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ABSTRACT

Aims. We study the dependence of turbulent transport coefficients, such as the components of the α tensor (αi j) and the turbulent
magnetic diffusivity tensor (ηi j), on shear and magnetic Reynolds number in the presence of helical forcing.
Methods. We use three-dimensional direct numerical simulations with periodic boundary conditions and measure the turbulent trans-
port coefficients using the kinematic test field method. In all cases the magnetic Prandtl number is taken as unity.
Results. We find that with increasing shear the diagonal components of αi j quench, whereas those of ηi j increase. The antisymmetric
parts of both tensors increase with increasing shear. We also propose a simple expression for the turbulent pumping velocity (or γ ef-
fect). This pumping velocity is proportional to the kinetic helicity of the turbulence and the vorticity of the mean flow. For negative
helicity, i.e. for a positive trace of αi j, it points in the direction of the mean vorticity, i.e. perpendicular to the plane of the shear
flow. Our simulations support this expression for low shear and magnetic Reynolds number. The transport coefficients depend on the
wavenumber of the mean flow in a Lorentzian fashion, just as for non-shearing turbulence.
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1. Introduction

Understanding the origin of non-uniform large-scale magnetic
fields in stars, galaxies, and accretion discs continues to pose im-
portant challenges. Such fields are commonly thought to be the
result of dynamo action that converts the kinetic energy of tur-
bulent motions and large-scale shear into magnetic energy. The
usual framework for studying such dynamo actions is mean field
electrodynamics (e.g. Krause & Rädler 1980). Over the years,
however, the applicability of this framework has been ques-
tioned (Piddington 1981; Vainshtein & Cattaneo 1992). In par-
ticular, an important debate in this connection revolves around
the role played by magnetic helicity (Gruzinov & Diamond
1994). Magnetic helicity is conserved for ideal (non-dissipative)
magnetohydrodynamics (MHD) and also in the limit of large
magnetic Reynolds numbers. This conservation places severe
constraints on the growth of the mean magnetic field and may
regulate the quenching of the α effect as the magnetic Reynolds
number (ReM) increases (Brandenburg & Subramanian 2005).
Under certain circumstances (no magnetic helicity fluxes), α
quenching becomes more severe with α proportional to Re−1

M . It
has been suggested that this can be alleviated by expelling mag-
netic helicity through open boundaries (Blackman & Field 2000;
Kleeorin et al. 2000), possibly mediated by shear (Vishniac &
Cho 2001; Subramanian & Brandenburg 2004; Brandenburg &
Sandin 2004). Furthermore, shear itself is an important ingredi-
ent in MHD dynamos in solar and stellar settings as, for example,
in the solar tachocline. Hence, it is important to understand how
shear affects the turbulent transport coefficients, in particular the
components of the αi j and ηi j tensors.

Several studies have recently looked at various as-
pects of this problem (see, e.g., Rogachevskii & Kleeorin
2003, 2004; Brandenburg 2005; Rüdiger & Kitchatinov
2006; Rädler & Stepanov 2006; Leprovost & Kim 2008;

Brandenburg et al. 2008a). These works employ different tools
and make different assumptions and are often applicable to lim-
ited regions of the parameter space. As a consequence, care must
be taken in comparing these results. For example, using semi-
analytical tools, which treat the nonlinear Lorentz force feed-
back perturbatively, Leprovost & Kim (2008) have found that
shear can reduce α in helically forced turbulence. This is anal-
ogous to the “rotational quenching” of turbulent transport co-
efficients with increasing Coriolis or inverse Rossby numbers
(Kitchatinov et al. 1994; Pipin et al. 1996). There are also other
related cases in which the presence of shear enhances the growth
rate of the dynamo. For example; using direct numerical sim-
ulations of the MHD equations in the presence of shear and
non-helical forcing, Yousef et al. (2008a,b) have found large-
scale dynamos whose growth rate increases linearly with shear.
Such scaling has also been found for α-shear dynamos where
the α effect is due to stratified convection with shear (Käpylä
et al. 2008a). Furthermore, using the kinematic test field method
(described below), Brandenburg et al. (2008a) have studied the
dynamo coefficients in the presence of shear, but in the ab-
sence of helicity, and they find that Gaussian fluctuations of α
about zero are strong enough to drive an incoherent α-shear dy-
namo (Vishniac & Brandenburg 1997; Proctor 2007). The sig-
nificance of the incoherent α effect has also been stressed by
Hughes & Proctor (2009), although their system may have also
had a net α effect. They dismissed this on the grounds that for an
imposed uniform magnetic field α is very small. However, this
result disagrees with recent calculations of α using the test field
method (Käpylä et al. 2008b).

In this paper we use three-dimensional direct numerical sim-
ulations of the kinematic test field equations with helical forc-
ing in order to study the dependence of turbulent transport
coefficients on shear and magnetic Reynolds number. In Sect. 2
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we give a brief account of our model. Section 3 contains our
results and finally we conclude in Sect. 4.

2. The model

We use the test field method (Schrinner et al. 2005, 2007) to
calculate the turbulent transport coefficients. This method and its
modification in the presence of large-scale shear are described in
Brandenburg et al. (2008a). Here we just point out the essence
of the method and elaborate only on those aspects where our
treatment differs from their paper.

In the presence of large-scale shear, the equations of magne-
tohydrodynamics are treated in the following way. Writing the
velocity as the sum U +US , where the large-scale shear velocity
US = S xŷ with a constant shear S , and assuming an isother-
mal equation of state characterised by the sound speed cs, the
momentum equation becomes

DU
Dt
= −U · ∇U − S Uxŷ − c2

s∇ ln ρ + f + Fvisc. (1)

Here Fvisc = ρ
−1∇ · (2ρνS) is the viscous force, Si j =

1
2 (Ui, j +

U j,i)− 1
3δi j∇·U is the traceless rate of strain tensor (not to be con-

fused with the shear parameter S ), ν is the kinematic viscosity, ρ
is the fluid density, cs is the isothermal sound speed and

D
Dt
≡ ∂
∂t
+ S x

∂

∂y
· (2)

As our external forcing f we employ helical, white-in-time, ran-
dom forcing described in Brandenburg (2001). In this paper we
consider the purely kinematic problem, so there is no feedback
in Eq. (1) due to the Lorentz force. In addition to the momentum
equation, we have the continuity equation

Dρ
Dt
= −U · ∇ ln ρ − ∇ · U, (3)

and the uncurled induction equation in the Weyl gauge,

DA
Dt
= −S Ay x̂ + U × B − ημ0 J . (4)

Here the magnetic field is B = ∇ × A, the current density is
J = ∇×B/μ0, and μ0 and η are the vacuum permeability and the
molecular magnetic diffusivity, respectively. In the mean field
approach to MHD one usually decomposes the magnetic field
(or magnetic vector potential) and velocity into mean (indicated
by an overbar) and fluctuating parts respectively

A = A + a, U = U + u. (5)

The equations satisfied by the mean and fluctuating parts of the
magnetic vector potential are given by

DA
Dt
= −S Ay x̂ + U × B + E − ημ0 J , (6)

and

Da
Dt
= −S ay x̂ + U × b + u × B + u × b − E − ημ0 j, (7)

where j = J − J and E = u × b is the mean turbulent elec-
tromotive force. Specification of this second order quantity in
terms of the mean field constitutes a closure problem. A com-
mon procedure is to expand E in terms of the mean field B and
its derivatives,

Ei = E0i + αi jB j + ηi jkB j,k, (8)

where αi j and ηi jk are the tensorial turbulent transport coeffi-
cients, and E0 quantifies additional contributions that arise even
in the absence of a mean field, owing to small-scale dynamo ac-
tion, for example. Here and throughout, summation is assumed
over repeated indices. In the test field method we take the mean
magnetic field to be a given “test field” B, and calculate these
tensors by measuring E by solving Eq. (7) simultaneously with
Eqs. (1) and (3), while using Eq. (5) to find u. In order to find
all the components of the αi j and ηi j tensors, and not just projec-
tions relevant to the actual fields, one has to use an orthogonal
set of test fields and solve Eq. (7) for each of them.

In our simulations we employ averages over x and y direc-
tions to define our mean fields, which are therefore functions of z
and t only. Thus, all other components of Bj,k except Bx,z and By,z
vanish, and the α and η tensors can be written as rank two ten-
sors with ηi1 = ηi23 and ηi2 = −ηi13 for i, j = (1, 2) (Brandenburg
et al. 2008a). Now consider, as an example, the following two
test fields,

B
c1
i = B0(cos kz, 0, 0), μ0J

c1
i = kB0(0,− sin kz, 0), (9)

B
s1
i = B0(sin kz, 0, 0), μ0J

s1
i = kB0(0,+ cos kz, 0), (10)

which we use to compute the two corresponding mean electro-
motive forces Ec1 and Es1. The relevant components of the α and
η tensors are then given by

(
αi1
−ηi2k

)
=

(
cos kz sin kz
− sin kz cos kz

) ⎛⎜⎜⎜⎜⎜⎝ E
c1
i

Es1
i

⎞⎟⎟⎟⎟⎟⎠ . (11)

The rest of the 2+2 components of the α and η tensors can be
similarly determined by using the test fields,

B
c2
i = B0(0, cos kz, 0), B

s2
i = kB0(0, sin kz, 0). (12)

In what follows we denote a test field by B
pq

, where p = c, s
and q = 1, 2. A particular small-scale magnetic vector potential
that develops in response to the B

pq
is denoted by apq and the

corresponding small-scale magnetic field is given by bpq = ∇ ×
apq. Note that at large values of ReM there will also be small-
scale dynamo action that will lead to spurious time-dependencies
of E. However, since neither the test fields nor αi j or ηi j depend
on time, i.e.

Epq
i (z, t) = Epq

0i (z, t) + αi jBj
pq

(z) + ηi jkB j,k
pq

(z) , (13)

such time dependence must be entirely due to Epq
0 (z, t) and can

be eliminated by time averaging.
In the following we shall, to begin with, use k = k1, the

wavenumber corresponding to the box size, to study the depen-
dence of αi j and ηi j on shear and magnetic Reynolds number.
We shall discuss the dependence of the αi j and ηi j tensors on k
in Sect. 3.3. Note that the usual approach of using uniform ap-
plied fields for calculating α (e.g., Courvoisier et al. 2006) cor-
responds to a special case of the test field method for k = 0.
However, dynamos generate large-scale fields with non-zero k,
so it is important to relax this restriction. It is then also important
to calculate ηi j. The test field method allows the simultaneous
calculation of all the components of the αi j and ηi j tensors for
arbitrary values of k.

The test field method has recently been criticised by
Cattaneo & Hughes (2008) on the grounds that the test fields are
arbitrary predetermined mean fields. They argue that the result-
ing turbulent transport coefficients will only be approximations
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Fig. 1. Root-mean-square velocity urms normal-
ized by the speed of sound cs as: a) a func-
tion of ReM for different values of Sh: Sh ∼
0.07(∗), 0.2(�), and 0.3(�) respectively and b)
a function of the shear parameter Sh for differ-
ent value of ReM: ReM ∼ 1 (∗), ReM ∼ 20 (�),
and ReM ∼ 72 (�).

to the true values unless the test fields are close to the actual
mean fields – a criticism equally applicable to other methods
using arbitrary uniform fields. This concern has been addressed
by Tilgner & Brandenburg (2008), who argue that Eq. (7) can
instead be applied to any mean field. This statement has been
numerically verified in three cases that we describe below.

Firstly, the test field method correctly reproduces a van-
ishing growth rate in saturated nonlinear cases (Brandenburg
et al. 2008b). Secondly, in the time-dependent case, the test field
method correctly reproduces also a non-vanishing growth rate,
but in that case it is no longer permissible to express E in terms
of a multiplication of turbulent transport coefficients with the
mean field and its spatial derivatives. One must therefore write
Eq. (8) as a convolution in time (Hubbard & Brandenburg 2008).
Finally, the success of the test field method becomes particu-
larly clear when it is applied to a passive vector field that obeys
a separate induction equation with a velocity field from a sat-
urated dynamo (Tilgner & Brandenburg 2008). This question
was originally posed by Cattaneo & Tobias (2008). In partic-
ular for the Roberts flow with a mean field of Beltrami type,
e.g. one that is proportional to (cos k1z, sin k1z, 0), the αi j tensor
is anisotropic and has an additional component proportional to
BiBj that tends to quench the components of the isotropic part
of αi j. The fastest growing passive vector field is then propor-
tional to (sin k1z,− cos k1z, 0). This result has been confirmed
both numerically and using weakly nonlinear theory (Tilgner &
Brandenburg 2008).

In the following we ignore the complications involving time-
dependent mean fields and restrict ourselves to transport coeffi-
cients that apply strictly speaking only to the time-independent
or marginally excited case. For our numerical simulations we
use the Pencil Code1, where the test field algorithm has already
been implemented. All our numerical simulations are performed
in a periodic cubic box. The forcing scale is chosen to have the
wavenumber kf/k1 = 5. This gives enough scale separation for
a large-scale field to develop (Haugen et al. 2004), and is still
not too big to reduce the resulting Reynolds numbers too much.
We use units such that cs = k1 = ρ0 = μ0 = 1 and arrange the
forcing amplitude so that the Mach number is around 0.1. For
the magnetic Prandtl number we choose PrM = ν/η = 1, where
ν lies in the range 3 × 10−3 to 2 × 10−4 (in units of cs/k1). We
choose the shear S such that the parameter

Sh ≡ S/(urmskf) (14)

takes values in the range −0.02 to −0.9, where urms is the root-
mean-square velocity. All the runs are started with uniform den-
sity, ρ = ρ0, U = 0, and apq = 0. Depending upon the parameters
of a particular run we use up to 2563 grid points. For each test
field B

pq
we calculate the time averages of the αi j and ηi j tensors

1 http://www.nordita.org/software/pencil-code

over time intervals over which urms is statistically stationary. In
runs with higher magnetic Reynolds numbers,

ReM ≡ urms/(ηkf), (15)

we obtain an exponential growth of small-scale magnetic field
(see below). We interpret this as being associated with the
Epq

0 (z, t) term. This often gives rise to large fluctuations in all
components of the αi j and ηi j tensors at late times. In such cases
we confine our calculations of the time averages to time inter-
vals over which bpq

rms does not exceed B
pq

by more than a fac-
tor of about 20. Up until this point, the components of the αi j
and ηi j tensors show only their intrinsic fluctuations, but at later
times these will be swamped by additional contributions from
the small-scale dynamo that grows exponentially in time. If nec-
essary, we repeat our calculations over several independent real-
izations by resetting apq = 0 at regular time intervals.

3. Results

Our principal aim in this paper is to study the effects of varying
shear (Sh) and magnetic Reynolds number (ReM) on the com-
ponents of the αi j and ηi j tensors. In the subsection below we
summarize our results concerning the different components of
these tensors.

3.1. Diagonal components of the transport tensors

The isotropic parts of the αi j and ηi j tensors are respectively
characterised as

α = 1
2 〈α11 + α22〉, ηt =

1
2 〈η11 + η22〉, (16)

where 〈·〉 denotes an average taken over z and t. We normal-
ize these quantities by α0 = − 1

3 urms and ηt0 =
1
3 urms/kf which

are their respective expressions obtained using the First Order
Smoothing Approximation (FOSA) for ReM 	 1, which has
previously been confirmed with the test field method in simula-
tions of helical turbulence without shear (Sur et al. 2008).

Since urms enters the normalization of αi j and ηi j, it is useful
to first look at how it changes as a function of ReM (Fig. 1a) and
Sh (Fig. 1b). As can be seen, urms increases as a function of ReM
for small ReM ∼ 1 and then reaches a plateau for high ReM. On
the other hand, urms is almost a constant as a function of shear
except for high Sh, where we observe excitation of the vorticity
dynamo discussed further in Sect. 3.4.

In Fig. 2 we show α as a function of shear for three different
values of the magnetic Reynolds number ReM ≈ 1, 20 and 72.
Figure 2b shows the corresponding results for ηt. We note that
for small shear the turbulent transport coefficients are close to
their values for zero shear. As |Sh| increases, α decreases and ηt
increases up to four times ηt0. As can be seen there is a clear

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361:200810359&pdf_id=1
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Fig. 2. Turbulent transport coefficients a) α/α0

and b) ηt/ηt0 as functions of shear parameter Sh
for different values of ReM: ReM ∼ 1 (∗), ReM ∼
20 (�), and ReM ∼ 72 (�).

Fig. 3. a) α/α0 and b) ηt/ηt0 as func-
tions of ReM, for different values of Sh:
Sh ∼ 0.07 (∗), 0.2 (�), and 0.3 (�) respectively.
Horizontal dashed lines at α/α0 = 1 and
ηt/ηt0 = 1 are added to facilitate comparison.

reduction (quenching) of α with increasing shear in all these
cases. In order to examine the possible convergence of the re-
sults with ReM we plot α and ηt as functions of ReM for three
different values of the shear parameter Sh, see Fig. 3. For small
ReM ∼ 1 we observe an increase in both α and ηt with ReM. A
similar initial increase of α and ηt was also seen in earlier simu-
lations of helical turbulence without shear (Sur et al. 2008) and
in non-helical shear flow turbulence (Brandenburg et al. 2008a).
For higher values of ReM and Sh, both α and ηt show large vari-
ations. In these kinematic simulations, however, we expect them
to tend to constant values asymptotically at high ReM (Sur et al.
2008).

In an earlier study of shear flow turbulence with non-helical
forcing by Brandenburg et al. (2008a), the diagonal components
of ηi j were found to be the same. Obviously, in the absence of
helicity all the components of αi j are zero. It turns out that in the
presence of helicity the two diagonal components of ηi j are still
the same, but those of αi j are now non-zero and not equal to each
other. This is best shown by considering the quantities

εα =
1
2 〈α11 − α22〉, εη = 1

2 〈η11 − η22〉. (17)

The results are shown in Fig. 4. Note that especially for large
values of ReM the values of εα are predominantly negative. Since
both α11 and α22 are negative, this means that |α11| is larger than
|α22|, although the relative difference is only of the order of at
most 5 per cent.

3.2. Off-diagonal components

We now consider the off-diagonal components of αi j and ηi j. The
results are depicted in Figs. 5 and 6. Of particular interest among
these is the component η21, whose dependence on Sh and ReM
is shown in Figs. 5d and 6d, respectively. This component can
indicate the possible presence of a shear-current dynamo that
may operate when η21S/(ηTk1)2 > 1 (Rogachevskii & Kleeorin
2003, 2004). Here ηT = ηt + η is the total (sum of turbulent and
microscopic) magnetic diffusivity. In our case we have S < 0,
which implies that the necessary condition for the shear-current
dynamo to operate is η21 < 0. As can be seen from Fig. 6d,
for the range of ReM values considered here η21 is positive for

small shear but becomes negative for strong shear and certain
values of ReM. Earlier work of Brandenburg et al. (2008a) with-
out helicity did indicate a similar sign change, although only for
larger ReM. However, the error bars were so large that this re-
sult could not be regarded as significant. For the run with the
strongest shear (−Sh ≈ 0.3) and for ReM = 40 we now find η21
to be more clearly negative, but for smaller and larger values
of ReM the results are again, at least within error bars, compat-
ible with zero. Also, of course, the present results apply to the
case with helicity and are therefore not really comparable with
those of Brandenburg et al. (2008a), where the helicity is zero.
The antisymmetric contributions to the αi j and ηi j tensors are
characterised by the vectors

γk = − 1
2 εi jkαi j, δk = − 1

2 εi jkηi j. (18)

Since our averages depend only on z, the z components of these
tensors are irrelevant and therefore only the z components of the
γ and δ vectors are of interest. We denote those simply by γ
and δ, with

γ = 1
2 〈α21 − α12〉, δ = 1

2 〈η21 − η12〉. (19)

A time series of both quantities is shown in Fig. 7 for positive
and negative signs of the kinetic helicity. The results show that,
in our case with S < 0, γ is positive (negative) for positive (neg-
ative) kinetic helicity, whilst δ has always the same sign.

Some idea about the functional forms of γ and δ can be ob-
tained from symmetry considerations. The vectors γ and δ enter
the electromotive force thus

E = ... + γ × B − μ0δ × J , (20)

so we see that γ must be a polar vector and δ must be an axial

vector. Using the shear flow U
S

, the only axial vector that can be

constructed is the mean vorticity, W = ∇×U
S

, so we expect δ to
have a component that is proportional to W. Likewise, since γ is
a polar vector which points in the direction of W, the two must
be related via a pseudoscalar. In the present case the only pseu-
doscalar available is the kinetic helicity, ω · u. Based on these
symmetry arguments we write

γ = Cγτ
2ω · u W, δ = Cδτ

2u2 W, (21)

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361:200810359&pdf_id=2
http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361:200810359&pdf_id=3
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Fig. 4. Normalized a) εα and b) εη), as de-
fined in Eq. (17), as functions of ReM for
constant value of the shear parameter Sh:
Sh ∼ 0.07 (∗), 0.2 (�), and 0.3 (�) respectively.
Horizontal dashed lines are added to facilitate
comparison.

Fig. 5. Normalized off-diagonal components of
the α and η tensors as functions of the shear pa-
rameter Sh for different values of ReM: ReM ∼
1 (∗), ReM ∼ 20 (�), and ReM ∼ 72 (�).
Horizontal dashed lines are added to facilitate
comparison.

Fig. 6. Normalized off-diagonal components
of the α and η tensors as functions of
ReM for constant values of Sh: Sh ∼
0.07 (∗), 0.2 (�), and 0.3 (�). Horizontal
dashed lines are added to facilitate comparison.

where we have introduced two non-dimensional quantities, Cγ
and Cδ which could be either positive or negative, and τ is a
correlation time that we approximate here by

τ = (urmskf)−1. (22)

In the present case, ω · u itself is a negative multiple of α. We
therefore expect γ to have a component proportional to αW,
multiplied by the correlation time τ. By similar arguments we
expect δ to have a component proportional to ηtW, multiplied
by τ. Based on these arguments we can also write

γ = C̃γ αWτ, δ = C̃δ ηtWτ, (23)

with new non-dimensional quantities, C̃γ ≈ Cγ/3 and C̃δ ≈
Cδ/3, that we expect to be of order unity. Our simulations

confirm this reasoning and show that both coefficients are of or-
der unity with positive C̃γ and negative C̃δ (e.g., C̃γ = 0.5 and
C̃δ = 0.25 for the run shown in Fig. 8) for runs with small ReM
and Sh; see Figs. 8 and 9, respectively. The sign in Eq. (23) has
been chosen a posteriori from our simulations. For high shear
and Reynolds number this simple reasoning is no longer accu-
rate and, at least in one case (Fig. 9a), Cγ even becomes negative.
For lower values of Sh we find an almost constant negative γ of
the order of 0.05α0 (or less). This result is fairly independent
of ReM. The moduli of γ and δ increase with increasing shear
parameter, and for larger values of ReM both quantities may ap-
proach an asymptotic value. For small ReM we observe a roughly
linear increase of γ with shear (see inset of Fig 8a), further veri-
fying Eq. (21).

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361:200810359&pdf_id=4
http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361:200810359&pdf_id=5
http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361:200810359&pdf_id=6
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Fig. 7. Normalized time series of turbulent
transport coefficients, a) α/|α0|, b) ηt/ηt0, c)
γ/|α0| and d) δ/ηt0, from two runs with exactly
the same parameters (ReM ∼ 1.4, Sh = −0.5),
but different signs of helicity for the external
force. Continuous and broken lines denote re-
sults from runs with positive and negative he-
licities, respectively.

Fig. 8. Normalized a) γ and b) δ as functions
of Sh for ReM ≈ 1 (∗), ReM ≈ 20 (�), and
ReM ≈ 72 (�). Horizontal dashed lines are
added to facilitate comparison. The inset shows
γ/|α0| versus −Sh for ReM ∼ 1.

Fig. 9. Normalized a) γ and b) δ as functions
of ReM for constant values of the shear param-
eter Sh: Sh ∼ 0.07 (∗), 0.2 (�), and 0.3 (�).
Horizontal dashed lines are added to facilitate
comparison.

The coefficient γ can be interpreted as turbulent pumping,
i.e. advection of the magnetic field by means other than the
mean velocity field. In strongly stratified convection, turbulent
pumping has been seen to be directed from higher to lower tur-
bulence intensity (Tobias et al. 1998, 2001; Ossendrijver et al.
2002; Käpylä et al. 2006), which is usually in the downward
direction. Thus, turbulent pumping is likely to play an impor-
tant role in convection zones of stars where it can overcome the
buoyancy of the magnetic field. In the present case where the tur-
bulence is homogeneous, however, stratification does not play a
role and the pumping is just due to the combined action of shear
and helical turbulence.

3.3. Scale-dependence

So far we have confined the calculations of the αi j and ηi j ten-
sors to test fields whose characteristic length scale is the largest
scale in the domain, i.e., test fields of the form sin kz or cos kz
with k = k1, where k1 = 2π/L and L is the box size of our sim-
ulations. We have also done similar calculations for other values

of k, which correspond to test fields with different characteris-
tic length scales. In Fig. 10 we show the dependence of α and ηt

on k for ReM ≈ 3. The decrease can be modelled by a Lorentzian
peaked at k = 0 (Fig. 10). This result is not surprising, because
Lorentzian fits have been obtained earlier also in the absence of
shear (Brandenburg et al. 2008c).

3.4. Effects from the vorticity dynamo

In the runs with relatively high values of shear and Reynolds
number, the root-mean-square velocity, Urms, which initially
reaches a steady state, shows an exponential growth at late
times, as can be seen in Fig. 11a. Similar behaviour is seen for
turbulent transport coefficients, which also show large fluctua-
tions for later times. Large fluctuations of the turbulent trans-
port coefficients at later times are also seen by Sur et al. (2008),
but those fluctuations are more irregular and have a different
origin. They are interpreted as being due to the development
of a small-scale dynamo at late times and are not due to the
more systematic increase in the rms velocity, which in turn is

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361:200810359&pdf_id=7
http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361:200810359&pdf_id=8
http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361:200810359&pdf_id=9
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Fig. 10. a) α(k)/α0 and b) ηt(k)/ηt0 as a function
of the wavenumber k of the large-scale mag-
netic field for ReM ≈ 3. The solid lines show
the Lorentzian fits of width 1.4 kf .

Fig. 11. Panel a) shows the root-mean-square
values of the velocity for one of our runs (with
Re ≈ 45 and Sh ≈ −0.3) which exhibits a vor-
ticity dynamo. The inset shows the time-series
for ηt. Panel b) shows a pronounced pattern in
Uy on the periphery of the box at the end of the
same run. Similar structures are also found in
the x component of the velocity.

associated with the shear. However, we emphasize that even be-
fore bpq becomes dominated by this type of dynamo action, the
temporal and spatial fluctuations of αi j and ηi j are of the or-
der of α0 and ηt0, respectively. This is true even for large val-
ues of ReM; see Brandenburg et al. (2008a), who have argued
that these fluctuations also contribute to large-scale dynamo ac-
tion via the incoherent α effect (Vishniac & Brandenburg 1997;
Proctor 2007). For example, the time-series of ηt shown in the
inset of Fig. 11 has a plateau even beyond the range over which
Urms is steady.

The vertical spikes in the inset of Fig. 11 come from reset-
ting apq to zero in regular time intervals; see the end of Sect. 2.
Note, however, that the mean values and also the upper enve-
lope trace the evolution of Urms reasonably well, including the
increased rise after t = 300. The late time behaviour is accompa-
nied by the formation of large-scale vortical structures, as seen
in Fig. 11b, which is a signature of the vorticity dynamo pro-
posed by Elperin et al. (2003), see also Yousef et al. (2008a,b).
A detailed numerical study of the vorticity dynamo has been per-
formed by Käpylä et al. (2008).

The presence of the vorticity dynamo and the resulting sys-
tematic variation in Urms as well as the turbulent transport coeffi-
cients for late times limit the lengths of time over which average
values of the components of the αi j and ηi j tensors can be calcu-
lated. In the above case this interval lies between the two arrows
in Fig. 11a. This limits the range of Sh and ReM that we have
probed and explains the larger error bars shown for example in
Fig. 6, and why they cannot be reduced by simply running our
simulations for longer times. This problem would be avoided
in the presence of magnetic fields, because then the resulting
Lorentz force would quench the vorticity dynamo (Käpylä &
Brandenburg 2008). This is however beyond the scope of this
paper.

4. Conclusions
We have studied the effects of varying shear and magnetic
Reynolds number on the turbulent transport coefficients in the

presence of helicity in the kinematic limit. We have shown that
for fixed ReM, α is reduced (quenched) with increasing shear.
Despite the differences in the assumptions made, this quench-
ing is qualitatively similar to the recent results obtained by
Leprovost & Kim (2008). To the best of our knowledge this
is the first numerical study to show quenching of α as a func-
tion of shear in helical turbulence. We find that ηt increases
with increasing shear in the range of ReM values that we have
considered here. A similar behaviour for ηt was also seen in
Brandenburg et al. (2008a) where the forcing was non-helical.

We also compute the off-diagonal components of the αi j
and ηi j tensors. The antisymmetric part of αi j corresponds to a
turbulent pumping velocity γ in the direction perpendicular to
the plane of the shear flow. It shows a roughly linear increase
with shear for small magnetic Reynolds number. We propose
simple expressions for γ and δ in Eq. (21) which show reason-
able agreement with our numerical results for small Sh and ReM.
Our expression shows that for negative helicity, γ points in the
direction of the vorticity of the mean flow. Regarding the com-
ponent η21 we find indications that, at least in one or two cases,
this component changes sign and becomes negative. This could
be of significance in connection with the shear-current effect.

We also find that all the turbulent transport coefficients de-
pend on the wavenumber of the mean flow in a Lorentzian fash-
ion, just as in the case of non-shearing turbulence (Brandenburg
et al. 2008c). This means that the kinematic values of α
and ηt for k = k1 are close to the values obtained for k →
0. This is not the case for certain non-turbulent flows such
as the Galloway-Proctor flow (Courvoisier 2008; Rädler &
Brandenburg 2009). In an earlier paper, Courvoisier et al. (2006)
considered only the limiting case k = 0 for this flow.

Several aspects of the present investigations could be of
astrophysical relevance. Turbulence in celestial bodies is heli-
cal and exhibits an α effect. In addition, shear (S ) can be an
important ingredient in that the efficiency of large-scale dy-
namo action is determined by the product of α and S . However,
as S increases, α itself becomes quenched when S becomes

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361:200810359&pdf_id=10
http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361:200810359&pdf_id=11
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comparable with the inverse turnover time, i.e. S τ = O(1).
Furthermore, the turbulent diffusivity becomes enhanced, sup-
pressing the dynamo even further. Finally, it is found that the
combined action of helicity and shear gives rise to a pumping
velocity of mean magnetic field perpendicular to the plane of the
shear flow. The existence of such a pumping velocity has not
been emphasized before. On the other hand, it is well known
that αΩ (or rather αS ) dynamos can have travelling wave solu-
tions (Brandenburg et al. 2001). When the product of α and S
is positive, these waves travel in the positive z direction, which
agrees with the direction of pumping. In the near-surface shear
layer of the Sun this pumping would therefore support the equa-
torward migration in that layer.

It is important to understand the quenching of turbulent
transport coefficients in the presence of shear beyond the kine-
matic approximation. In that case one needs to include the in-
duction equation (in addition to the test field equations) and in-
corporate the resulting Lorentz force in the momentum equation
(Brandenburg et al. 2008b). This would also help in alleviating
problems of strong late-time fluctuations arising from the vor-
ticity dynamo, because the vorticity dynamo tends to be sup-
pressed by magnetic fields of equipartition strengths (Käpylä &
Brandenburg 2008). Similarly, given their potential importance
in allowing the escape of magnetic helicity, the effects of open
boundary conditions also needs to be considered. These ques-
tions are under study and will be reported elsewhere.
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