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A growing dynamo from a saturated Roberts flow dynamo
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ABSTRACT
Using direct simulations, weakly non-linear theory and non-linear mean-field theory, it is
shown that the quenched velocity field of a saturated non-linear dynamo can itself act as a
kinematic dynamo. The flow is driven by a forcing function that would produce a Roberts flow
in the absence of a magnetic field. This result confirms an analogous finding by Cattaneo &
Tobias for the more complicated case of turbulent convection, suggesting that this may be a
common property of non-linear dynamos; see also the talk given online at the Kavli Institute
for Theoretical Physics (http://online.kitp.ucsb.edu/online/dynamo_c08/cattaneo). It is argued
that this property can be used to test non-linear mean-field dynamo theories.
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1 IN T RO D U C T I O N

The magnetic fields of many astrophysical bodies display order
on scales large compared with the scale of the turbulent fluid mo-
tions that are believed to generate these fields via dynamo action. A
leading theory for these types of dynamos is mean-field electrody-
namics (Moffatt 1978; Krause & R̈adler 1980), which predicts the
evolution of suitably averaged mean magnetic fields. Central to this
theory is the mean electromotive force based on the fluctuations of
velocity and magnetic fields. This mean electromotive force is then
expressed in terms of the mean magnetic field and its first derivative
with coefficientsαij andηijk. The former represents theα effect
and the latter the turbulent magnetic diffusivity.

Under certain restrictions, the coefficientsαij and ηijk can be
calculated using, for example, the first-order smoothing approxi-
mation, which means that non-linearities in the evolution equations
for the fluctuations are neglected. Whilst this is a valid approach
for small magnetic Reynolds numbers or short correlation times,
it is not well justified in the astrophysically interesting case when
the magnetic Reynolds number is large and the correlation time
comparable with the turnover time. However in recent years, it has
become possible to calculateαij andηijk using the so-called test-
field method (Schrinner et al. 2005, 2007). For the purpose of this
paper, we can consider this method essentially as a ‘black box’
whose input is the velocity field and its output is the coefficients
αij andηijk. This method has been successfully applied to the kine-
matic case of weak magnetic fields in the presence of homogeneous
turbulence either without shear (Brandenburg, Rädler & Schrinner
2008b; Sur, Brandenburg & Subramanian 2008) or with shear
(Brandenburg 2005; Brandenburg et al. 2008a).

More recently, this method has also been applied to the non-linear
case where the velocity field is modified by the Lorentz force asso-
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ciated with the dynamo-generated field (Brandenburg et al. 2008c).
In that case, the test-field method still consists of the same black
box, whose input is only the velocity field, but now this velocity
field is based on a solution of the full hydromagnetic equations
comprising the continuity, momentum and induction equations. We
emphasize that the magnetic field is quite independent of the fields
that appear in the test-field method inside the black box.

Our work is stimulated by an interesting and relevant numerical
experiment performed recently by Cattaneo & Tobias (2008). They
considered a solution of the full hydromagnetic equations where the
magnetic field is generated by turbulent convective dynamo action
and has been saturated at a statistically steady value. They then
used this velocity field and subjected it to an independent induction
equation, which is equal to the original induction equation except
that the magnetic fieldB is now replaced by a passive vector fieldB̃,
which does not react back on the momentum equation. Surprisingly,
they found that|B̃| grows exponentially, even though the velocity
field is already quenched by the original magnetic field.

One might have expected that, because the velocity is modified
such that it produces a statistically steady solution to the original
induction equation,B̃ should decay or also display statistically
steady behaviour. The argument sounds particularly convincing for
time-independent flows because, if a growingB̃ were to exist, one
would expect this alternative field to grow and replace the initial
field. This view is supported by recent simulations in which the
flow field from a geodynamo simulation in a spherical shell was
used as velocity field in kinematic dynamo computations, and no
growing B̃ was found (Tilgner 2008). However, it turns out that this
reasoning is not correct in general. One finds counterexamples even
within the confines of mean-field magnetohydrodynamic (MHD)
using analytical tools. The existence of a growingB̃ thus is not tied
to chaotic flows or fluctuating small-scale dynamos.

This finding of Cattaneo & Tobias (2008) is interesting in view
of the applicability of the test-field method to the non-linear case.
Of course, the equations used in the test-field method are different
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from the original induction equation. (The equations used in the
test-field method include an inhomogeneous term and the mean
electromotive force is subtracted, but they are otherwise similar to
the original induction equation.) Given the seemingly unphysical
behaviour of the induction equation in the presence of a vector field
different from the actual magnetic field, it would be tempting to
argue that one should choose test fields whose shape is rather close
to that of the actual magnetic field (Cattaneo & Hughes 2008).
On the other hand, theαij andηijk tensors should give the correct
response to all possible fields, not just theB field that grew out
of a particular initial condition, but also the passiveB̃ field that
obeys a separate induction equation. It is therefore important to
choose a set of test fields that are orthogonal to each other, even
if none of the fields are solutions of the induction equation. One
goal of this paper is to show that theαij andηijk tensors obtained
in this way provide not only interesting diagnostics of the flow, but
they are also able to explain the surprising result of Cattaneo &
Tobias (2008) in the context of a simpler example. However, let us
begin by repeating the numerical experiment of Cattaneo & Tobias
(2008) using the simpler case of a Roberts flow. Next, we consider
a weakly non-linear analysis of this problem and then turn to its
mean-field description.

2 TH E M O D EL

In order to examine the possibility of a growing passive vector field,
we first considered the case of a driven ABC flow. Such a flow is
non-integrable and has chaotic streamlines. Growing passive vector
fields were found. To simplify matters even further, we consider
now the case of a Roberts flow, which is integrable, has non-chaotic
streamlines, and the dynamo can only be a slow one, i.e. the growth
rate goes to zero in the limit of large magnetic Reynolds num-
ber. This is, however, not an issue here, because we will only be
considering finite values of the magnetic Reynolds number.

In the following, we consider both incompressible and isothermal
cases. The governing equations for any externally driven velocity
field (turbulence, ABC flow or Roberts flow) are then given by

∂U
∂t
= −U · ∇U −∇H + 1

ρ
J × B + f + Fvisc, (1)

∂B
∂t
= ∇ × (U × B)+ η∇2 B, (2)

whereU is the velocity,B is the magnetic field,ρ is the density,H is
the specific enthalpy,J =∇ ×B/µ0 is the current density,µ0 is the
vacuum permeability,f is the forcing function,Fvisc is the viscous
force per unit mass andη = constant is the magnetic diffusivity. In
the incompressible case,∇ · U = 0, we haveH = p/ρ, wherep is
the pressure andρ = constant. The viscous force is then given by
Fvisc = ν∇2U . In the isothermal case, the density obeys the usual
continuity equation

∂ρ

∂t
= −∇ · (ρU), (3)

but nowp = c2
sρ, wherecs is the isothermal sound speed. In that

case,H = c2
s ln ρ and the viscous force is given by

Fvisc = ν∇2U + 1
3ν∇∇ · U + 2νS∇ ln(ρν), (4)

whereSij = 1
2(Ui,j +Uj,i)− 1

3δij∇ ·U is the traceless rate of strain
matrix.

Figure 1. Evolution of the rms values ofB and B̃ for Rm = 6.25. The
growth rate ofB̃ is 0.016u0k0 in the kinematic phase and 0.014u0k0 in the
non-linear phase.

In order to compute the evolution of an additional passive vector
field B̃, we also solve the equation

∂ B̃
∂t
= ∇ × (U × B̃)+ η∇2 B̃. (5)

In the case of the Roberts flow, we use the forcing function

f = νk2
f URob, (6)

where

URob= kfψ ẑ − ẑ × ∇ψ (7)

with

ψ = (u0/k0) cosk0x cosk0y (8)

andkf =
√

2k0. We consider a domain of sizeLx × Ly × Lz. In all
cases, we considerLx =Ly =Lz=2π/k0. Our model is characterized
by the choice of fluid and magnetic Reynolds numbers that are here
based on the inverse wavenumberk0,

Re= u0/νk0, Rm = u0/ηk0. (9)

3 N U M E R I C A L E X P E R I M E N T S

We solve equations (1)–(5) for the isothermal case using thePENCIL

code,1 which is a high-order public domain code (sixth order in
space and third-order in time) for solving partial differential equa-
tions. Equation (5) is solved using the test-field module with the
input parameterslignore uxbtestm=T anditestfield=‘B=0’,
which means that the inhomogeneous term of the test-field equa-
tion is set to zero and the subtraction of the mean electromotive
force has been disabled. In this way, we solve equation (5) instead
of the original test-field equation. We focus on the case of small fluid
Reynolds number, Re= 0.5. The initial conditions forB and B̃ are
Beltrami fields, [cos (k0z + ϕ), sin(k0z + ϕ), 0], with an arbitrarily
chosen phaseϕ = 0.2, but forB̃ we putϕ = 0. In Fig. 1, we plot the
evolution of the rms values ofB and B̃ for a weakly supercritical
case withRm = 6.25. (In our case with Re= 0.5, the critical value
for dynamo action isRm ≈ 5.77 and for Re→ 0 the critical value
would beRm ≈ 5.5.) BothB and B̃ grow at first exponentially at
the same rate. However, whenB reaches saturation, the growth of

1 http://www.nordita.org/software/pencil-code/
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Figure 2. Grey-scale representations of horizontal cross-sections ofB and
B̃ for Rm = 6.25. Here,k0z0 ≈−3.04. Both fields are scaled symmetrically
around zero (grey shade) with dark shades indicating negative values and
light shades indicating positive vales, as indicated on the grey-scale bar.

B̃ slows down temporarily, but then resumes to nearly its original
value. This confirms the result of Cattaneo & Tobias (2008) for the
much simpler case of a Roberts flow.

In Fig. 2, we compare horizontal cross-sections of the two fields.
Note that the two are phase shifted in thez direction by a quarter
wavelength. The short interval in Fig. 1 during which the growth of
B̃ slowed down temporarily is therefore related to the fact that the
solution needed to ‘adjust’ to this particular form.

4 W E A K LY N O N - L I N E A R TH E O RY

A weakly non-linear analysis of the Roberts flow is presented in
Tilgner & Busse (2001). Two non-linear terms enter the full dynamo
problem. In order to make the calculation analytically tractable, it

is assumed that the fluid has infinite magnetic Prandtl number so
that the inertial terms (and hence the advection term) drop from the
Navier–Stokes equation. The second non-linear term, the Lorentz
force, is assumed to be small compared with the driving forcef and
treated perturbatively. The linear induction equation is transformed
into a mean-field equation assuming separation of length-scales and
small magnetic Reynolds numbers. One can under these assump-
tions compute the modifications of the velocity fieldURob due to
the presence of a mean-fieldB, which we define here as

B(z, t) =
∫ Ly

0

∫ Lx

0
B(x, y, z, t) dx dy/LxLy. (10)

The magnetically modified velocity field then becomes

U = (1− γ )URob+ 2γ
BxBy

B
2
x + B

2
y

Û (11)

with

Û = u0




sink0x cosk0y

− cosk0x sink0y√
2 sink0x sink0y


 (12)

andγ = (B
2
x+B

2
y)/(2ηνk2

f ρµ0). The original flowURob is reduced
in magnitude and another two-dimensional periodic flow compo-
nent is added. The mean-field induction equation with flowU given
by equation (11), written for a passive vector fieldB̃, is

∂ B̃
∂t
+∇ × A




B̃x

B̃y

0


 − ∇ × CBxBy




B̃y

B̃x

0


 = η∇2 B̃ (13)

with

A = R̃mv0 and C = R̃3
m

Pm

1

v0ρµ0
, (14)

where

R̃m = v0

ηkf
, Pm = ν

η
and v2

0 = 1
2u

2
0(1− γ ) (15)

have been introduced. This equation corresponds to equation (10)
of Tilgner & Busse (2001). Apart from a change of notation, the
distinction between the passive vector fieldB̃ and the field dis-
torting the Roberts flow,B, has been made. In addition, equa-
tion (10) of Tilgner & Busse (2001) was intended as a model of the
Karlsruhe dynamo and usedu0 as a control parameter, whereas
here, we considerf as given. For this reason, the two equations are
identical only to first-order inγ .

Equation (13) reduces to the usual dynamo problem forB̃ = B
and leads to the kinematic dynamo problem if it is furthermore
linearized inB, which corresponds to dropping the third term in
equation (13). Foru2

0 > 2η2kf k, the equation has growing solu-
tions of the form (coskz, sinkz, 0). Weakly non-linear analysis
determines the amplitudeB0 of a saturated solution of the form
B = B0 (coskz, sinkz, 0) by inserting this ansatz forB andB̃ = B
into equation (13) and by projecting equation (13) on to (coskz,
sinkz, 0) and integrating spatially over a periodicity cell (Tilgner &
Busse 2001).

We proceed similarly to find growing solutions of equation (13).
AssumeB = B0 (coskz, sinkz, 0). Obvious candidates for passive
vector fields growing at ratep are B̃ ∝ ept [cos(kz + ϕ), sin(kz +
ϕ), 0]. Since the third term in equation (13) is a perturbation, a grow-
ing solution must be of a form such that the other terms maximize
the growth rate. These other terms are identical to the kinematic
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problem, so that̃B must have the same general form as the kine-
matic dynamo field except for the phase shiftϕ which measures the
phase angle between the saturated fieldB and the passive vector
field B̃. The velocity fieldURob is independent ofz, so that any
solution of the kinematic dynamo problem remains a solution after
translation alongz. However, neither the Lorentz force due toB nor
the flow modified by that Lorentz force is independent ofz, so that
the phase angleϕ matters forB̃. The above ansatz for̃B will not
be an exact solution of equation (13) because of thez-dependence
of BxBy , but it represents the leading Fourier component. In order
to determine the optimalϕ, we insert this ansatz into equation (13),
project on to [cos(kz + ϕ), sin(kz + ϕ), 0] and integrate over a
periodicity cell to find

p = −ηk2 + Ak − CB2
0k

1

4
cos 2ϕ. (16)

The saturation amplitudeB0 is determined from this equation by
settingp = 0 andϕ = 0. For any givenB0, the maximum ofp is
obtained forϕ = π/2. The fastest growing mean passive vector field
is thus expected to have the same form as the mean dynamo field
except for a translation by a quarter wavelength along thez-axis.
This is in agreement with the simulation results of Section 3.

The weakly non-linear analysis in summary delineates the fol-
lowing physical picture: as detailed in Tilgner & Busse (2001), the
saturated dynamo field modifies the flow in two different ways.
First, it reduces the amplitude ofURob by the factor of 1− γ and
secondly, it introduces a new set of vortices which lead to the third
term in equation (13). The reduction of the amplitude of the Roberts
flow affects all magnetic mean fields with a spatial dependence in
[cos(kz + ϕ), sin(kz + ϕ), 0] in the same manner, independently of
ϕ. The additional vortices, however, have a quenching effect on the
field that created them (e.g.ϕ = 0) but are amplifying for a field
shifted byϕ = π/2 with respect to the saturated field.

We were able to find a simple growing passive vector field thanks
to the periodic boundary conditions inz. The same construction is
impossible for vacuum boundaries atz = 0 and 2π/k0. Numeri-
cal simulations of the Roberts dynamo with vacuum boundaries,
not reported in detail here, have revealed that growingB̃ exists
in this geometry none the less, but they bear a more complicated
relation withB than a simple translation. At present, the flow of
the convection-driven dynamo in a spherical shell used in Tilgner
(2008) seems to be the only known example of a dynamo which
does not allow for growing̃B.

5 N O N - L I N E A R M E A N - F I E L D T H E O RY

In mean-field dynamo theory for a flow such as the Roberts flow,
one solves an equation for the horizontally averaged mean field,
as defined in equation (10). The mean electromotive force is de-
fined asE = u × b, whereu = U − U and b = B − B are the
fluctuating components of magnetic and velocity fields. The mean
electromotive force can be expressed in terms of the mean fields as

Ei = αijBj − ηij J j , (17)

where we have used the fact that for mean fields that depend only
on one spatial coordinate one can express all first derivatives of the
components ofB in terms of those ofJ alone.

The tensorial forms ofαij andηij are ignored in many mean-field
dynamo applications, but here their tensorial forms turn out to be
of crucial importance. Of course, there is always the anisotropy
with respect to thez direction, but this is unimportant in our one-
dimensional mean-field problem, because of solenoidality ofB and

J and suitable initial conditions onB such thatBz = J z = 0.
However, the dynamo-generated magnetic fields will introduce an
anisotropy in thex andy directions. IfB is the only vector giving a
preferred direction to the system, theαij andηij tensors must be of
the form

αij = α1(B)δij + α2(B)B̂i B̂j + · · · , (18)

ηij = η1(B)δij + η2(B)B̂i B̂j + · · · , (19)

whereB̂ = B/|B| is the unit vector of the dynamo-generated mean
magnetic field and dots indicate the presence of terms related to
the anisotropy in thez direction inherent to the Roberts flow. As
indicated above, equation (18) is correct without these terms only
in the (x, y) plane. However, the terms represented by the dots do
not enter the considerations below because we are only interested
in fields withBz = 0.

In order to predict the evolution of̃B in the saturated state, we
need to know the effect onαij (and, in principle, also onηij , but
η2 is small; see below). Thus, we now need to knowB. The mean
magnetic field generated by the Roberts flow is a force-free Beltrami
field of the form

B = (cosk0z, sink0z, 0), (20)

so

B̂i B̂j =




cos2 k0z cosk0z sink0z 0

cosk0z sink0z sin2 k0z 0

0 0 0


 . (21)

The coefficientsα1, α2, η1 andη2 have previously been determined
for the case of homogeneous turbulence (Brandenburg et al. 2008c)
and it turned out atα1 and α2 have opposite sign, and thatη2

is negligible. This is also true in this case, for which we have
determinedα1/u0 = −0.266,α2/u0 = +0.022,η1k0/u0 = 0.082
andη2k0/u0 = 0.002. The microscopic value ofη is 0.160, so the
steady-state condition,α1 + α2 + (η1 + η2 + η)k0 = 0, is obeyed.2

In the kinematic regime, we haveα1/u0 = −0.254 andη1k0/u0 =
0.076, withα2 = η2 = 0, resulting in a positive growth rate of
0.018u0k0. Thus, even thoughα1 increases in this case, the sum
α1 + α2 is being quenched. This, together with the increase inη1

+ η2, leads to saturation ofB.
Returning now to the mean-field problem forB̃, this too will be

governed by the sameαij andηij tensors, but now the tensorB̂i B̂j is
fixed and independent of̃B. The solution forB̃ will be the one that
maximizes the growth, so it must experience minimal quenching.
Such a solution is given by that eigenvector ofB̂i B̂j that minimizes
the quenching of̃B. In the case of our Beltrami field (equation 18),
the minimizing eigenvector is given by

B̃ = (sink0z, − cosk0z, 0), (22)

which satisfieŝBiB̂j B̃j = 0. This is indeed the same result that we
found both numerically and using weakly non-linear theory. The
growth rate ofB̃ is then expected to be|α1|k0 − (η1 + η)k2

0 =
0.024u0k0, which is indeed positive, but it is somewhat bigger than
the one seen in Fig. 1.

Let us emphasize once more that by determining the fullαij

andηij tensors in the non-linear case we have been able to predict
the behaviour of the passive vector field as well. This adds to the

2 We note that the sign ofα1 is opposite to the sign of the kinetic helicity,
but since the Roberts flow has positive helicity,α1 must be negative, which
is indeed the case.
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credence of the test-field method in the non-linear case, and confirms
that the test-fields can well be very different from the actual solution.

The considerations above suggest that the solutions to the pas-
sive vector equation (5) can be used to provide an independent test
of proposed forms ofα-quenching. Isotropic formulations ofα-
quenching would not reproduce the growth of a passive vector field,
and so such quenching expressions can be ruled out, even though
the resulting electromotive force forB would be the same. We sug-
gest therefore that the eigenvalues and eigenvectors of equation (5)
with a velocity field from a saturated dynamo can be used to charac-
terize the quenching of dynamo parameters (α effect and turbulent
diffusivity), and thereby to test proposed forms ofα-quenching.

6 C O N C L U S I O N S

The most fundamental question of the dynamo theory beyond kine-
matic dynamo theory is ‘how do magnetic fields saturate?’. In the
simplest picture, the velocity field reorganizes in response to the
Lorentz force such that all magnetic fields decay except one which
has zero growth rate and which is the one we observe. This picture
is already questionable for chaotic dynamos. In a chaotic system,
nearby initial conditions lead to exponentially separating time evo-
lutions. If one takes a magnetic fieldB with (on time average) zero
growth rate which is the saturated solution of a chaotic dynamo,
and solves the kinematic dynamo problem for a passive vector field
B̃ with initial conditions different fromB, one is prepared to find
growing B̃. Examples for growing̃B in chaotic dynamos have been
given by Cattaneo & Tobias (2008).

For a time-independent saturated dynamo, on the other hand,
the simple picture seems to be adequate at first. However, we
have shown in this paper that growing̃B also exists in the time-
independent Roberts dynamo. The origin of the growingB̃ can in
this case be understood with the help of weakly non-linear theory.
The growingB̃ has the same shape as the saturated dynamo field
but is translated in space.

What was wrong with the naive intuition invoked above? It was
based on a stability argument (the equilibrated magnetic field should
be replaced byB̃ if there is a growingB̃). However, the linear
stability problem for a solution of the full dynamo equations is
different from the kinematic dynamo problem forB̃, because in the
latter, the velocity field is fixed. Both problems are closely related
eigenvalue problems, but standard mathematical theorems do not
provide us with a relation between the spectra of both problems.
The numerical computation above gives an example of a stable
Roberts dynamo, showing that the linear stability problem for the

solution found there has only negative eigenvalues. Solving the
same eigenvalue problem with velocity fixed, which is the kinematic
problem for B̃, can very well lead to positive eigenvalues, and
indeed, it does. The dynamo is therefore only stable because the
velocity field is able to adjust to perturbations in the magnetic field.
The magnetic field on its own is unstable.
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