derivatives in this point. If we relax this assumption, but continue to
ignore any variation of B in time, we may proceed as in Brandenburg
et al. (2008b). In that sense we may replace (9), applied to time-
averaged mean fields, by

E i(z) =
∫

[α̂ij (ζ )Bj (z − ζ ) − η̂ij (ζ )J j (z − ζ )] dζ (46)

with kernels α̂ij and η̂ij . When using a Fourier transformation
Q(z) = ∫

Q̃ exp(ikz) dz, this turns into

Ẽ i(k) = α̃ij (k)B̃j (k) − η̃ij (k)J̃ j (k), (47)

where

α̃ij (k) =
∫

α̂ij (ζ ) cos kζ dζ, η̃ij (k) =
∫

η̂ij (ζ ) cos kζ dζ. (48)
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In this understanding the relations (41)–(43) apply with αij and ηij

being replaced by α̃ij and η̃ij , which have a well-defined meaning
for all k (not only in the limit k → 0).

5 R ESULTS

5.1 Units and dimensionless parameters

It is appropriate to give α̃ and γ̃ as well as α and γ in units of u0, and
η̃t, δ̃, ηt and δ in units of u0/kH. The remaining dimensionless parts
of these coefficients are then, apart from the time dependencies of
α̃, γ̃ , η̃t and δ̃, functions of the dimensionless parameters Rm, ε
and q introduced through (17), (4) and either (20) or (39). Instead
of q we may also use the dimensionless quantity ω̃ defined by

ω̃ = q/Rm. (49)

In case (i) we have so ω̃ = ω/u0kH, which is the ratio of the turnover
time (u0kH/2π)−1 to the wobble period 2π/ω. In case (ii) applies
ω̃ = (τcu0kH)−1, and this is, apart from a factor 2 π, the ratio of that
turnover time to the time τ c introduced with the random flow.

5.2 Case (i)

5.2.1 Comparison with CHT06

We show first that our method reproduces results by CHT06. We
suppose that our Rm is related to the magnetic Reynolds number, say
RCHT

m , used but not explicitly defined there, by Rm = √
3/2 RCHT

m .
While in CHT06 dependencies of the results on Rm and ε are consid-
ered, no values of q or ω̃ are given. We suppose that the calculations
have actually been carried out with ω̃ = √

2/3. Finally, we suppose
that the unit of α and γ used by CHT06 is ω/kH.

With a view to fig. 1 of CHT06 we have carried out calculations
with Rm = √

3/2 × 64 ≈ 78, ε = 3/4 and ω̃ = √
2/3. Our

results for the αij obtained with these parameters and given in this
particular case in units of ω/kH are presented in our Fig. 2. We
see in particular that α11 and α22 vary between −6 and −1 with a
period π/ω. As far as α11 is concerned this agrees with the result for
〈u × b〉x shown in fig. 1 of CHT06. Also the initial evolution of
α11, which is not shown here, agrees with this figure. Furthermore,
in our Fig. 2 the phase shift by π/2 between α11 and α22 discussed
in Section 2.2 is clearly visible. Our results for α12 and α21 lead to
a value of γ , which agrees in modulus but differs in sign from that
of CHT06. (To obtain their sign we need to replace ω by −ω.) With
the above values of Rm and ω̃ but ε = 1 we find again a sign of γ

opposite to that of CHT06.3

5.2.2 Time-averaged mean fields

Switching now to time-averaged mean fields we start with Fig. 3,
which shows results for α at Rm = 0.1 in dependence on ε q. They
were found with the help of numerical integrations of the test-field
version of (8) in its complete form or after reducing it to SOCA.
It turned out that SOCA is sufficient for their calculation. Some of
these results were also confirmed by evaluating (23) with (24). As

3 The authors of CHT06 confirm a sign error in their calculation of γ (private
communication).

Figure 2. Time dependence of αij for the parameters used in fig. 1 of CHT06
which, in our normalization, are Rm = 78, ε = 3/4 and ω̃ = √

2/3. Here,
�t = t − t0, where t0 = 300/ω is the final time shown in fig. 1 of CHT06.
The dotted lines refer to α11 and α21, respectively, the dashed lines to α12

and α22 and the dash–dotted lines to (α11 + α22)/2 and (α21 − α12)/2. The
straight solid lines give the time averages of the latter quantities, that is, α

and γ .

Figure 3. Dependence of α/u0 on εq for Rm = 0.1, with ε = 1 and with
q = 0.1. The dotted curve corresponds to (37), which has been derived for
ε q � 1 and q � 1 only.

long as εq is small α depends, in agreement with (23) and (24), and
also with (34) and (35) or (37), only via this product on ε and q. For
larger εq it depends, however, in a more complex way on ε and q.
Furthermore, α remains finite if ε = 1 and q grows, and it tends to
zero if q = 0.1 and ε grows. Since Rm is small the validity of SOCA
is plausible in the case q = 0.1, but it is remarkable in the case with
ε = 1, in which q may grow up to 10.

Next, we consider the dependence of α and γ on Rm, in Fig. 4
shown for ε = 1 and ω̃ = 1 (i.e. q = Rm). For small Rm we expect
that SOCA applies and so α/u0 is linear in Rm but γ vanishes.
Indeed α/u0 shows this linearity up to Rm ≈ 1. In agreement with
the results of CHT06 γ is negative and its modulus remains small
for Rm < 1. Remarkably the values of α/u0 calculated from (23) and
(24) (dotted line), or (37) (dashed line), which have been derived
for q � 1 and ε q � 1, deviate for Rm > 1 drastically from both the
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Figure 4. Dependence of α/u0 and −γ /u0 on Rm for ε = 1 and ω̃ = 1
(i.e. q = Rm). Solid lines show results obtained without any approximation.
The dash–dotted line gives α/u0 as obtained numerically using SOCA. The
dotted and the dashed line give results calculated with (23) and (24), or (37),
respectively. The small dots on the solid lines indicate the values of Rm for
which simulations have been carried out.

Figure 5. Dependence of α/u0 and −γ /u0 on ε for Rm = 100 and ω̃ =√
2/3 (the value considered by CHT06). The small dots on the solid line

indicate the values of ε for which simulations have been carried out.

numerically obtained SOCA results (dash–dotted line) and those
obtained without any approximation of that kind (solid line). The
proportionality of γ /u0 with R5

m confirms the presumption made
at the end of Section 2.3 that non-zero values of γ occur only in
sixth-order and higher approximations with respect to u0.

Simple arguments (as given in Section 6) suggest that α is never
negative. However, CHT06 found that not only the moduli but also
the signs of both α and γ depend for each given Rm sensitively on
ε. In our Fig. 5, which applies for Rm = 100 and ω̃ = √

2/3, both
α and γ vary strongly with ε, too. The represented results confirm,
apart from the sign of γ , the corresponding ones in fig. 2 of CHT06.
Both α and γ change their signs with ε. As Fig. 6 shows, in the
situation with the same Rm but ω̃ = 1, only γ changes its sign,
which indicates a considerable effect of changing ω̃. In both of the
cases considered in Figs 5 and 6, α and γ diminish for small as well
as large values of ε.

In Figs 7 and 8 we see that α and γ depend, at least for Rm =
100 and ε = 1, also sensitively on the parameter ω̃, or q, that is, on
the frequency with which the velocity pattern wobbles. There are,

Figure 6. Dependence of α/u0 and −γ /u0 on ε for Rm = 100 and ω̃ = 1.
The small dots on the solid line indicate the values of ε for which simulations
have been carried out.

Figure 7. Dependence of α/u0 and −γ /u0 on ω̃ for Rm = 100 and ε = 1.
The small dots on the solid line indicate the values of ω̃ for which simulations
have been carried out.

however, simple asymptotic behaviours for small and for large ω̃,
clearly visible for ω̃ < 0.1 and ω̃ > 3. Similar results (not shown
here) have been found for Rm = 10 and ε = 1. In this case, however,
α stays positive for all values of ω̃, and only one sign reversal of γ

occurs.
The values of α indicated in Figs 5 and 6 for ε = 0 agree, as

it should be, with that for the Roberts flow. The same applies to
Figs 7 and 8 and ω̃ = 0. At Rm = 100, the value chosen in all
these cases, we have α/u0 ≈ 0.074; see Appendix A. Remarkably
enough, the moduli of α at non-zero ε and ω̃ reach values which are
by factors up to about 100 larger. The fact that, for the Roberts flow,
α asymptotically tends to zero with growing Rm, can be explained
by magnetic flux expulsion from the inner parts of the cells of the
steady flow pattern; see Rädler et al. (2002a). In the GP flow the
motion of the flow pattern hampers such flux expulsion.

We see from CHT06 that there is a rich dependence of α and γ

on Rm for values of ω̃ and ε of order unity. In Fig. 9 we show results
for an example with ω̃ = 0.5 and ε = 1. Reversals of α are then
possible for rather small values of Rm of the order of 10. However,
as Fig. 10 shows, such behaviour disappears for ω̃ = 10, in which
case α stays always positive and γ always negative. In fact, there is
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Figure 8. Dependence of +α/u0 (thick lines), −α/u0 (thin lines), −γ /u0

(thick lines) and +γ /u0 (thin lines) on ω̃ for Rm = 100 and ε = 1. For large
values of ω̃ we have α/u0 ≈ 0.065 and −γ /u0 ≈ 0.8/ω̃.

Figure 9. Dependence of α (thick solid line), −α (thin solid line), −γ (thick
dashed line) and +γ (thin dashed line) on Rm for ω̃ = 0.5 and ε = 1.

an asymptotic scaling α/u0 ∼ R−1/2
m as Rm → ∞, and γ approaches

a constant finite value as Rm → ∞.
In a few cases ηt and δ have been determined in addition to α

and γ . Results on the dependence of these quantities with ε = 1
and ω̃ = 0.7 on Rm are shown in Fig. 11. They have however been
calculated with k = kH, not as limit k → 0, and are therefore at most
approximations of the mentioned quantities.

A correct interpretation of these results requires a look on the
explanations of Section 4 on the non-local connection between E, B

Figure 10. Dependence of α and γ on Rm for ω̃ = 10 and ε = 1. Note the
asymptotic scaling α/u0 ∼ R−1/2

m (dash–dotted line) and that γ approaches
a constant finite value as Rm → ∞.

Figure 11. Dependence of α and γ (dashed lines) as well as ηt and δ (solid
lines) on Rm for ω̃ = 0.7, ε = 1 and k = kH. The symbols at the curves
indicate the values of Rm for which simulations have been carried out.

and J as defined by (46). In that sense the α, γ , ηt and δ in Fig. 11
may be understood as values of the functions α̃(k), γ̃ (k), η̃t(k) and
δ̃(k) at k = kH. In the following, when writing α(k) or ηt(k), for
example, we always mean α̃(k) or η̃t(k). In an earlier investigation
with the Roberts flow under SOCA and with isotropic turbulence
independent of SOCA (Brandenburg et al. 2008b) it was found
that α(k) and ηt(k) vary with k in a Lorentzian fashion like (1 +
k2/k2

H)−1. However, for the GP flow Courvoisier (2008) found that
α(k) at small k is extremely sensitive to the value of Rm.

Fig. 12 shows that α(k) and γ (k) for Rm = 30, ω̃ = 0.5 and
ε = 1, approach the values given in Fig. 9 as k → 0. However,
the magnitudes of ηt(k) and δ(k) become rather large as k → 0. It
turns out that α(k) changes sign at k/kH ≈ 0.4 and γ (k) becomes
smaller with increasing k/kH. Remarkably, ηt(k) is negative for
k/kH < 1, suggesting that magnetic field generation might be
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Figure 12. Functions α(k), γ (k), ηt(k) and δ(k) for Rm = 30, ω̃ = 0.5 and
ε = 1. Error bars are given for each simulation result.

Figure 13. Dependence of λ+ and λ− on k/kH for Rm = 30, ω̃ = 0.5 and
ε = 1. For comparison, the dotted lines give αk for k/kH > 0.16, but −αk
for k/kH < 0.04.

possible via a negative magnetic diffusion instability; see e.g.
Lanotte et al. (1999).

In order to check this possibility we have calculated the linear
growth rates

λ±(k) = −[η + ηt(k)]k2 ± α(k)k. (50)

Fig. 13 shows that λ± is almost entirely given by ±α(k)k. A nega-
tive diffusivity instability does not occur. It is important to realize
that most of the small wavenumber modes, especially those with
negative values of ηt(k), would never be realized. This is because in
a system of given size, only the corresponding harmonics will have
a chance to be excited, and of those only the ones with the largest
growth rates will dominate. We should point out that the detailed
variations of λ+ shown in Fig. 13 may not be accurate. In fact, this
figure shows a maximum at k/kH ≈ 0.75, but direct simulations
suggest that the fastest growth occurs for k/kH ≈ 0.5 with a growth

Figure 14. Dependence of α and γ on ω̃ for the flow with random time
dependence (case ii), with Rm = 100 (solid lines), Rm = 10 (dashed lines),
Rm = 1 (dash–dotted lines) and Rm = 0.1 (dotted lines), and with ε = π.
The error bars are similar in all cases, but are only shown for Rm = 100.

rate of λ ≈ 0.23 urms kf . Nevertheless, this value is still compatible
with Fig. 13.

5.3 Case (ii)

As for case (ii) we have calculated α and γ under the assumptions
on φx and φy introduced in Section 2.4. Fig. 14 shows results for Rm

ranging from 0.1 to 100 and ε = π as functions of ω̃. In the limit of
small ω̃ the flow can be considered as stationary, that is, as a Roberts
flow. Indeed in this limit the values of α agree well with those
obtained for the Roberts flow; see Appendix A. For large values of
ω̃ the values of α vanish for all Rm. For not too small ω̃ and Rm

there is no longer a noticeable variation of α with Rm, and α reaches
a maximum at ω̃ ≈ 0.3. In the range 0.3 ≤ ω̃ ≤ 1 continuous
flow renewal removes the tendency for α to diminish with growing
Rm. For ω̃ ≤ 0.2 the value of α remains strongly dependent on Rm

and can still change sign. We have also calculated α with ε = 1
and Rm = 100 as a function of ω̃ and found a qualitatively similar
behaviour as for ε = π. In this case it remains positive and is up
to 50 per cent smaller than for ε = π when ω̃ < 1 and somewhat
larger when ω̃ > 1. In all cases we found, as expected, γ = 0 within
error margins.

6 D ISCUSSION

Our results for the flow of type (i) confirm the finding of CHT06
that both the α and γ coefficients depend sensitively on Rm and also
on ε, and that even the signs of these coefficients may vary with
these parameters. We have to add that α and γ depend also on ω̃, or
q = ω̃Rm, that is, on parameters connected with the frequency of
the wobbling motion, which CHT06 tacitly fixed in a special way,
and that they show similar variations with these parameters. We
found however rather regular behaviours of α and γ for small and
for large values of ε and ω̃.

It is sometimes taken as granted that the sign of α is opposite to
that of the mean kinetic helicity of the fluid flow and its modulus is
proportional to that of the mean helicity. There is however no general
reason for that kind of relation between α and the kinetic helicity.
We see only two limiting cases which allow simple statements on
the sign of α. The following formulations of these statements apply
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to flows like isotropic turbulence for which E = αB + · · · can be
justified as well as such covered by our relation (14).

First, in the framework of SOCA it turns out that in the low-
conductivity limit q → 0 the sign of α is always opposite to that of
ψ · (∇ × ψ), where u =∇ ×ψ , ∇ ·ψ = 0; see e.g. Krause & Rädler
(1980) and Rädler & Brandenburg (2003). For both types of flows,
(i) and (ii), we have ψ = (ψ̃, −ψ̃, ψ), where ψ̃ = −kH(∂ψ/∂x +
∂ψ/∂y) and therefore ψ · (∇ × ψ) = −2u2

0/kH. This implies that
α is positive. Indeed, only positive α have been observed for small
q, even beyond SOCA.

Secondly, it was found in SOCA in the high-conductivity limit
q → ∞, that the sign of α for a flow with finite correlation time is
opposite to that of

∫ ∞
0 u(x, t) · (∇ × u(x, t − τ )) dτ ; see e.g. again

Krause & Rädler (1980). A relation of that kind between α and this
integral can indeed be formally derived from the general relation
(29) of Rädler & Rheinhardt (2007) and applied to our specific
situation. In case (i) the correlation time is however infinite and this
integral does not converge. Although we know that u · (∇ × u) =
−2u2

0kH we do not see how reliable conclusions could be drawn
concerning the sign of α. In case (ii) the integral is positive, and
indeed only positive α have been observed.

Beyond the low- and high-conductivity limits, that is, for not too
small or not too large values of q, even SOCA offers no simple
general statements on the sign of α. In general α may take both
positive and negative values. The results of CHT06, as well as
those presented in this paper, show that in addition to positive also
negative α are well possible.

One motivation for looking at GP flows was the hope that their
time dependence helps to model some features of turbulence and that
in this way some properties of the coefficients α and ηt in turbulent
flows could be studied. As we have seen, however, the mean-field
effects in GP flows can hardly be compared in a meaningful way
with such effects in real turbulence. This applies in particular to the
circularly polarized GP flow, i.e. the flow of type (i). We see no
straightforward way to relate the circular motion of the flow pattern
and the parameters ε and ω̃ to real turbulence. There is no natural
interpretation for this motion and the so caused γ and δ effects. The
linearly polarized flow, i.e. the flow of type (ii), exhibits no such
motion. Nevertheless, it remains hard to interpret the parameter ε.
For these reasons we do not think that the results on mean-field
effects in GP flows as reported in CHT06 and here, for example the
variations of α with Rm, ε and ω̃, reflect phenomena to be expected
in a turbulent astrophysical plasma.

Recently Tilgner (2008) pointed out that a time-dependent flow
of a conducting fluid can act as a dynamo even when steady flows,
which coincide with it at any particular time, cannot. He demon-
strated this with a Roberts flow modified by a drift of its pattern
so that the velocity u satisfies relations like (2) and (3) with ϕx =
−kHvdt and ϕy = 0, where vd is a constant drift velocity. Even if
the intensity of the flow is too weak so that in the case vd = 0 no
growing solutions of the induction equation with a given period in
the z direction exist, such solutions may occur in an interval of some
finite vd. Although this flow considered by Tilgner is in a sense sim-
pler than the flows in our paper, it shows no longer the symmetries
with respect to the z-axis which we have utilized above to justify the
relations (13) and (14) between the mean electromotive force E and
the mean magnetic field B. As a consequence the relation between
these quantities is more complex. Nevertheless, the question arises
whether the effect of the time dependence of flows observed by
Tilgner occurs also in the examples investigated here. In case (i) the
parameter ω could play the role of vd. The fact that the magnitude

of α is larger for some finite ω̃ than for ω̃ = 0, which can be seen
in Figs 7 and 8, points in this direction.

Astrophysical flows can often be described neither by isotropic
turbulence nor by wobbling two-dimensional flow patterns, but they
are likely to contain aspects of both extremes. However, the present
work highlights another aspect that may be of more general signifi-
cance and concerns the turbulent transport properties in the presence
of high-frequency time variability. This is not just a peripheral as-
pect of turbulence, but it is an additional property whose effects need
to be understood more thoroughly. The situation is reminiscent of
the modifications of mixing length theory in the presence of stellar
pulsations (see e.g. Gough 1977). In dynamo theory the issue of
high-frequency time variability has only recently been addressed.
One example concerns the non-linear α effect where its time de-
pendence has a striking effect on the behaviour of the mean field.
In that example the temporal behaviour of the forcing function (δ
correlated or steady) determines the non-linear asymptotic scaling
behaviour of the quenching function α(B) at low Rm. The early re-
sults of Moffatt (1972) and Rüdiger (1974) suggested a |α| ∼ |B|−3

behaviour, but in more recent years Field, Blackman & Chou (1999)
and Rogachevskii & Kleeorin (2000) found instead a |α| ∼ |B|−2

behaviour, which seemed in conflict with the earlier results. How-
ever, the work of Sur, Subramanian & Brandenburg (2007) now
shows that this is not just an artefact related to different approx-
imations, for example, but it depends on whether or not the flow
is time dependent. They found that the |α| ∼ |B|−3 behaviour is
reproduced if the flow is steady, while the |α| ∼ |B|−2 behaviour
is obtained in the time-dependent case using a forcing function that
is δ correlated in time. Again, it is not clear which types of flows
are astrophysically more relevant, but it is now clear that the de-
tailed time dependence of the turbulent flows can affect its transport
properties in rather unexpected ways.
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APPEN D IX A : ROBERTS FLOW

In the special case ϕx = ϕy = 0 the flow defined by (2) and (3),
turns into the Roberts flow. Our SOCA results for this special case
agree with results for the Roberts flow reported in Brandenburg
et al. (2008b) and in Rädler et al. (2002a), referred to as BRS08 and
R02a, respectively.

In BRS08 instead of our coordinate system (x, y, z) another one,
say (x′, y′, z), is used, which is obtained by a 45◦ rotation of our
system about the z-axis, that is,

x = 1√
2

(x ′ − y ′), y = 1√
2

(x ′ + y ′). (A1)

Under this transformation relation (3) with ϕx = ϕy = 0 turns into

ψ = 2u0

kH
cos(kHx ′/

√
2) cos(kHx ′/

√
2). (A2)

Together with (2) we find so, referring to the system (x′, y′, z),

u =
√

2u0

⎛
⎜⎜⎝

− cos(kHx ′/
√

2) sin(kHy ′/
√

2)

+ sin(kHx ′/
√

2) cos(kHy ′/
√

2)

−√
2 cos(kHx ′/

√
2) cos(kHy ′/

√
2)

⎞
⎟⎟⎠ . (A3)

Comparing this first with (BRS08 25) and ignoring the opposite
sign of uz we find

uBRS
0 =

√
2 u0, k0 = kf/

√
2 = kH/

√
2 . (A4)

The only consequence of inverting the sign of uz is a sign change
of α. Taking then the SOCA results (BRS08 30) for α and ηt, with
uBRS

0 in place of u0 and completed by (BRS08 29), considering (A4)
and the remark on the sign of α we can easily reproduce our results
(23) with χ

(2)
0 = 1.

This applies analogously to R02a if, in addition to the transfor-
mation (A1), x′ is replaced by x ′ −π/

√
2kH and y′ by y ′ +π/

√
2kH.

Comparing the corresponding modification of (A3) with (R02a 15)
we find

u⊥ = (2
√

2/π)u0, u‖ = (8/π2)u0, a =
√

2π/kH. (A5)

When using (R02a 19) we obtain α as in (23) with χ
(2)
0 = 1. With

(R02a 38) and ηt = β⊥ + β3 we find also ηt as in (23) with
χ

(2)
0 = 1.

Figure A1. Dependence of α/u0 on Rm from (A6).

Going beyond SOCA we note that according to (BRS08 25), or
also according to (R02a 20),

α = u0Rmφ(2Rm) (A6)

with a function φ satisfying φ (0) = 1 and vanishing like R−3/2
m with

growing Rm. It has been calculated numerically and is plotted, e.g. in
R02a. In Fig. A1 α/u0 according to (A6) is depicted as function of
Rm.

A P P E N D I X B: SE C O N D - O R D E R
C A L C U L AT I O N S

For the calculation of the αij and ηij with 1 ≤ i, j ≤ 2 under
SOCA we start with (15). Introducing there b = Re(b̂ exp ikz) and
B = Re(B̂ exp ikz) we obtain[
∂t − η(∇2 − k2)

]
b̂ = (B̂ · ∇)u − ikuz B̂. (B1)

For our purposes it is useful to represent u in the form

ux = −u0[cos(kHy) ss(t) + sin(kHy) cs(t)],

uy = u0[cos(kHx) sc(t) + sin(kHx) cc(t)],

uz = −u0[cos(kHx) cc(t) − sin(kHx) sc(t)

+ cos(kHy) cs(t) − sin(kHy) ss(t)],
(B2)

where

ss(t) = sin(ε sin ωt), cs(t) = cos(ε sin ωt), etc. (B3)

Then the right-hand side of (B1), say R̂, takes the form

R̂ = R̂
cx

cos kHx + R̂
sx

sin kHx

+ R̂
cy

cos kHy + R̂
sy

sin kHy (B4)

with R̂
cx

, R̂
sx

, . . . depending on time.
Clearly, (B1) poses an initial value problem. As for the initial

time t0 we let t0 → −∞. Then the solution b̂ of (B1) is completely
determined by its right-hand side, R̂, and has again the form of R̂
as given by (B4). Since ∇2 b̂ = −k2

H b̂ we have

b̂(t) =
∫ ∞

0
R̂(t − t ′) exp

[−η(k2
H + k2)t ′] dt ′. (B5)
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Table B1. Some values of χ (2) for case (i) defined in equation (18).

ωt
π/8 ε = 0.1 ε = 0.1 ε = 1 ε = 1 ε = 10 ε = 10

q = 1 q = 10 q = 1 q = 10 q = 1 q = 10

0 0.9970 0.9926 0.7558 0.4204 0.3017 0.2073
1 0.9982 0.9936 0.8521 0.4882 0.5246 0.2667
2 0.9990 0.9954 0.9123 0.6165 −0.1882 −0.1816
3 0.9989 0.9971 0.8963 0.7341 0.1567 0.1912
4 0.9980 0.9975 0.8115 0.7658 −0.1558 −0.2448
5 0.9968 0.9965 0.7121 0.6889 0.1196 0.1881
6 0.9960 0.9947 0.6586 0.5550 −0.0363 −0.1637
7 0.9961 0.9931 0.6775 0.4465 0.1317 0.2189
8 0.9970 0.9926 0.7558 0.4204 0.3017 0.2073

After determining the R̂
cx

, R̂
sx

, . . . we find for the analogously
defined b̂

cx
, b̂

sx
, . . .

b̂cx
x = iu0kB̂x�(cc), b̂sx

x = −iu0kB̂x�(sc),

b̂cy
x = −u0(kHB̂y − ikB̂x)�(cs),

b̂sy
x = u0(kHB̂y − ikB̂x)�(ss),

b̂cx
y = u0(kHB̂y + ikB̂x)�(cc),

b̂sx
y = −u0(kHB̂y + ikB̂x)�(sc),

b̂cy
y = iu0kB̂y�(cs), b̂sy

y = −iu0kB̂y�(ss),

b̂cx
z = u0kHB̂x�(sc), b̂sx

z = u0kHB̂x�(cc),

b̂cy
z = u0kHB̂y�(ss), b̂sy

z = u0kHB̂y�(cs), (B6)

where

�(f ) =
∫ ∞

0
f (t − t ′) exp

[−η
(
k2

H + k2
)
t ′] dt ′ (B7)

with any function f = f (t). Of course, � depends in general on time.
In view of (B6) we note that, since B = Re(B̂ exp ikz), we have
also J = Re( Ĵ exp ikz) and therefore ikB̂x = Ĵy and ikB̂y = −Ĵx .

Calculating then E we find

Ex = uybz − uzby = u0RmaxxBx − u0RmbxxJ x,

Ey = uzbx − uxbz = u0RmayyBy − u0RmbyyJ y,

Ez = uxby − uybx = 0, (B8)

where axx , ayy , bxx and byy are in general periodic functions of time,
which are defined by

axx = ηk2
H [cc�(cc) + sc�(sc)] ,

ayy = ηk2
H [cs�(cs) + ss�(ss)] ,

bxx = byy = 1
2

(
axx + ayy

)
. (B9)

The combination of trigonometric functions on the right-hand side
of the relation for axx can easily be expressed by the function CC
defined in (19). The same applies to ayy and the function CS defined
in (31).

The result given by (B8) and (B9) is valid for arbitrary k. This
applies of course also if it is written in the alternative form with CC
and CS. In that sense it is of some interest in view of the non-local
connection between E and B studied in the paper by BRS08. In
the main part of the present paper we consider however the limit

k → 0 only. In this limit (B7) applies with k = 0. Then (B8) and
(B9) agree just with (16) and (18). Table B1 shows some values of
the function χ (2)(t) that occurs in (16) and (18).

A P P E N D I X C : H I G H E R O R D E R
C A L C U L AT I O N S

For the sake of simplicity we assume now, beyond SOCA, that B
is a uniform field, that is, has no spatial derivatives. Then u × b is
independent of space coordinates and (28) turns into

(∂t − η∇2)b(n+1) = (b(n) · ∇)u − (u · ∇)b(n), n ≥ 1. (C1)

We may apply some modification of the procedure used in Appendix
B for solving the equation (B1) for b̂ to the equations (C1) for b(2)

and b(3).
The right-hand side of the equation for b(2), say R(2), is a linear

combination of products ϕ(x) ϕ(y), where ϕ(x) stands for cos kHx or
sin kHx, and ϕ(y) for cos kHy or sin kHy. Clearly b(2) has the same
form as R(2) and satisfies ∇2b(2) = −2k2

Hb(2). Therefore (B5) applies
after replacing b̂ and R̂ by b(2) and R(2), respectively, k2

H by 2k2
H,

and putting k = 0. As a consequence of the described structure of

b(2) we have u × b(2) = 0.
The right-hand side of the equation for b(3), which we call R(3), is a

linear combination of products ϕ1(x) ϕ2(x) ϕ(y) or ϕ(x) ϕ1(y) ϕ2(y),
where the indices 1 and 2 may refer to the same function or
to different functions, e.g. ϕ1(x) = ϕ2(x) = cos kHx or ϕ1(x) =
cos kHx and ϕ2(x) = sin kHx. In the first case we utilize cos2kHx =
(1/2) (1 + cos 2kHx) and split, e.g. cos2kHx sin kHy into the
two parts (1/2) sin kHy and (1/2) cos 2kHx sin kHy. In this way
we may split R(3) into two parts, R(3a) and R(3b), where R(3a)

contains only contributions ϕ1(x) ϕ2(x)ϕ(y) and ϕ(x) ϕ1(y)ϕ2(y)
with three different factors, and contributions of the types
ϕ(x) ϕ(2y) and ϕ(2x) ϕ(y), and R(3b) only contributions of the types
ϕ(x) and ϕ(y). There are two corresponding parts of b(3), that is
b(3a) and b(3b), which satisfy ∇2b(3a) = −5k2

Hb(3a) and ∇2b(3b) =
−k2

Hb(3b) and equations of type of (B5). The structure of b(3a) im-

plies u × b(3a) = 0. Only b(3b), for which (B5) applies with b̂ and R̂
replaced by b(3b) and R(3b), respectively, and k = 0, contributes to

u × b(3b).
Detailed calculations along these lines deliver us

E (4)
x = uyb

(3)
z − uzb

(3)
y = u0R

3
m

(
axxBx + axyBy

)
,

E (4)
y = uzb

(3)
x − uxb

(3)
z = u0R

3
m

(
ayxBx + ayyBx

)
,

E (4)
z = uxb

(3)
y − uyb

(3)
x = 0 (C2)

with

axx = −(ηk2
H)3{sc[�(ss, ss, cc) + �(cs, cs, sc)]

+cc[�(ss, ss, cc) + �(cs, cs, cc)]},
axy = −(ηk2

H)3{sc[�(ss, cc, cs) − �(cs, cc, ss)]

−cc[�(ss, sc, cs) − �(cs, sc, ss)]},
ayx = +(ηk2

H)3{cs[�(sc, ss, cc) − �(cc, ss, sc)]

−cc[�(sc, cs, cc) − �(cc, cs, sc)]},
ayy = −(ηk2

H)3{cs[�(sc, sc, cs) + �(cc, cc, cs)]

+ss[�(sc, sc, ss) + �(cc, cc, ss)]},

(C3)
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where

�(f , g, h)

=
∫ ∞

0

∫ ∞

0

∫ ∞

0
f (t − t ′)g(t − t ′ − t ′′)h(t − t ′ − t ′′ − t ′′′)

× exp[−ηk2
H(t ′ + 2t ′′ + t ′′′)] dt ′ dt ′′ dt ′′. (C4)

The combinations of trigonometric functions in (C3) can be ex-
pressed by the CC, CS, SC and SS defined in (19) and (31). In this
way we arrive at the results (29) and (30).
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