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A growing dynamo from a saturated Roberts flow dynamo
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ABSTRACT

Using direct simulations, weakly non-linear theory and non-linear mean-field theory, it is
shown that the quenched velocity field of a saturated non-linear dynamo can itself act as a
kinematic dynamo. The flow is driven by a forcing function that would produce a Roberts flow
in the absence of a magnetic field. This result confirms an analogous finding by Cattaneo &
Tobias for the more complicated case of turbulent convection, suggesting that this may be a
common property of non-linear dynamos; see also the talk given online at the Kavli Institute
for Theoretical Physics (http://online.kitp.ucsb.edu/online/dynamo_c08/cattaneo). It is argued
that this property can be used to test non-linear mean-field dynamo theories.
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ciated with the dynamo-generated field (Brandenburg et al. 2008c).
In that case, the test-field method still consists of the same black
The magnetic fields of many astrophysical bodies display order box, whose input is only the velocity field, but now this velocity
on scales large compared with the scale of the turbulent fluid mo- field is based on a solution of the full hydromagnetic equations
tions that are believed to generate these fields via dynamo action. Acomprising the continuity, momentum and induction equations. We
leading theory for these types of dynamos is mean-field electrody- emphasize that the magnetic field is quite independent of the fields
namics (Moffatt 1978; Krause & &ller 1980), which predicts the  that appear in the test-field method inside the black box.
evolution of suitably averaged mean magnetic fields. Central to this  Our work is stimulated by an interesting and relevant numerical
theory is the mean electromotive force based on the fluctuations of experiment performed recently by Cattaneo & Tobias (2008). They
velocity and magnetic fields. This mean electromotive force is then considered a solution of the full hydromagnetic equations where the
expressed in terms of the mean magnetic field and its first derivative magnetic field is generated by turbulent convective dynamo action
with coefficientse;; andn; ;. The former represents the effect and has been saturated at a statistically steady value. They then
and the latter the turbulent magnetic diffusivity. used this velocity field and subjected it to an independent induction
Under certain restrictions, the coefficienis and n;;, can be equation, which is equal to the original induction equation except
calculated using, for example, the first-order smoothing approxi- that the magnetic fielB is now replaced by a passive vector fiéld
mation, which means that non-linearities in the evolution equations which does not react back on the momentum equation. Surprisingly,
for the fluctuations are neglected. Whilst this is a valid approach they found that B| grows exponentially, even though the velocity
for small magnetic Reynolds numbers or short correlation times, field is already quenched by the original magnetic field.
it is not well justified in the astrophysically interesting case when  One might have expected that, because the velocity is modified
the magnetic Reynolds number is large and the correlation time such that it produces a statistically steady solution to the original
comparable with the turnover time. However in recent years, it has induction equation,8 should decay or also display statistically
become possible to calculadg; andn;;; using the so-called test-  steady behaviour. The argument sounds particularly convincing for
field method (Schrinner et al. 2005, 2007). For the purpose of this time-independent flows because, if a growiBgvere to exist, one
paper, we can consider this method essentially as a ‘black box’ would expect this alternative field to grow and replace the initial
whose input is the velocity field and its output is the coefficients field. This view is supported by recent simulations in which the
o;; andn; ;.. This method has been successfully applied to the kine- flow field from a geodynamo simulation in a spherical shell was
matic case of weak magnetic fields in the presence of homogeneousised as velocity field in kinematic dynamo computations, and no
turbulence either without shear (BrandenburgdiRr & Schrinner growing B was found (Tilgner 2008). However, it turns out that this
2008b; Sur, Brandenburg & Subramanian 2008) or with shear reasoning is not correct in general. One finds counterexamples even
(Brandenburg 2005; Brandenburg et al. 2008a). within the confines of mean-field magnetohydrodynamic (MHD)
More recently, this method has also been applied to the non-linear using analytical tools. The existence of a growBighus is not tied
case where the velocity field is modified by the Lorentz force asso- to chaotic flows or fluctuating small-scale dynamos.
This finding of Cattaneo & Tobias (2008) is interesting in view
of the applicability of the test-field method to the non-linear case.
*E-mail: andreas.tilgner@physik.uni-goettingen.de Of course, the equations used in the test-field method are different
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from the original induction equation. (The equations used in the

test-field method include an inhomogeneous term and the mean

electromotive force is subtracted, but they are otherwise similar to
the original induction equation.) Given the seemingly unphysical
behaviour of the induction equation in the presence of a vector field
different from the actual magnetic field, it would be tempting to

argue that one should choose test fields whose shape is rather close

to that of the actual magnetic field (Cattaneo & Hughes 2008).
On the other hand, the; andz,;, tensors should give the correct
response to all possible fields, not just fRefield that grew out

of a particular initial condition, but also the passiiefield that
obeys a separate induction equation. It is therefore important to

choose a set of test fields that are orthogonal to each other, even

if none of the fields are solutions of the induction equation. One
goal of this paper is to show that the andn;;, tensors obtained

in this way provide not only interesting diagnostics of the flow, but
they are also able to explain the surprising result of Cattaneo &
Tobias (2008) in the context of a simpler example. However, let us
begin by repeating the numerical experiment of Cattaneo & Tobias
(2008) using the simpler case of a Roberts flow. Next, we consider
a weakly non-linear analysis of this problem and then turn to its
mean-field description.

2 THE MODEL

In order to examine the possibility of a growing passive vector field,
we first considered the case of a driven ABC flow. Such a flow is

non-integrable and has chaotic streamlines. Growing passive vectorJrob = ki Z — Z x Vi

fields were found. To simplify matters even further, we consider
now the case of a Roberts flow, which is integrable, has non-chaotic

streamlines, and the dynamo can only be a slow one, i.e. the growthy = (uo/ko) COSkox COSkoy

rate goes to zero in the limit of large magnetic Reynolds num-
ber. This is, however, not an issue here, because we will only be
considering finite values of the magnetic Reynolds number.

In the following, we consider both incompressible and isothermal
cases. The governing equations for any externally driven velocity

field (turbulence, ABC flow or Roberts flow) are then given by
ou 1

— =-U-VU-VH+ —J x B+ f + Fyis, 1)
ot 0

0B

§=VX(UXB)+17VZB, (2)

whereU is the velocityB is the magnetic fieldp is the densityH is

the specific enthalpy] = V x B/ug is the current densityy is the
vacuum permeabilityf, is the forcing functionF s is the viscous
force per unit mass angl= constant is the magnetic diffusivity. In
the incompressible casg,- U = 0, we haveH = p/p, wherep is

the pressure angd = constant. The viscous force is then given by
Fuisc = vV2U. In the isothermal case, the density obeys the usual
continuity equation

ap

V - (pV),
3 (oV)

@)

but nowp = c2p, wherec; is the isothermal sound speed. In that
caseH = c2 In p and the viscous force is given by
Fuisc = vV2U 4+ 2vVV - U + 208V In(pv), (4)

whereS;; = 3(U;; + U;,;) — 38,V - U is the traceless rate of strain
matrix.
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Figure 1. Evolution of the rms values o8 and B for Ry, = 6.25. The
growth rate ofB is 0.016upky in the kinematic phase and 0.0dgky in the
non-linear phase.

In order to compute the evolution of an additional passive vector
field B, we also solve the equation

0B . .
E:Vx(UxB)—I—nVZB.

In the case of the Roberts flow, we use the forcing function

()

f = vk?URrop (6)
where
(7
(8)

andk; = +/2ko. We consider a domain of sizg x L, x L. Inall
cases, we considef =L, =L, = 27t/ky. Our modelis characterized

by the choice of fluid and magnetic Reynolds numbers that are here
based on the inverse wavenumkgr

Re=uo/vko, Rm = uo/nko. )

3 NUMERICAL EXPERIMENTS

We solve equations (1)—(5) for the isothermal case usingdheL
codet! which is a high-order public domain code (sixth order in
space and third-order in time) for solving partial differential equa-
tions. Equation (5) is solved using the test-field module with the
input parametersignore _uxbtestm=T anditestfield=‘B=0",
which means that the inhomogeneous term of the test-field equa-
tion is set to zero and the subtraction of the mean electromotive
force has been disabled. In this way, we solve equation (5) instead
of the original test-field equation. We focus on the case of small fluid
Reynolds number, Re 0.5. The initial conditions foB and B are
Beltrami fields, [cosKoz + ¢), sin(oez + ¢), 0], with an arbitrarily
chosen phase = 0.2, but forB we puty = 0. In Fig. 1, we plot the
evolution of the rms values @& and B for a weakly supercritical
case withR,, = 6.25. (In our case with Re: 0.5, the critical value

for dynamo action iR, ~ 5.77 and for Re— 0 the critical value
would beR, ~ 5.5.) BothB and B grow at first exponentially at

the same rate. However, wh&nreaches saturation, the growth of

1 http://www.nordita.org/software/pencil-code/
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Figure 2. Grey-scale representations of horizontal cross-sectioBsaofd

B for Ry = 6.25. Herekozo ~ —3.04. Both fields are scaled symmetrically
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is assumed that the fluid has infinite magnetic Prandtl number so
that the inertial terms (and hence the advection term) drop from the
Navier—Stokes equation. The second non-linear term, the Lorentz
force, is assumed to be small compared with the driving foesel
treated perturbatively. The linear induction equation is transformed
into a mean-field equation assuming separation of length-scales and
small magnetic Reynolds numbers. One can under these assump-
tions compute the modifications of the velocity fidld,, due to

the presence of a mean-fieR] which we define here as

Ly Ly
Ben= [ [ BwoyznddyL,. (10)
0 0
The magnetically modified velocity field then becomes
B.B, -~
=1 - y)Urob+2y 25U (11)
B, + B,
with
Sinkox cOSkoy
U = uo | — coskex sinkgy (12)

/2 sinkgx sinkoy

andy = (Ei +§i)/(2nka2puo). The original flomU gep is reduced

in magnitude and another two-dimensional periodic flow compo-
nent is added. The mean-field induction equation with lbgiven

by equation (11), written for a passive vector fiéldis

) B, B,
%+VXA B, | -VxCB,B, | B, | =nV?B (13)
0 0
with
A= Rvo and = fm_1 (14)
Pm vopiro
where
% Yo v 2_ 1.2
m= %, = 5 and vy = sug(l—y) (15)

have been introduced. This equation corresponds to equation (10)
of Tilgner & Busse (2001). Apart from a change of notation, the
distinction between the passive vector fidldand the field dis-
torting the Roberts flowB, has been made. In addition, equa-
tion (10) of Tilgner & Busse (2001) was intended as a model of the
Karlsruhe dynamo and usag as a control parameter, whereas

around zero (grey shade) with dark shades indicating negative values andhere, we considdras given. For this reason, the two equations are

light shades indicating positive vales, as indicated on the grey-scale bar.

B slows down temporarily, but then resumes to nearly its original
value. This confirms the result of Cattaneo & Tobias (2008) for the
much simpler case of a Roberts flow.

In Fig. 2, we compare horizontal cross-sections of the two fields.
Note that the two are phase shifted in thdirection by a quarter
wavelength. The short interval in Fig. 1 during which the growth of
B slowed down temporarily is therefore related to the fact that the
solution needed to ‘adjust’ to this particular form.

4 WEAKLY NON-LINEAR THEORY

A weakly non-linear analysis of the Roberts flow is presented in
Tilgner & Busse (2001). Two non-linear terms enter the full dynamo
problem. In order to make the calculation analytically tractable, it

identical only to first-order iry.

Equation (13) reduces to the usual dynamo problenffes B
and leads to the kinematic dynamo problem if it is furthermore
linearized inB, which corresponds to dropping the third term in
equation (13). Fou3 > 2n%k:k, the equation has growing solu-
tions of the form (co&z, sinkz, 0). Weakly non-linear analysis
determines the amplitudB, of a saturated solution of the form
B = By (coskz, sinkz, 0) by inserting this ansatz f@& andB = B
into equation (13) and by projecting equation (13) on to eos
sinkz, 0) and integrating spatially over a periodicity cell (Tilgner &
Busse 2001).

We proceed similarly to find growing solutions of equation (13).
AssumeB = By (coskz, sinkz, 0). Obvious candidates for passive
vector fields growing at rateare B o« e’ [coskz + ¢), sinkz +
@), 0]. Since the third termin equation (13) is a perturbation, a grow-
ing solution must be of a form such that the other terms maximize
the growth rate. These other terms are identical to the kinematic
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problem, so thaB must have the same general form as the kine-
matic dynamo field except for the phase shifvhich measures the
phase angle between the saturated figldnd the passive vector
field B. The velocity fieldUrep is independent of, so that any
solution of the kinematic dynamo problem remains a solution after
translation along. However, neither the Lorentz force dueRaior
the flow modified by that Lorentz force is independent,afo that
the phase angle matters forB. The above ansatz fd8 will not
be an exact solution of equation (13) because ofztiependence
of B, B,, but it represents the leading Fourier component. In order
to determine the optimal, we insert this ansatz into equation (13),
project on to [cod(z + ¢),sinkz + ¢),0] and integrate over a
periodicity cell to find

2 2 1
p = —nk“+ Ak — CBOk:1 COS 2. (16)
The saturation amplitudBy is determined from this equation by
settingp = 0 andg = 0. For any giverBy, the maximum ofp is
obtained fokp = 7t/2. The fastest growing mean passive vector field

J and suitable initial conditions oB such thatB, = J. = 0.
However, the dynamo-generated magnetic fields will introduce an
anisotropy in thex andy directions. IfB is the only vector giving a
preferred direction to the system, thg ands;; tensors must be of
the form

aij = al(E)S,-j =+ a2(§)1§i El “+ .- s (18)

ni; = m(B)8i; + n2(B)BiB; + -, (19)

whereB = B/|B] is the unit vector of the dynamo-generated mean
magnetic field and dots indicate the presence of terms related to
the anisotropy in the direction inherent to the Roberts flow. As
indicated above, equation (18) is correct without these terms only
in the &, y) plane. However, the terms represented by the dots do
not enter the considerations below because we are only interested
in fields with B, = 0.

In order to predict the evolution d® in the saturated state, we
need to know the effect om; (and, in principle, also om;;, but
12 is small; see below). Thus, we now need to knBwThe mean

is thus expected to have the same form as the mean dynamo fieldy,gnetic field generated by the Roberts flow is a force-free Beltrami

except for a translation by a quarter wavelength alongzihgis.
This is in agreement with the simulation results of Section 3.

The weakly non-linear analysis in summary delineates the fol-
lowing physical picture: as detailed in Tilgner & Busse (2001), the
saturated dynamo field modifies the flow in two different ways.
First, it reduces the amplitude &frqp, by the factor of 1— y and
secondly, it introduces a new set of vortices which lead to the third
termin equation (13). The reduction of the amplitude of the Roberts
flow affects all magnetic mean fields with a spatial dependence in
[coskz + @), sinkz + ¢), 0] in the same manner, independently of
¢. The additional vortices, however, have a quenching effect on the
field that created them (e.g.= 0) but are amplifying for a field
shifted byy = 71/2 with respect to the saturated field.

We were able to find a simple growing passive vector field thanks
to the periodic boundary conditions mThe same construction is
impossible for vacuum boundaries at= 0 and 2t/k;. Numeri-
cal simulations of the Roberts dynamo with vacuum boundaries,
not reported in detail here, have revealed that growinhgxists

in this geometry none the less, but they bear a more complicated

relation withB than a simple translation. At present, the flow of
the convection-driven dynamo in a spherical shell used in Tilgner
(2008) seems to be the only known example of a dynamo which
does not allow for growind3.

5 NON-LINEAR MEAN-FIELD THEORY

In mean-field dynamo theory for a flow such as the Roberts flow,
one solves an equation for the horizontally averaged mean field,
as defined in equation (10). The mean electromotive force is de-
fined as€ = u x b, whereu = U — U andb = B — B are the

fluctuating components of magnetic and velocity fields. The mean
electromotive force can be expressed in terms of the mean fields a

(17

& =aijB; —nijJ j,

where we have used the fact that for mean fields that depend only
on one spatial coordinate one can express all first derivatives of the

components oB in terms of those o alone.

The tensorial forms af;; andy;; are ignored in many mean-field
dynamo applications, but here their tensorial forms turn out to be
of crucial importance. Of course, there is always the anisotropy
with respect to the direction, but this is unimportant in our one-
dimensional mean-field problem, because of solenoidali& ahd

field of the form

B = (coskoz, Sinkez, 0), (20)
)
co¥ koz coskoz Sinkgz 0
B;B; = | coskozsinkoz Sir koz 0 (21)
0 0 0

The coefficientsvq, a2, n1 andn, have previously been determined
for the case of homogeneous turbulence (Brandenburg et al. 2008c)
and it turned out atr; and «, have opposite sign, and thag

is negligible. This is also true in this case, for which we have
determinedx; /Uy = —0.266,0,/Uy = +0.022,1:ke/Up = 0.082
andn,ko/ug = 0.002. The microscopic value gfis 0.160, so the
steady-state condition; + a2 + (71 + 172 + n)ko = 0, is obeyed.

In the kinematic regime, we hawg /uy = —0.254 andy;ko/Up =
0.076, witha, = n, = 0, resulting in a positive growth rate of
0.018ugk,. Thus, even thoughy; increases in this case, the sum
a1 + a3 is being quenched. This, together with the increasg in
+ 1., leads to saturation d8.

Returning now to the mean-field problem fBr this too will be
governed by the same; andz;; tensors, but now the tensﬁrl}i is
fixed and independent d&. The solution forB will be the one that
maximizes the growth, so it must experience minimal quenching.
Such a solution is given by that eigenvectof&pﬁj that minimizes
the quenching oB. In the case of our Beltrami field (equation 18),
the minimizing eigenvector is given by

B = (sinkoz, — COSkoz, 0), (22)

which satisfiess; B; B, = 0. This is indeed the same result that we

Jound both numerically and using weakly non-linear theory. The

growth rate ofB is then expected to bl |ky — (71 + k3 =
0.024ugk,, which is indeed positive, but it is somewhat bigger than
the one seen in Fig. 1.

Let us emphasize once more that by determining thedyll
andr;; tensors in the non-linear case we have been able to predict
the behaviour of the passive vector field as well. This adds to the

2We note that the sign af; is opposite to the sign of the kinetic helicity,
but since the Roberts flow has positive helicity,must be negative, which
is indeed the case.
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credence of the test-field method in the non-linear case, and confirmssolution found there has only negative eigenvalues. Solving the

that the test-fields can well be very different from the actual solution. same eigenvalue problem with velocity fixed, which is the kinematic
The considerations above suggest that the solutions to the pasproblem for B, can very well lead to positive eigenvalues, and

sive vector equation (5) can be used to provide an independent tesindeed, it does. The dynamo is therefore only stable because the

of proposed forms of-quenching. Isotropic formulations ef- velocity field is able to adjust to perturbations in the magnetic field.

guenching would not reproduce the growth of a passive vector field, The magnetic field on its own is unstable.

and so such quenching expressions can be ruled out, even though
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The numerical computation above gives an example of a stable

Roberts dynamo, showing that the linear stability problem for the This paper has been typeset fromgMATEX file prepared by the author.
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