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ABSTRACT

Using direct simulations of hydromagnetic turbulence driven by random polarized waves it is shown that dynamo
action is possible over a wide range of magnetic Prandtl numbers from 10−3 to 1. Triply periodic boundary conditions
are being used. In the final saturated state the resulting magnetic field has a large-scale component of Beltrami type.
For the kinematic phase, growth rates have been determined for magnetic Prandtl numbers between 0.01 and 1, but
only the case with the smallest magnetic Prandtl number shows large-scale magnetic fields. It is less organized than
in the nonlinear stage. For small magnetic Prandtl numbers the growth rates are comparable to those calculated
from an alpha squared mean-field dynamo. In the linear regime the magnetic helicity spectrum has a short inertial
range compatible with a −5/3 power law, while in the nonlinear regime it is the current helicity whose spectrum
may be compatible with such a law. In the saturated case, the spectral magnetic energy in the inertial range is in
slight excess over the spectral kinetic energy, although for small magnetic Prandtl numbers the magnetic energy
spectrum reaches its resistive cut off wavenumber more quickly. The viscous energy dissipation declines with the
square root of the magnetic Prandtl number, which implies that most of the energy is dissipated via Joule heat.
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1. INTRODUCTION

Many astrophysical plasmas are turbulent and tend to be mag-
netized. The magnetic fields can have typical length scales that
are either larger or smaller than that of the energy-carrying
eddies. We speak then correspondingly of large-scale or small-
scale dynamos. Small-scale dynamos can already work in sta-
tistically mirror-symmetric isotropic homogeneous turbulence,
whereas large-scale dynamos require in general a departure from
parity-invariant or mirror-symmetric flows. The excitation con-
ditions of small-scale dynamos depend sensitively on the value
of the magnetic Prandtl number, i.e., the ratio of kinematic
viscosity to magnetic diffusivity, PrM = ν/η, where ν is the
kinematic viscosity and η the magnetic diffusivity. This sen-
sitivity is related to the fact that in the kinematic regime the
spectral magnetic energy is peaked at the resistive scale. As
was pointed out originally by Rogachevskii & Kleeorin (1997),
and more recently by Boldyrev & Cattaneo (2004), the slope of
the kinetic energy spectrum is important for the onset of small-
scale dynamo action. It matters therefore whether the resistive
scale lies in the viscous range (PrM ≈ 1), within the inertial
range (PrM � 0.1), or right within the range where the bottle-
neck occurs (PrM ≈ 0.1). The bottleneck effect refers to the
spectral subrange just before the dissipation range where the
kinetic energy spectrum is shallower than in the inertial range.
Within the bottleneck range the velocity increments diverge
even more strongly with decreasing separation than in the iner-
tial range, making dynamo action harder still. Indeed, for small
values of PrM the critical value of the magnetic Reynolds num-
ber above which small-scale dynamo action occurs increases
therefore sharply toward PrM = 0.1 (Schekochihin et al. 2005),
and then decreases slightly for PrM < 0.05 (Iskakov et al.
2007). However, even with the computing power available to-
day, direct simulations of small-scale dynamo action are still
only marginally possible at such small values of PrM .

For certain types of flows dynamo action is easier to achieve
even though PrM is small. The Taylor–Green flow is an example

where the critical value of the magnetic Reynolds number
becomes constant for PrM < 0.1 (Ponty et al. 2004, 2005).
In this flow there can be large-scale patches with finite kinetic
helicity of opposite sign. A completely different example is fully
helical turbulence where the excitation condition for dynamo
action is virtually unchanged as PrM decreases from 1 to 0.1
(Brandenburg 2001, hereafter B01). For an ABC-flow dynamo,
Mininni (2007) found a weak dependence of the threshold
value of the magnetic Reynolds number ReM on PrM . For
PrM < 0.1 the threshold value seemed to become asymptotically
independent of PrM and dynamo action was demonstrated for
values of PrM down to 5 × 10−3.

In many astrophysical bodies, PrM is indeed rather small
(around 10−5). Such systems still possess dynamo action and
can have large-scale magnetic fields. It is likely that such systems
belong to the second class of systems where the excitation
conditions are not drastically altered toward small values of
PrM . Indeed, large-scale magnetic fields are found regardless of
whether PrM is small (e.g., the Sun and other stars with outer
convection zones, as well as planets) or large (e.g., in spiral
galaxies, because of their low densities).

The purpose of this paper is to point out that a strong PrM
dependence does not occur in systems where the magnetic
field generation is predominantly due to a large-scale dynamo.
Such systems have been studied in idealized settings such as
periodic boxes using explicit forcing functions for driving the
turbulence. This has significant advantages in that periodic
boundary conditions can be used, energy spectra are easily
computed and, most importantly, isotropy and homogeneity
eases comparison with turbulence theory. A disadvantage is that
the magnetic helicity can only change on resistive timescales,
which slows down the saturation (B01).

With these provisions in mind, we consider now simulations
of maximally helical turbulence in triply periodic boxes where
we keep in most cases the fluid Reynolds number, Re =
urms/νkf , constant and vary the magnetic Reynolds number,
ReM = urms/ηkf , and thereby PrM (≡ ReM/Re). Here, urms
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Figure 1. Visualization of Bz for PrM = 0.01, 0.1, and 1 at Re = 670. Note the emergence of a large-scale pattern for PrM = 0.01. For PrM = 0.1 there are only a few
extended patches and for PrM = 1 the field is completely random and of small scale only. The orientation of the axes is indicated for the first panel, and is the same
for all other panels.

(A color version of this figure is available in the online journal.)

is the rms velocity of the turbulence and kf is the forcing
wavenumber. According to B01 the dynamo should be excited
whenever the domain is large enough (2–3 times larger than
the forcing scale) and the magnetic Reynolds number exceeds
unity (ReM � 1.1...1.4 or so). This was confirmed for magnetic
Prandtl numbers as low as 0.1. In the present work we consider
kinematic dynamo action down to values of PrM = 10−2 and
nonlinear saturated dynamos down to PrM = 10−3.

2. THE METHOD

We solve the hydromagnetic equations for velocity U , log-
arithmic density ln ρ, and magnetic vector potential A for an
isothermal gas in the presence of an externally imposed helical
forcing function f ,

∂U
∂t

= −U ·∇U −c2
s ∇ ln ρ + f +ρ−1( J × B +∇ ·2ρνS) (1)

∂ ln ρ

∂t
= −U · ∇ ln ρ − ∇ · U (2)

∂ A
∂t

= U × B − μ0η J . (3)

Here, B = ∇ × A is the magnetic field, J = ∇ × B/μ0 is
the current density, μ0 is the vacuum permeability, cs is the
isothermal speed of sound, and Sij = 1

2 (Ui,j +Uj,i)− 1
3δij∇ ·U

is the traceless rate of strain tensor. We consider a triply periodic
domain of size L3, so the smallest wavenumber in the domain
is k1 = 2π/L. The forcing function consists of eigenfunctions
of the curl operator with positive eigenvalues and is therefore
fully helical with f · ∇ × f = k f 2, where 3.5 � k/k1 � 4.5
is wavenumber interval of the forcing function, whose average
value is referred to as kf = 4 k1. The amplitude of f is such that
the Mach number is urms/cs ≈ 0.1, so compressive effects are
negligible (Dobler et al. 2003).

The initial conditions consist of a weak Beltrami field. The
initial velocity is zero and the initial density is uniform with
ρ = ρ0 = const. Note that the volume-averaged density remains
constant, i.e., 〈ρ〉 = ρ0.

The model is equivalent to that of B01, except that there the
value of kf /k1 was chosen to be either 5 or 30. In order for
large-scale dynamo action to be possible, kf /k1 must at least be
larger than 2 (Haugen et al. 2004), but 3 is already sufficient
(Brandenburg et al. 2008). In the kinematic regime the fastest
growing mode is expected to have the wavenumber kf /2, so in
order that this wavenumber is distinct from k1, we have chosen
kf /k1 = 4 throughout this paper.

3. RESULTS

We begin by presenting results for Re ≈ 670 where we
vary PrM in the range 0.01 � PrM � 1, i.e., ReM is varied
in the range 6.7 � ReM � 670. The dynamo is excited in all
those cases, but the growth rate λ varies. We consider first the
kinematic regime where the magnetic field is weak and turn then
to the nonlinear regime where the magnetic field has saturated.
Most of the results presented below have been obtained at a
resolution of 5123 meshpoints. The solution was first evolved at
lower resolution (1283 meshpoints), then remeshed to twice the
resolution, again evolved for some time, and finally remeshed
to 5123 meshpoints, and again evolved for some time. Data for
the kinematic regime are only used after the initial transients
have disappeared and a clear exponential growth has developed
at all length scales for at least some 40 turnover times (also for
the runs with a resolution of 5123 meshpoints). The run with
1283 meshpoints has been evolved all the way into saturation,
and it was then remeshed twice by a factor of 2, just like in the
kinematic regime.

3.1. Field Structure in the Kinematic Regime

Visualizations of one component of the magnetic field show
the emergence of a large-scale magnetic field for small values
of PrM . This is clearly demonstrated in Figure 1, where we see
for PrM = 0.01 a large-scale pattern with a systematic variation
in the y direction. For PrM = 0.1 there is no such variation,
although there are some extended patches in which the field
orientation is the same. For PrM = 1 even this is no longer the
case and the field appears completely random with small-scale
variations only.

We emphasize that random and patch-like structures only
occur in the kinematic regime. In the saturated regime a large-
scale field emerges in all cases. This will be discussed in
Section 3.7.

3.2. Growth Rates

The growth rate is calculated as the average of the instanta-
neous growth rate, d ln Brms/dt . Examples are shown in Figure 2
for runs with Re = 670 and different values of PrM using 5123

meshpoints. In Figure 3, we show growth rates normalized by
urmskf (inverse turnover times) as a function of ReM for three
values of ReM and compare with the corresponding results for
nonhelical turbulence forced at larger scales in the wavenumber
interval 1 � k/k1 � 2 (Haugen et al. 2004). In that case we use
kf = 1.5 for the average value. The small-scale dynamo is then
only excited when ReM � 35. For ReM � 100 the growth rates
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Figure 2. Instantaneous growth rate for runs with different values of PrM and
5123 meshpoints. The straight lines give the growth rates obtained by averaging
over the indicated time interval. The solid, dotted, and dashed lines are for
PrM = 0.01, 0.1, and 1, respectively.

for helical turbulence with kf = 4 are quite similar to those of
nonhelical turbulence with kf = 1.5. We have also calculated
growth rates for the nonhelical case with kf = 4 and find the
same values as in the helical case. We note that in all cases, and
even for small values of PrM , the growth rates based on the rms
magnetic field are equal to those based on the rms values of
the mean fields obtained by averaging over any two coordinate
directions.

In both helical and nonhelical cases, when ReM is large
enough, λ increases like Re1/2

M , as expected (Schekochihin
et al. 2004). This is because the eddy turnover rate at the resistive
scale is ∝ k

2/3
η , but because kη/kf ∝ Re3/4

M we have λ ∝ Re1/2
M .

However, when there is also large-scale dynamo action, one
expects there to be a lower bound for λ given by the growth
rate for the large-scale dynamo, λLS. Using the theory for an α2

dynamo (Moffatt 1978, Krause & Rädler 1980), we have

λLS = |αk| − (η + ηt)k
2, (4)

where α is a pseudo scalar (the α effect) and ηt is the turbulent
magnetic diffusivity. For fully helical turbulence we have
|α| ≈ urms/3 and ηt ≈ urms/3kf (Sur et al. 2008), so we can
write the growth rate as

λLS

urmskf
= 1

3

k1

kf

[
1 − k1

kf

(
1 + 3Re−1

M

)]
, (5)

where we have put |k| = k1. Over the parameter range
considered in this paper (ReM � 6.7 and kf /k1 = 4), λLS/urmskf
increases only slightly from 0.053 to 0.062 as ReM increases.

The result shown in Figure 3 gives values that are systemati-
cally below λLS. There could be two reasons for this discrepancy.
On the one hand, the accuracy of the estimates |α| ≈ urms/3
and ηt ≈ urms/3kf may not be good enough. On the other hand,
Equation (4) is only an approximation in cases where λLS �= 0,
because then memory effects become important. This means
that, when allowing α and ηt to be integral kernels in time, they
are no longer proportional to δ functions, but have finite widths
in time. This effect has recently been studied by Hubbard &
Brandenburg (2008) and can be quite dramatic in some cases.

In Figure 3, we have varied ReM by changing PrM and
keeping Re = const = 670. We can therefore also consider
this graph as a representation of the magnetic Prandtl number
dependence of λ. However, PrM can also be changed while
keeping ReM = const = 6.7. The corresponding result is shown

Figure 3. Dynamo growth rates of the rms magnetic field for helical turbulence
with Re = 670 (solid line) compared with growth rates for nonhelical turbulence
(dashed lines; adapted from Haugen et al. 2004).

Figure 4. Dependence of dynamo growth rates of the rms magnetic field on
PrM for helical turbulence with ReM = 6.7 (dashed line) and Re = 670 (solid
line). Here the solid line corresponds to the solid line in Figure 3.

in Figure 4 and compared with the previous case. The two graphs
are in reasonable agreement for small values of PrM , but the rise
of λ for Re = 670 around PrM = 1 is not seen in the case
with ReM = 6.7. This suggests that the transition from a purely
large-scale turbulent dynamo to a mixed large-scale and small-
scale turbulent dynamo requires values of ReM above some
critical value (somewhere between 10 and 100), and is not just
determined by the value of PrM .

3.3. Spectra

The transition from a purely large-scale turbulent dynamo
to a mixed large-scale and small-scale turbulent dynamo is
accompanied by characteristic changes in the spectral properties
of the magnetic field. In the following we employ shell-
integrated spectra of kinetic and magnetic energy, E(k) and
M(k), respectively, as well as of kinetic and magnetic helicities,
F (k) and H (k), respectively. These spectra are normalized such
that

∫
E(k) dk = 1

2 〈U2〉 ≡ E,
∫

M(k) dk = 1
2 〈B2〉 ≡ M ,∫

F (k) dk = 〈W · U〉, and
∫

H (k) dk = 〈A · B〉, where W =
∇ × U is the vorticity.

In Figure 5, we plot E(k) and M(k) for three cases with
PrM = 1, 0.1, and 0.01, keeping Re = 670 in all cases. The
magnetic energy spectra are compensated by exp(−λt), where
λ is the numerically determined growth rate for each run, and
then averaged in time. We consider here only the kinematic
regime when the magnetic energy is weak. The kinetic energy
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Figure 5. Spectra of kinetic and magnetic energies in the kinematic regime for
PrM = 0.01, 0.1, and 1.

Figure 6. Compensated spectra of kinetic and magnetic energies and helicities
in the kinematic regime for PrM = 1. The spectra are denoted by letters E, F,
M, and H, as described in the text.

spectra are then always the same. Since the magnetic energy is
weak, we have scaled the magnetic energy spectra for different
PrM to an arbitrarily chosen reference value of 10−6 below the
kinetic energy spectrum. For PrM = 1 the magnetic energy
seems to follows an approximate Kazantsev (1968) spectrum
with a range proportional to k3/2 and is peaked at the resistive
scale near k/k1 = 50. For smaller values of PrM the peak of
magnetic energy moves to smaller wavenumbers.

In order to judge the correspondence with various power-law
scalings we label, in Figure 6, various compensated spectra as
follows:

label E : E(k)ε−2/3
K k5/3, (6)

label F : |F (k)|ε−2/3
K k5/3/2kf , (7)

label M : M(k)kf (k/k∗)−3/2/M, (8)

label H : |H (k)|kf ε
−2/3
K k5/3E/2M, (9)

where k∗ = ∫
kM(k) dk/M is the wavenumber where the

magnetic energy spectrum peaks and εK is the kinetic energy
dissipation per unit mass. The compensated kinetic energy

Figure 7. Relative spectral magnetic helicity, k|H (k)|/2M(k), compensated by
(k/kf )13/6, for PrM ranging from 0.01 to 1.

spectrum shows a bottleneck that is clearly stronger than in
the case without helicity (e.g., Kaneda et al. 2003, Haugen &
Brandenburg 2006). The kinetic helicity spectrum shows a
similar spectrum that also has a strong bottleneck, which
is particularly evident when it is compensated by k5/3. The
existence of a k5/3 subrange for the modulus of the kinetic
helicity spectrum is well known from early closure calculations
(André & Lesieur 1977), and has also been seen in direct
numerical simulations (Borue & Orszag 1997; Brandenburg &
Subramanian 2005a) and in shell model calculations (Ditlevsen
& Giuliani 2001). Such a scaling implies that the relative spectral
kinetic helicity,

RK (k) ≡ F (k)/2kE(k), (10)

decreases toward small scales like k−1 and has a maximum at
k = kf with RK (kf ) = 0.96. At that scale, the relative magnetic
helicity,

RM (k) ≡ kH (k)/2M(k), (11)

is −0.15, −0.08, and +0.42 for PrM = 1, 0.1, and 0.01,
respectively. The realizability condition implies that the moduli
of RK (k) and RM (k) are less than unity (Moffatt 1969). The
positive sign for PrM = 0.01 agrees with the idea that the helical
driving of the flow imprints a helical field of the same sense at
the same scale. Owing to an inverse cascade of magnetic helicity
(Pouquet et al. 1976), H (k) is of opposite sign at large scales.
While this is very clearly established in the nonlinear regime
(B01) or for small values of PrM , a larger range of scales attains
negative values during the linear stage when PrM = 0.1 and 1.

For the magnetic helicity we also find an approximate
|H (k)| ∼ k−5/3 spectrum, which is different from the nonlinear
case when the current helicity, C(k) = k2H (k) shows a k−5/3

spectrum (Brandenburg & Subramanian 2005a). Assuming that
M(k) ∼ k3/2, the relative spectral helicity would seem to
decrease now more rapidly like k|H (k)|/2M(k) ∼ k−13/6.
Figure 7 shows that the correspondingly compensated magnetic
helicity to energy ratio changes now less strongly in the range
4 � k/k1 � 40.

3.4. Saturation Regime

Eventually the initial exponential growth comes to a halt
and is followed by a resistively long saturation phase during
which a large-scale magnetic field develops at wavenumber k1,
regardless of the value of kf . Owing to the use of periodic
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Figure 8. Kinetic and magnetic energy spectra in the saturated regime for
PrM = 10−3 with Re = 4400, PrM = 10−2 with Re = 2300, PrM = 0.1 with
Re = 1200, and PrM = 1 with Re = 450. All spectra are compensated by
ε
−2/3
T k5/3. The ohmic dissipation wavenumber, kη = (εM/η3)1/4, is indicated

by an arrow. The viscous dissipation wavenumbers are 430, 350, 290, and 180
for PrM = 10−3, 10−2, 0.1, and 1, respectively.

boundary conditions, this large-scale field tends to be force-
free and fully helical, and its energy per unit volume is by a
factor kf /k1 = 4 larger than the value at kf , which in turn is
comparable to the kinetic energy per unit volume. For details
see B01. Here we only consider the end of this slow saturation
phase. Compensated kinetic and magnetic energy spectra are
shown in Figure 8 for magnetic Prandtl numbers ranging from
1 to down to 10−3.

In the final saturated state, and especially for PrM = 1, the
M(k) and E(k) spectra are nearly on top of each other with M(k)
being slightly larger than E(k) by 20%, which is qualitatively
similar to the nonhelical case (cf. Haugen et al. 2003). There
are indications of a somewhat shallower spectrum due to a
bottleneck effect both for kinetic and magnetic energies just
before the two enter the viscous and resistive dissipation ranges.
Also for PrM = 0.1 there is a short range where M(k) exceeds
E(k), but then, not surprisingly, M(k) turns into the dissipation
range before E(k) does. This is even more clearly the case for
PrM = 0.01.

Low-PrM turbulence has the interesting property that for given
numerical resolution much larger fluid Reynolds numbers can
be achieved than for PrM = 1. This is simply because almost all
the energy is dissipated resistively, and the energy that continues
along the kinetic energy cascade is comparatively weak, so not

Figure 9. Dependence of the fractional kinetic and magnetic energy dissipa-
tion rates. Note that the fractional kinetic energy dissipation decreases with
decreasing PrM to the 1/2 power.

much viscosity is needed for dissipating the remaining kinetic
energy. In fact, for PrM = 0.01 we were able to go to Re = 2300
with a resolution of only 5123 meshpoints. For PrM = 0.1 and
1 and the same resolution we could only go to Re = 1200 and
450, respectively.

3.5. Diverting Most of the Energy into Joule Heat

As has recently been stressed by Mininni (2007), an increas-
ing fraction of energy is being dissipated via Joule dissipation,
as PrM decreases, In Figure 9, we plot the dependence of the
kinetic and magnetic energy dissipation rates per unit mass,
εK = 〈2ρνS2〉/ρ0 and εM = 〈ημ0 J2〉/ρ0, relative to the to-
tal dissipation, εT = εK + εM , versus PrM . The data are well
described by a power-law fit of the form

εK/εT ≈ 0.37 Pr1/2
M . (12)

Thus, for PrM = 1 about the 37% of the energy is dissipated into
viscous heat, while 63% is dissipated via Joule dissipation. This
is similar to the case of nonhelical hydromagnetic turbulence
(Haugen et al. 2003), where these numbers are about 30% and
70%, respectively.

In turbulence the energy dissipation is generally proportional
to U 3/L, where U is the typical velocity and L is a typical length
scale. Conventionally one defines a dimensionless dissipation
parameter as

Cε = εT

U 3/L
, (13)

where U is the one-dimensional rms velocity, which is related
to urms via U 2 = u2

rms/3, and L is the integral scale and is
related to kf via 3

4π/kf . In nonhelical turbulence this value is
typically around 0.5 (see also Pearson et al. 2004), but this value
has never been determined for hydromagnetic turbulence with
helicity. An exception is the work of Blackman & Field (2008),
who considered a range of power-law scalings for kinetic and
magnetic energy spectra to calculate analytically the dissipation
rates.

It turns out that for our runs, Cε ≈ 1.5, i.e. ≈ 3 times larger
than the usual value; see Figure 10. Let us now discuss possible
reasons for this difference. In the definition of the quantity Cε

one assumes that the energy flux scales with U 3/L. However, U
is based on the typical rms velocity. In the presence of a strong
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Figure 10. Dimensionless total energy dissipation rate, Cε , as a function of PrM .
Error bars have been estimated based on averages taken over each third of the
full time series.

dynamo-generated magnetic field it may be sensible to base it on
a combination of typical velocity and magnetic field strength. In
our case we have 〈B2/μ0〉/〈ρU2〉 ≈ 2, so U would need to be
scaled up by a factor

√
3, which reduces Cε by a factor 33/2 ≈ 5

to about 0.3. This value is nearly independent of the value of
PrM , which was also found by Blackman & Field (2008) under
plausible assumptions.

3.6. Helicity Spectra

As mentioned before, in the nonlinear regime both kinetic
and current helicities, F (k) and C(k) = k2H (k), respectively,
are expected to display a forward cascade with a k−5/3 spectrum.
If this is true, we would expect that within some wavenumber
interval |RK (k)| and |RM (k)| decrease with increasing k like
k−1. In Figure 11 we show the correspondingly compensated
relative kinetic and magnetic helicity spectra. It turns out that
they are surprisingly similar regardless of the value of PrM . For
PrM = 1 and 0.1 the compensated profiles of RM (k) and RK (k)
are reasonably flat in the range 6 � k/k1 � 14. However,
for PrM = 10−2 and 10−3 the compensated profiles show an
increase proportional to k1/2. The fact that the anticipated k−1

scaling occurs only for magnetic Prandtl numbers down to 0.1
and only over an extremely short range may indicate that our
Reynolds numbers are still too small to yield conclusive results.
Especially at smaller scales, and certainly in the runs with the
smallest PrM , the compensated relative kinetic and magnetic
helicity spectra are compatible with a k1/2 slope. This would
imply a k−7/6 spectrum for the kinetic and current helicities,
which is shallower than that anticipated for a forward cascade,
but still steeper than that in the case of equipartition. We
emphasize again that this applies to the resistively controlled
regime.

In Figure 11 we see that at k = kf both RK and RM are
close to unity. This indicates that velocity and magnetic fields
are nearly fully helical. However, for k > kf the velocity and
magnetic fields become less helical, because the compensated
relative helicities in Figure 11 increase with k not faster than to
the 1/2 power. On the other hand, for k = k1 the magnetic field is
again fully helical, i.e. (k1/kf )|RM (k1)| is equal to k1/kf = 1/4,
but its helicity has the opposite sign.

In Table 1 we compare the values of RM (k) during the linear
and nonlinear stages at the wavenumbers k1 and kf for the three
or four values of PrM . Note that during the nonlinear stage
RM (k1) and RM (kf ) are of opposite sign. The former is close to
−1 while the latter increases from 0.52 to 0.72 as PrM decreases.
As already indicated in Section 3.3, during the linear stage, the
two are of opposite sign only for PrM = 0.01, while for larger

Figure 11. Spectral current and kinetic helicity ratios for the same four runs
shown in Figure 8. The upper panel is for PrM = 1 (thin line) and 0.1 (thick
line), while the lower panel is for 10−2 (thin line) and 10−3 (thick line). Note
that for PrM = 1 and 0.1 the profiles of (k/kf )|RM (k)| and (k/kf )|RK (k)|
are reasonably flat in the range 6 � k/k1 � 14. The 1/2 slope is shown for
comparison.

Table 1
Comparison of RM (k1) and RM (kf ) During the Linear and Nonlinear Stages

for Different Values of PrM

PrM Linear Nonlinear

k1 kf k1 kf

10−3 −0.993 +0.72
10−2 −0.88 +0.42 −0.994 +0.66
10−1 −0.59 −0.08 −0.993 +0.59
1 −0.41 −0.15 −0.993 +0.52

values of PrM a larger range of scales appears to be affected by
the inverse transfer of magnetic helicity causing RM (kf ) to be
negative. It would be tempting to try and model this behavior
using, for example, the four-scale helical dynamo model of
Blackman (2003).

3.7. Effects on the Velocity Pattern

In Figure 12 we compare visualizations of Bz and Uz for all
four values of PrM . The velocity and magnetic field patterns
are surprisingly similar for all four values of PrM . Only for
PrM = 10−2 and 10−3 the magnetic field appears noticeably
smoother than in the other two cases. The velocity field shows a
marked anisotropy with small-scale elongated patterns aligned
with the local direction of the mean magnetic field, which is
here of the form B ∼ (0, sin k1x,− cos k1x). The anisotropy in
the velocity can still be seen for small values of PrM , but the
small-scale patterns are slightly smoother.

4. CONCLUSIONS

In many astrophysical bodies the magnetic Prandtl number is
small, while in most simulations its value is chosen to be close
to unity. As we have shown here, this mismatch is of relatively
minor consequence for large-scale dynamos that are driven by
helical forcing.
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Figure 12. Visualizations of Bz and Uz for PrM = 10−3 at Re = 4400 (left), PrM = 10−2 at Re = 2300, PrM = 0.1 at Re = 1200, and PrM = 1 at Re = 450 (right).
The orientation of the axes is the same as in Figure 1.

(A color version of this figure is available in the online journal.)

In the nonlinear stage, the velocity and magnetic field patterns
are remarkably independent of the value of PrM . The only thing
that changes is the length of the inertial range. A small magnetic
Prandtl number simply means that the magnetic energy spectrum
turns into the dissipation range more quickly than the kinetic
energy spectrum. It also means that essentially all the energy is
dissipated via Joule heat. This was recently also demonstrated
by Mininni (2007). One reason is that the case of fully helical
turbulence studied in the present paper is a particularly simple
one, because it leads to uniform mean-field dynamo action with
large-scale pattern formation covering the entire domain. In this
paper we have seen that, at least for values of Re up to 4400,
the dynamics of this large-scale pattern, i.e., of the large-scale
magnetic field, is quite independent of how long the inertial
range of the turbulence is. In the absence of helicity, there is only
small-scale dynamo action, which is driven by the dynamics at
the smallest possible scale, i.e. the resistive scale. In that case
it does matter what the dynamics of the turbulence is at that
scale. However, in that case it has not yet been possible to find
dynamo action for values of PrM down to the values considered
here. Nevertheless, it is possible that even in that case there is
an asymptotic regime for large enough values of ReM where the
dynamics of the magnetic field is independent of the value of
PrM , even though this regime is not yet accessible with present
day computers.

To estimate the value of the magnetic Prandtl number in
dense astrophysical bodies, one has to use the Spitzer formulae
for η and ν. The resulting magnetic Prandtl number is (e.g.,
Brandenburg & Subramanian 2005b)

PrM = 1.1 × 10−4

(
T

106 K

)4 (
ρ

0.1 g cm−3

)−1 (
ln Λ
20

)−2

,

(14)
so at the bottom of the solar convection zone the magnetic
Prandtl number is clearly rather small (∼ 10−4). Nevertheless,
simulations of solar and stellar dynamos available so far PrM
are set to values of the order or unity. Although we have shown
here that the resulting large-scale fields are similar to the more
realistic case of small values of PrM , an important difference
is that the small-scale dynamo may be more pronounced when

PrM is of order unity. In practice this means that a positive
detection of dynamo action in a simulation might not necessarily
be relevant for understanding the Sun, unless suitable conditions
for the excitation of large-scale dynamo action are also met. On
the other hand, once the large-scale dynamo is really excited, and
if it is fully saturated, it is then quite feasible to lower the value
of PrM significantly—without losing the large-scale dynamo.
In fact, lowering PrM in a saturated large-scale dynamo means
that most of the energy will be dissipated via Joule heating,
and that the kinetic energy cascade only carries a small fraction
of the total energy. This allows us to increase the value of Re,
and hence to decrease the viscosity and thereby the value of
PrM even further. Simulations of large-scale dynamo action in
turbulent convection (Käpylä et al. 2008) provide one example
where it is indeed feasible to lower PrM , although in that case
the system is not uniform and so energy dissipation via Joule
heating is only possible in those locations where the dynamo is
strong enough (P. J. Käpylä 2008, private communication).
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