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Small-scale magnetic helicity losses from a mean-field dynamo
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ABSTRACT
Using mean-field models with a dynamical quenching formalism, we show that in finite
domains magnetic helicity fluxes associated with small-scale magnetic fields are able to
alleviate catastrophic quenching. We consider fluxes that result from advection by a mean
flow, the turbulent mixing down the gradient of mean small-scale magnetic helicity density
or the explicit removal which may be associated with the effects of coronal mass ejections in
the Sun. In the absence of shear, all the small-scale magnetic helicity fluxes are found to be
equally strong for both large- and small-scale fields. In the presence of shear, there is also an
additional magnetic helicity flux associated with the mean field, but this flux does not alleviate
catastrophic quenching. Outside the dynamo-active region, there are neither sources nor sinks
of magnetic helicity, so in a steady state this flux must be constant. It is shown that unphysical
behaviour emerges if the small-scale magnetic helicity flux is forced to vanish within the
computational domain.
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1 IN T RO D U C T I O N

Both mean-field theories and direct simulations of the generation
of large-scale magnetic fields in astrophysical bodies, such as the
Sun or the Galaxy, invoke the effects of twist. Twist is typically
the result of the Coriolis force acting on ascending or descending
magnetic field structures in a stratified medium. The net effect of
this systematic twisting motion on the magnetic field is called the α

effect. In textbooks, the α effect is normally introduced as a result
of helical turbulence (Moffatt 1978; Parker 1979; Krause & Rädler
1980), but it could also arise from magnetic buoyancy instabilities
(Schmitt 1987; Brandenburg & Schmitt 1998). The latter may also
be at the heart of what is known as the Babcock–Leighton mech-
anism that describes the net effect of the tilt of decaying active
regions. Mathematically, this mechanism can also be described by
an α effect (Stix 1974). Regardless of all these details, any of these
processes face a serious challenge connected with the conservation
of magnetic helicity (Pouquet, Frisch & Léorat 1976; Kleeorin &
Ruzmaikin 1982; Kleeorin, Rogachevskii & Ruzmaikin 1995). The
seriousness of this is not generally appreciated, even though the con-
servation of magnetic helicity has long been associated with what
is called catastrophic α quenching (Gruzinov & Diamond 1994,
1995, 1996). Catastrophic α quenching refers to the fact that the α

effect in helical turbulence in a periodic box decreases with increas-
ing magnetic Reynolds number for equipartition strength magnetic
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fields (Vainshtein & Cattaneo 1992; Cattaneo & Hughes 1996). This
would be ‘catastrophic’ because the magnetic Reynolds number is
large (109 in the Sun and 1015 in the Galaxy).

A promising theory for modelling catastrophic α quenching in a
mean-field simulation is the dynamical quenching approach involv-
ing an evolution equation for the α effect that follows from magnetic
helicity conservation (Kleeorin & Ruzmaikin 1982). Later, Field &
Blackman (2002) showed for the first time that this formalism is
also able to describe the slow saturation of a helical dynamo in
a triply periodic domain (Brandenburg 2001a). As this dynamo
evolves towards saturation, a large-scale magnetic field builds up,
but this field possesses magnetic helicity. Indeed, the eigenfunction
of a homogeneous α2 dynamo has magnetic and current helicities
proportional to α. However, this concerns only the mean field, and
since the helicity of the total field is conserved, the small-scale or
fluctuating field must have magnetic helicity of the opposite sign
(Seehafer 1996). This leads to a reduction of the α effect (Pouquet
et al. 1976).

The dynamical quenching formalism is now frequently used to
model the non-linear behaviour of mean-field dynamos with and
without shear (Blackman & Brandenburg 2002), open or closed
boundaries (Brandenburg & Subramanian 2005) and sometimes
even without α effect (Yousef, Brandenburg & Rüdiger 2003;
Brandenburg & Subramanian 2005). However, it soon became clear
that the catastrophic quenching of the α effect can only be allevi-
ated in the presence of magnetic helicity fluxes out of the domain
(Blackman & Field 2000a,b; Kleeorin et al. 2000, 2002). There are
various contributions to the magnetic helicity flux (Rogachevskii &
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Kleeorin 2000; Vishniac & Cho 2001; Subramanian & Brandenburg
2004, 2006), but one of the most obvious ones is that associated with
advection. Shukurov et al. (2006) have implemented this effect in
a mean-field model with dynamical quenching in order to model
the effects of outflows on the evolution of the galactic magnetic
field. One goal of this paper is to study this effect in more detail. In
particular, it is important to clarify the consequences of boundary
conditions on the local dynamics away from the boundaries. Indeed,
is it really true that a helicity flux has to be maintained all the way
to the boundaries, or can the helicity flux be confined to a part of
the domain to alleviate catastrophic α quenching at least locally?
What happens if this is not the case?

The notion of alleviating catastrophic α quenching only locally
is sometimes invoked in models of the solar dynamo that rely on the
production of strong magnetic fields at the bottom of the convection
zone. By placing the α effect only near the surface, as is done in the
interface dynamo of Parker (1993) or dynamos that are controlled
by meridional circulation (Choudhuri, Schüssler & Dikpati 1995),
one may evade catastrophic quenching more easily. On the other
hand, as shown by Yousef et al. (2003), the effects of magnetic
helicity conservation can play a role even if there is originally no
α effect. It is therefore important to understand in more detail the
physics of dynamical α quenching and its dependence on magnetic
helicity fluxes.

Our starting point in this paper is the model of Shukurov et al.
(2006), where magnetic helicity fluxes were driven by the advection
from an outflow. This allows us to study the effects of varying
strength of this flux in different parts of the domain. For simplicity,
and in order to isolate the main effects, we ignore shear in most parts
of this paper. In view of later applications to the Sun and the Galaxy,
this is clearly artificial, but it helps significantly in the interpretation
of the results. In particular, in the absence of shear, it is possible to
have steady solutions, or at least solutions whose magnetic energy
density is constant in time.

2 TH E MO D EL

2.1 Evolution equation of the mean field

In this paper, we consider a simple mean-field dynamo in a local
one-dimensional domain. Such a model could be applicable to one
hemisphere of a rotating disc or to the region close to the equator of
outer stellar convection zones. Denoting the mean magnetic field by
B = B(z, t), the coordinate z would correspond either to the height
above the mid-plane in the case of the disc or to the latitudinal
distance from the equator in the case of a spherical shell. The x
and y components would correspond to poloidal and toroidal fields,
although in the absence of shear the two are interchangeable and
cannot be distinguished. Using ∇ · B = ∂Bz/∂z = 0, we have
Bz = constant = 0, i.e. no Bz field is imposed. Such a mean field
could be obtained by averaging the actual magnetic field over the x
and y directions of a Cartesian domain.

The evolution of B is governed by the Faraday equation

∂B
∂t

= −∇ × E, (1)

where E = −(US + U) × B −E +ημ0 J is the mean electric field,
U is the mean flow in the z direction, US = (0, Sx, 0) is a linear
shear flow, E is the mean electromotive force, J = ∇ × B/μ0 is
the mean current density and μ0 is the vacuum permeability. In one
case, we adopt a shear parameter S that is different from zero. Since
the shear is linear, we can write US × B as −SAy x̂ plus a gradient

term that can be removed by a gauge transformation. Thus, we have

−E = ∇(SxAy) − SAy x̂ + U × B + E − ημ0 J, (2)

where U is now the flow associated with the outflow only and
does not include the shear flow. Next, we express B = ∇ × A in
terms of the magnetic vector potential A, and solve equation (1)
in its uncurled form, ∂A/∂t = −E − ∇φ, where φ is the mean
electrostatic potential. We perform a gauge transformation, A →
A +∇�, with the choice � = ∫

(φ −SxAy) dt , which removes the
gradient term to yield

∂A
∂t

= −E, (3)

which is then the final form of our equation for A. This form of the
equation together with boundary conditions for A characterizes the
gauge used to calculate magnetic helicity densities and magnetic
helicity fluxes for the mean field.

We solve equation (3) in the domain 0 < z < L and assume either
a vacuum or a perfect conductor boundary condition on z = L. This
means that on z = L the mean magnetic field either vanishes, i.e.
Bx = By = 0, or that its z derivatives vanish, i.e. Bx,z = By,z = 0,
where a comma denotes partial differentiation. In terms of A, this
means that on z = L we have either

Ax,z = Ay,z = 0 (vacuum condition), (4)

or

Ax = Ay = 0 (perfect conductor condition). (5)

It is well known that the solutions can be in one of the two pure
parity states that are either symmetric (S) or antisymmetric (A)
about the mid-plane (Krause & Rädler 1980), so we have either
Bx,z = By,z = 0 or Bx = By = 0 on z = 0. In terms of A,

Ax = Ay = 0 on z = 0 (S solution) (6)

or

Ax,z = Ay,z = 0 on z = 0 (A solution). (7)

We note that the particular boundary conditions (5) and (6) fix the
value of A on z = L or 0, respectively. In all other combinations,
the value of A is not fixed and the magnetic helicity could exhibit
an unphysical drift (Brandenburg, Dobler & Subramanian 2002).
However, in this paper we study magnetic helicity density and its
flux only in situations where either (5) or (6) is used.

We recall that, even though there is no � effect, i.e. no mean flow
in the y direction, we shall allow for a flow U in the z direction. In
a disc, this would correspond to a vertical outflow, while in a star
this might locally be associated with meridional circulation.

2.2 Magnetic helicity conservation

In this paper, we will study the evolution of magnetic helicity of
mean and fluctuating fields. In our gauge, the evolution of the mag-
netic helicity density of the mean field, hm = A · B, is given by

∂hm

∂t
= 2E · B − 2ημ0 J · B − ∇ · Fm, (8)

where Fm = E × A is the flux of magnetic helicity of the
mean magnetic field. Under the assumption of scale separation,
Subramanian & Brandenburg (2006) have defined a magnetic he-
licity density of the small-scale field in terms of its mutual linkages.
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They derived an evolution equation for the magnetic helicity density
of the small-scale field,

∂hf

∂t
= −2E · B − 2ημ0 j · b − ∇ · Ff, (9)

where Ff is the flux of magnetic helicity density of the fluctu-
ating field. Equation (9) is similar to equation (8), except that
E · B appears with the opposite sign. This implies that turbulent
amplification and diffusion of mean magnetic field (characterized
by the E term) cannot change the total magnetic helicity density,
h = hm + hf , which therefore obeys the equation

∂h

∂t
= −2ημ0 J · B − ∇ · F, (10)

where F = Fm + Ff is the total magnetic helicity flux, and J · B =
J · B + j · b is the total current helicity density.

2.3 Dynamical quenching formalism

In order to satisfy the evolution equation for the total magnetic
helicity density (10), we have to solve equation (9) along with
equation (3), which implies that equations (8) and (10) are automat-
ically obeyed. We assume that hf is proportional to μ0 j · b. This
j · b term also modifies the mean electromotive force by producing
an α effect (Pouquet et al. 1976). This is sometimes referred to as
the magnetic α effect,

αM = 1
3 τ j · b/ρ, (11)

where τ is the correlation time of the turbulence. In the special case
of isotropy of the fluctuating field, the ratio between μ0 j · b and
hf is k2

f . Direct three-dimensional turbulence simulations (details
to be published elsewhere) confirm a proportionality, but the ratio
between the two tends to be larger than k2

f . We should therefore
consider k2

f as an adjustable parameter. In the following, we ignore
compressibility effects and assume that the mean density ρ is con-
stant.1 Next, we assume that the turbulence is helical, so there is
also a kinetic α effect proportional to the kinetic helicity,

αK = − 1
3 τω · u, (12)

where ω = ∇ × u is the vorticity. The total α effect is then

α = αK + αM, (13)

and the resulting mean electromotive force is

E = αB − ηtμ0 J, (14)

where

ηt = 1
3 τu2 (15)

is the turbulent magnetic diffusivity. In the following, we consider
ηt and η as given and define their ratio as the magnetic Reynolds
number, Rm = ηt/η. We shall express the strength of the magnetic
field in terms of the equipartition value,

Beq = (μ0ρu2)1/2, (16)

which allows us to determine τ in the mean-field model via 1
3 τ =

μ0ρηt/B
2
eq. With these preparations, we can write the dynamical

quenching formula as

∂αM

∂t
= −2ηtk

2
f

(
E · B
B2

eq

+ αM

Rm

)
− ∂

∂z
Fα, (17)

1 Note that a constant mean density implies that there must exist a small-scale
mass flux compensating the losses associated with the mass flux ρU .

where Fα is related to the mean magnetic helicity flux of the fluc-
tuating field via

Fα = μ0ρηtk
2
f

B2
eq

Ff . (18)

In order to compute mean-field models, we have to solve equa-
tion (3) together with equation (17) using a closed expression for
the flux Fα . In this paper, we focus on the advective flux propor-
tional to αMU , but in some cases we consider instead the effects
of a turbulent magnetic helicity flux that we model by a Fickian
diffusion term proportional to −κα∇αM, where κα is a diffusion
term that is either zero or otherwise a small fraction of ηt. A more
natural choice might have been κα = ηt, but since the effects of
such diffusive magnetic helicity fluxes have never been seen in sim-
ulations, we felt that it would be more convincing if even a small
fraction of ηt would lead to a notable effect.

In addition, we consider cases where we model magnetic helicity
fluxes by an explicit removal of hf from the domain in regular
time intervals �t . Such an explicit removal of magnetic helicity
associated with the fluctuating field may model the effects of coronal
mass ejections, although one would expect that in reality such an
approach also implies some loss of magnetic helicity associated
with the large-scale field. The removal of the fluctuating magnetic
field was employed by Brandenburg et al. (2002) in connection with
three-dimensional turbulence simulations to demonstrate that it is,
at least in principle, possible to alleviate catastrophic quenching by
an artificial filtering out of small-scale turbulent magnetic fields. In
this paper, we model the occasional removal of hf by resetting its
values

hf → hf − �hf in regular intervals �t, (19)

where �hf = εhf is chosen to be a certain fraction ε of the cur-
rent value of hf . In our one-dimensional model, the corresponding
expression for the flux �F f can be obtained by integration, i.e.

�F f (z, t) =
∫ z

0
�hf (z

′, t) dz′. (20)

Since magnetic helicity densities and their fluxes are proportional
to each other, we have simply

Fα = αMU − κα

∂αM

∂z
+ �Fα, (21)

where �Fα = (μ0ρηtk
2
f /B

2
eq)�F f is defined analogously to equa-

tion (18).
We note that the α effect will produce magnetic fields that have

magnetic helicity with the same sign as that of α, and the rate of

magnetic helicity production is proportional to αB
2
. In the North-

ern hemisphere, we have α > 0, so the mean field should have
positive magnetic helicity. We recall that shear does not contribute
to magnetic helicity production, because the negative electric field
associated with the shear flow, US × B, gives no contribution to
magnetic helicity production, which is proportional to E · B, but it
can still give a contribution to the flux of magnetic helicity. This is
also evident if we write shear using the −SAy x̂ term in equation (2):
after multiplying with B and using Bx = ∂Ay/∂z, we find that this
term can be integrated to give just an additional flux term, 1

2 SA
2
y .

However, this contribution belongs clearly to the magnetic helicity
flux associated with the large-scale field and is therefore unable to
alleviate catastrophic quenching.
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2.4 Model profiles and boundary conditions

We consider a model similar to that of Shukurov et al. (2006) who
adopted linear profiles for αK and U of the form αK = α0z/H

and Uz = U0z/H , where the height H was chosen to be equal to
the domain size, H = L. However, in order to separate boundary
effects from effects of the dynamo we also consider the case where
we extend the domain in the z direction and choose L = 4H and let
αK go smoothly to zero at z = H and Uz either goes to a constant
for z > H or also goes smoothly to zero. Thus, we choose

α = α0
z

H

(z; H,wα), (22)

where we have defined the profile function


(z; H,w) = 1

2

(
1 − tanh

z − H

w

)
, (23)

which is unity for z � H and zero otherwise, and w quantifies the
width of this transition. For the outflow, we choose the function

Uz = U0
z

H

[
1 + (z/H )n

]−1/n

(z; HU, wU ), (24)

with n = 20. Both profiles are shown in Fig. 1. The strictly linear
profiles of Shukurov et al. (2006) can be recovered by taking L =
H , wα → 0 and n → ∞.

As length unit, we take k1 = π/2H , and as time unit we take
(ηtk

2
1)−1. This deviates from Shukurov et al. (2006), who used π/H

as their basic wavenumber. Our motivation for this change is that
now the turbulent decay rate is equal to ηtk

2
1, without an extra 1/4

factor. We adopt non-dimensional measures for α0, U 0 and S, by
defining

Cα = α0

ηtk1
, CU = U0

ηtk1
and CS = S

ηtk
2
1

. (25)

To match the parameters of Shukurov et al. (2006), we note that
CU = 0.6 corresponds to their value of 0.3, and the value kf/k1 =
10 corresponds to their value of 5.

We obtain solutions numerically using two different codes.
One code uses an explicit third-order Runge–Kutta time-stepping
scheme and the other one is a semi-implicit scheme. Both schemes
employ a second-order finite differences. We begin by reporting re-
sults for the original profile of Shukurov et al. (2006) with L = H .

Figure 1. Profiles of α and U for wαk1 = 0.2 and wUk1 = 1.

3 R ESULTS

3.1 Kinematic behaviour of the solutions

When the magnetic field is weak, the back reaction via the Lorentz
force and hence the αM term are negligible. The value of Rm then
does not enter into the theory. The effects of magnetic helicity fluxes
are therefore not important, so we begin by neglecting the outflow
or other transporters of magnetic helicity. For the linear α profile,
we find that the critical value of Cα for dynamo action to occur
is about 5.13. These solutions are oscillatory with a dimensionless
frequency ω̃ ≡ ω/ηtk

2
1 = 1.64. The oscillations are associated with

the migration of the dynamo wave in the positive z direction. This
is shown in Fig. 2 where we compare with the case of a perfectly
conducting boundary condition at z = H for which we find Ccrit

α =
7.12 and ω̃ = 2.28.

The fact that there are oscillatory solutions to the α2 dynamo is
perhaps somewhat unusual, but it is here related to the fact that α

changes sign about the equator. Similar solutions were first found by
Shukurov, Sokolov & Ruzmaikin (1985) and analysed in detail by
Baryshnikova & Shukurov (1987) and Rädler & Bräuer (1987). Os-
cillations have also been seen in other α2 dynamos where α changes

Figure 2. Space–time diagrams for Bx and By for the marginal values of
Cα for L = H with CU = 0 and either the symmetric solution (S) with a
vacuum boundary condition on z = H or the antisymmetric solution (A)
with the perfect conductor boundary condition. In both cases, the critical
value Cα = 5.13 is applied. Light (yellow) shades indicate positive values
and dark (blue) shades indicate negative values.
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sign with depth (Stefani & Gerbeth 2003; Rüdiger & Hollerbach
2004; Rüdiger, Elstner & Ossendrijver 2004; Giesecke, Ziegler &
Rüdiger 2005) and in simulations of helically forced turbulence
with a change of sign about the equator (Mitra et al. 2009). In the
latter case, however, the outer boundaries were perfectly conduct-
ing. In our mean-field model, such a case is also oscillatory, as will
be discussed below.

Note that here we have made the assumption that the solutions are
symmetric about the mid-plane, i.e. Bi(z, t) = Bi(−z, t) for i = x

or y. For the application to real systems, such a symmetry condition
can only be justified if the symmetric solution is more easily excited
than the antisymmetric one for which Bi(z, t) = −Bi(−z, t) for
i = x or y. This is indeed the case when we adopt the vacuum
condition at z = H , because the antisymmetric solution has Ccrit

α =
7.14 in that case. However, this is not the case for the perfect
conductor boundary condition for which the antisymmetric solution
has Ccrit

α = 5.12. We remark that there is a striking correspondence
in the critical Cα values between the antisymmetric solution with
perfect conductor boundary condition and the symmetric solution
with vacuum condition on the one hand, and the symmetric solution
with perfect conductor condition and the antisymmetric solution
with vacuum condition on the other hand.

In the following, we consider both symmetric solutions using
the vacuum boundary conditions, as well as antisymmetric ones
using the perfect conductor boundary condition, which correspond
in each case to the most easily excited mode. In the cases where we
use a vacuum condition, we shall sometimes also apply an outflow.
This makes the dynamo somewhat harder to excite and raises Ccrit

α

from 5.12 to 5.60 for CU = 0.6, but the associated magnetic he-
licity flux alleviates catastrophic quenching in the non-linear case.
Alternatively, we consider an explicit removal of magnetic helicity
to alleviate catastrophic quenching. In cases with perfect conductor
boundary conditions, the most easily excited mode is antisymmetric
about the equator, which corresponds to a boundary condition that
permits a magnetic helicity flux through the equator. This would
not be the case for the symmetric solutions.

3.2 Saturation behaviour for different values of Rm

We now consider the saturated state for a value of Cα that is su-
percritical for dynamo action. In the following, we choose Cα = 8.
Throughout this paper, we assume kf/k1 = 10 for the scale sepa-
ration ratio. This corresponds to the value of 5 in Shukurov et al.
(2006), where k1 was defined differently. The dynamo saturates by
building up negative αM when αK is positive. This diminishes the
total α in equation (13) and saturates the dynamo. The strength of
this quenching can be alleviated by magnetic helicity fluxes that
lower the negative value of αM.

We plot in Fig. 3 the dependence of the saturation field strength
Bsat, defined here as the maximum of |B(z)| at the time of saturation.
To monitor the degree of quenching, we also plot in Fig. 3 the Rm

dependence of the maximum of the negative value of αM at the time
when the dynamo has saturated and reached a steady state. The
maximum value of −αM is lowered by about 5 per cent from 1.8
to 1.7 in units of ηtk1 (see Fig. 3). Finally, we recall that for the α2

dynamos considered here both Bx and By oscillate, but their relative

phase shift is such that B
2

is non-oscillatory. The normalized cycle
frequency, ω̃ ≡ ω/ηtk1, is also plotted in Fig. 3 as a function of Rm.
It is somewhat surprising that ω does not strongly depend on Rm.
One may have expected that the cycle frequency could scale with
the inverse resistive time η k2

1. On the other hand, for oscillatory α�

dynamos the cycle frequency is known to scale with ηtk
2
1 (Blackman

Figure 3. Scaling of the extremal value of αM, the saturation field strength
Bsat and the cycle frequency ω with Rm and either CU = 0.6 (solid lines) or
CU = 0 (dashed lines).

& Brandenburg 2002), although that value could decrease if ηt(B)
is strongly quenched. However, simulations only give evidence for
mild quenching (Brandenburg et al. 2008; Käpylä & Brandenburg
2009).

3.3 Helicity fluxes through the equator

We have seen in Section 3.1 that in the perfect conductor case
the antisymmetric solutions are the most easily excited ones. The
boundary conditions for antisymmetric solutions permit magnetic
helicity transfer through the equator. A possible candidate for driv-
ing a flux through the equator would be a diffusive flux driven by the
∇αM term. In Fig. 4, we plot the Rm dependence of max(−αM), Bsat

and ω̃ for κ̃α = 0.05 and 0. Again, catastrophic α quenching is
alleviated by the action of a magnetic helicity flux, but this time it
is through the equator. The maximum value of −αM is lowered by
15 per cent from 2.35 to 2.15 in units of ηtk1 (see Fig. 4). Again,
the cycle frequency is not changed significantly.

In Fig. 5, we compare the profiles of hm, hf, F m and F f for the
most easily excited solution with vacuum and perfect conductor
boundary conditions on z = L. In all cases, we have hm = hf = 0
at the mid-plane due to symmetry, and at z = L we have hm = 0
and hf 	= 0. It turns out that the magnetic helicity flux of the small-
scale field is balanced nearly exactly by that of the mean field. This
agrees with the expectation of Blackman & Brandenburg (2003)
who argued that both should be shed at nearly the same rate.
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Figure 4. Same as Fig. 3, but for antisymmetric solutions in a model with
perfect conductor boundary conditions with CU = 0 and κ̃α ≡ κα/ηt = 0.05
(solid lines) or 0 (dashed lines).

The ad hoc assumption of a turbulent magnetic helicity flux is
plausible and has of course been made in the past (Kleeorin et al.
2002), but its effect in alleviating catastrophic quenching has not
yet been seen in earlier three-dimensional turbulence simulations
(Brandenburg & Dobler 2001; Brandenburg 2001b). However, ex-
cept for the effects of boundaries, the conditions in those simulation
were essentially homogeneous and the gradients of magnetic he-
licity density may have been just too small. It would therefore be
important to reconsider the question of diffusive helicity fluxes in
future simulations of inhomogeneous helical turbulence.

3.4 Occasional removal of h f

Catastrophic quenching can also be alleviated by the artificial re-
moval of small-scale magnetic fields (see equation 19). We consider
the saturation strength of the magnetic field, Bsat, to characterize
the alleviating effect of small-scale magnetic helicity losses. It is
not surprising that the dynamo becomes stronger (Bsat increases)
when the fraction of small-scale field removal ε is increased (upper
panel of Fig. 6) or the time interval of field removal is decreased
(lower panel of Fig. 6). These dependencies follow approximate
power laws,

Bsat/Beq ≈ 0.17 ε1/2 ≈ 0.024
(
�tηtk

2
1

)−1/2
, (26)

suggesting that even relatively small amounts of magnetic helicity
removal in long intervals can have an effect.

Figure 5. Mean magnetic helicity densities of mean and fluctuating fields
as well as mean magnetic helicity fluxes of mean and fluctuating fields
as functions of z for the S solution with vacuum boundary condition and
advective flux with CU = 0.6 (upper two panels) and for the A solution with
perfect conductor boundary condition and diffusive flux with κ̃α = 0.05
(lower two panels). The profiles of hf have been scaled by a factor of
10 to make them more clearly visible. In all cases, we used Cα = 8 and
Rm = 105.

We have also performed some numerical experiments where the
magnetic helicity associated with the small-scale field is only re-
moved near the surface layers. However, in those cases the catas-
trophic quenching was not notably alleviated. This can be explained
by noting that, in the absence of additional magnetic helicity fluxes
in the interior, there is still a build-up of hf in the interior which
quenches the α effect catastrophically.

3.5 Magnetic helicity density and flux profiles

In an attempt to understand further the evolution of magnetic helicity
we have performed calculations where the magnetic helicity flux
of the fluctuating field was forced to vanish at the surface. This
was done by choosing a profile for U that goes to zero at the
surface. However, this invariably led to numerical problems. In order
to clarify the origin of these problems we performed calculations
with a taller domain, L = 4H , using the profiles shown in Fig. 1
and varying the value of H U . For H U → ∞, the flux is still able
to carry magnetic helicity away from the dynamo-active region
into the outer layers z > H (see Fig. 7). The cyclic dynamo in
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Figure 6. Saturation field strength versus ε for �tηtk
2
1 = 0.25 (upper panel)

and versus �tηtk
2
1 for ε = 0.1 (lower panel) in a model with Cα = 8, Rm =

105 and CU = CS = κα = 0.

0 ≤ z ≤ H operates very much like in the case of a smaller domain
(Fig. 2), except that the critical value of Cα is now lowered to Ccrit

α =
4.32.

However, for H U = 3H a problem arises when a parcel of posi-
tive magnetic helicity that is shed early on from the dynamo-active

Figure 7. Space–time diagrams for Bx and By , as well as the magnetic
helicity densities hm and hf for L = 4H , Cα = 8, CU = 0.6 and HU → ∞.
The white horizontal line marks the location z = H . Light (yellow) shades
indicate positive values and dark (blue) shades indicate negative values.

region reaches the upper layers at z ≈ 3H , through which now
no magnetic helicity can be transmitted. Positive magnetic helicity
piles up into a δ function near z ≈ 3H until it cannot be numeri-
cally resolved any more. At higher resolution, the evolution can be
followed a little longer, but the problem cannot be removed. This
demonstrates again that, once a magnetic helicity flux is initiated,
there is no way to stop it locally. There is also no tendency for an
annihilation between magnetic helicities of mean and fluctuating
fields.

The fact that positive magnetic helicity is produced is somewhat
unexpected, because for α > 0 the magnetic helicity production
is positive definite. However, this can be traced back to the term
ηt J · B, which is part of E · B on the right-hand side of equation (9).
Since J · B is positive for positive αK, it is clear that this term
produces positive hf just outside the range where αK is finite and
where it would produce hf of opposite sign.

In another experiment, we adopt a profile for U such that H U

is changed from ∞ to 3H only after a time tηtk
2
1 = 25, which

is when the parcel of positive hf has left the domain. Now it is
indeed negative magnetic helicity that the dynamo tries to shed and
that begins to pile up near z = 3H . However, even though the flux
is relatively weak, the blockage at z = 3H leads eventually to a
problem and, again, to short-wavelength oscillations indicating that
the solution is numerically no longer valid.

These results suggest that the magnetic helicity flux must be
allowed to continue through the rest of the domain. Of course, in
reality there is the possibility of various fluxes, including diffusive
fluxes that have not been included in this particular model. We note,
however, that model calculations with finite κα in equation (21) then
confirm that F f (z, t) becomes constant in the outer parts.

3.6 Magnetic helicity with shear

It is remarkable that the magnetic helicity fluxes of the mean and
fluctuating fields were always equally strong and of opposite sign.
The point of this section is to underline that this is a particular
property of the α2 dynamo, and would not apply to α� dynamos.
In Fig. 8, we show the fluxes of the model with Cα = 8 and CU =
0.6, where we have varied CS in the range from −8 to +8.

Shear gives rise to an additional magnetic helicity flux (Berger
& Ruzmaikin 2000), and the perfect correspondence between mag-
netic helicity fluxes of opposite sign for mean and fluctuating fields
is then broken. This additional flux of magnetic helicity is associ-
ated with the mean field and therefore does not, on its own, alleviate

Figure 8. Dependence of F m(H ) and F f (H ) on the shear parameter for the
S solution in a model with vacuum boundary condition, Cα = 8, CU = 0.6
and Rm = 105.
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catastrophic quenching. However, in this model we have neglected
additional magnetic helicity fluxes arising from the shear that would
be associated with the fluctuating field. An example is the Vishniac–
Cho flux whose effect in a mean-field model was already studied
in an earlier paper (Brandenburg & Subramanian 2005). For C <

−2, the oscillating solutions are no longer preferred and a new so-
lution branch emerges, where the solutions are now non-oscillatory.
Those are also the type of solutions studied by Shukurov et al.
(2006), where CS = −8 was chosen, corresponding to the value −2
in their normalization.

4 C O N C L U S I O N S

The present simulations have confirmed that in finite domains mag-
netic helicity losses through local fluxes are able to alleviate catas-
trophic quenching. Without such fluxes, the energy of the mean
field goes to zero in the limit of large Rm, while in the presence
of such fluxes |B| reaches values that are about 5 per cent of the
equipartition value. We emphasize at this point that this applies to
the case of an α2 dynamo. For an α� dynamo, the mean field can
reach larger values, depending on the amount of shear. For example
for the model shown in Fig. 8, the field strength in units of the
equipartition value rises from 5 per cent without shear to about 36
per cent with negative shear (CS = −8), while for positive shear
it stays around 5 per cent. We also emphasize that the difference
between the two cases with and without helicity fluxes is rather
weak for Rm ≤ 103, so one really has to reach values around Rm ≤
104 or Rm ≤ 105. Such high values of Rm are not currently feasible
with three-dimensional turbulence simulations.

The other surprising result is that it is not possible to dissipate
magnetic helicity flux locally once it is initiated. If the magnetic
helicity flux of the small-scale field has already left the dynamo-
active domain, it has to stay constant in the steady state. By adding
a diffusive flux, the boundary layer in the magnetic helicity of the
small-scale field could be smoothed out, but this contribution would
then carry the same amount of energy as before, although now by
other means.

In the presence of shear, there are additional contributions to
the magnetic helicity flux associated with the mean magnetic field.
There are first of all the fluxes associated with the mean field it-
self, but those fluxes cannot contribute to alleviating catastrophic
quenching on their own. However, earlier work has shown that in
the presence of shear there are also additional contributions associ-
ated with the fluctuating field (Vishniac & Cho 2001; Subramanian
& Brandenburg 2004, 2006). Those terms have not been included
in the present work, because they have already been studied in an
earlier paper (Brandenburg & Subramanian 2005).

Several new issues have emerged from the present study. The fact
that diffusive magnetic helicity fluxes through the equator can allevi-
ate catastrophic quenching is not surprising as such, but its effects in
alleviating catastrophic saturation behaviour in three-dimensional
turbulence simulations have not yet been reported (Brandenburg
& Dobler 2001; Brandenburg 2001b). On the other hand, simu-
lations of forced turbulence in spherical shells with an equator
did show near-equipartition strength saturation fields (Mitra et al.
2009), although the values of Rm were typically below 20, so it was
not possible to draw conclusions about catastrophic quenching. A
new dedicated attempt in that direction would be worthwhile using
driven turbulence, but now with a linear gradient of its intensity and
in the Cartesian geometry.

In view of applications to the Sun and other stars, another impor-
tant development would be to extend the present work to spherical

domains. Again, some work in that direction was already reported
in Brandenburg et al. (2007), but none of these models used diffu-
sive fluxes, nor has any attempt been made to model the Sun. This
would now be an important target for future research.
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Giesecke A., Ziegler U., Rüdiger G., 2005, Phys. Earth Planet. Inter., 152,

90
Gruzinov A. V., Diamond P. H., 1994, Phys. Rev. Lett., 72, 1651
Gruzinov A. V., Diamond P. H., 1995, Phys. Plasmas, 2, 1941
Gruzinov A. V., Diamond P. H., 1996, Phys. Plasmas, 3, 1853
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