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ABSTRACT

Aims. To study the existence of large-scale convective dynamos under the influence of shear and rotation.
Methods. Three-dimensional numerical simulations of penetrative compressible convection with uniform horizontal shear are used
to study dynamo action and the generation of large-scale magnetic fields. We consider cases where the magnetic Reynolds number
is either marginal or moderately supercritical with respect to small-scale dynamo action in the absence of shear and rotation. Our
magnetic Reynolds number is based on the wavenumber of the depth of the convectively unstable layer. The effects of magnetic
helicity fluxes are studied by comparing results for the magnetic field with open and closed boundaries.
Results. Without shear no large-scale dynamos are found even if the ingredients necessary for the α-effect (rotation and stratification)
are present in the system. When uniform horizontal shear is added, a large-scale magnetic field develops, provided the boundaries are
open. In this case the mean magnetic field contains a significant fraction of the total field. For those runs where the magnetic Reynolds
number is between 60 and 250, an additional small-scale dynamo is expected to be excited, but the field distribution is found to be
similar to cases with smaller magnetic Reynolds number where the small-scale dynamo is not excited. In the case of closed (perfectly
conducting) boundaries, magnetic helicity fluxes are suppressed and no large-scale fields are found. Similarly, poor large-scale field
development is seen when vertical shear is used in combination with periodic boundary conditions in the horizontal directions. If,
however, open (normal-field) boundary conditions are used in the x-direction, a large-scale field develops. These results support the
notion that shear not only helps to generate the field, but it also plays a crucial role in driving magnetic helicity fluxes out of the
system along the isocontours of shear, thereby allowing efficient dynamo action.

Key words. magnetohydrodynamics (MHD) – convection – turbulence – Sun: magnetic fields – stars: magnetic fields

1. Introduction

It is evident that the Sun possesses a large-scale magnetic field.
The most likely origin of this field is a hydromagnetic dynamo
working within or somewhat below the turbulent convection
zone (e.g. Ossendrijver 2003). The solar dynamo is generally
thought to rely on large-scale shear to produce toroidal mag-
netic field from poloidal field and a process called the α-effect
which produces poloidal field from toroidal field. In the turbu-
lent mean-field dynamo picture an α-effect can arise due to heli-
cal motions in a stratified fluid in the presence of either rotation
or shear, or both (Rogachevskii & Kleeorin 2003; Rüdiger &
Kitchatinov 2006; Rädler & Stepanov 2006). Other candidates
for regenerating large-scale magnetic fields in shearing turbu-
lence include the incoherentαΩ-effect (Vishniac & Brandenburg
1997; Proctor 2007) and the shear-current effect (Rogachevskii
& Kleeorin 2003, 2004).

Numerical simulations of convection have been used to study
dynamo action in local (e.g. Cattaneo & Hughes 2006; Tobias
et al. 2008) and global (e.g. Brun et al. 2004; Browning et al.
2006; Brown et al. 2007) settings. So far, however, with the ex-
ception of the last two papers, these models have had a hard time
generating appreciable large-scale magnetic fields, although all
the ingredients such as rotation and stratification necessary for
an α-effect to occur have been present. Possible reasons for the
lack of large-scale dynamo action in the numerical models is

arguably the lack of scale separation between the energy carry-
ing scale and the scale of the domain and the absence of large-
scale shear in the system. In stratified convection, the lack of
sufficient scale separation is difficult to tackle due to the pro-
hibitive computational challenges involved when trying to cover
many more vertical scale heights in the domain. Adding shear,
however, is easier to accomplish, which is one of the principal
aims of the present paper.

An additional point concerning large-scale dynamo action in
turbulent convection is the possibility of catastrophic quench-
ing due to small-scale magnetic fields. It has long been ar-
gued that small-scale fields cause catastrophic quenching of the
large-scale dynamo (e.g. Vainshtein & Cattaneo 1992). This sort
of quenching, however, only occurs in specific circumstances,
i.e. when there is no magnetic helicity flux out of the domain.
This behaviour can be understood in terms of magnetic helic-
ity (Brandenburg & Subramanian 2005a) which is a conserved
quantity in ideal MHD. If magnetic diffusivity is finite, the mag-
netic helicity can only change diffusively under the aforemen-
tioned special circumstances that lead to resistively slow satura-
tion of the large-scale field.

If, however, magnetic helicity is driven out of the domain,
catastrophic quenching can be alleviated and the large-scale dy-
namo is expected to saturate near equipartition field strengths.
A promising mechanism capable of driving magnetic helicity
fluxes was introduced by Vishniac & Cho (2001), who found that
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in the presence of shear the flux follows isocontours of constant
velocity (Brandenburg & Subramanian 2005b; Subramanian &
Brandenburg 2006). We expect that this shear-driven magnetic
helicity flux is of crucial importance for large-scale dynamo
action.

The remainder of the paper is organised as follows: the nu-
merical model is described in Sect. 2, and the results and con-
clusions are presented in Sects. 3 and 4, respectively.

2. The model

Our model setup is similar to that used by Brandenburg et al.
(1996), Ossendrijver et al. (2001) and Käpylä et al. (2004, 2006).
A rectangular portion of a star is modelled by a box situated at
colatitude θ. The dimensions of the computational domain are
(Lx, Ly, Lz) = (4, 4, 2)d, where d is the depth of the convectively
unstable layer, which is also used as the unit of length. The box
is divided into three layers, an upper cooling layer, a convec-
tively unstable layer, and a stable overshoot layer (see below).
The following set of equations for compressible magnetohydro-
dynamics is being solved:

DA
Dt
= −S Ay x̂ − (∇U)T A − μ0ηJ , (1)

D ln ρ
Dt

= −∇ · U, (2)

DU
Dt
= −S Uxŷ − 1

ρ
∇p+ g− 2Ω×U +

1
ρ

J × B+
1
ρ
∇ · 2νρS, (3)

De
Dt
= − p
ρ
∇ · U + 1

ρ
∇ · K∇T + 2νS2 +

μ0η

ρ
J2 − e−e0

τ(z)
, (4)

where D/Dt = ∂/∂t + (U + U0) · ∇, and U0 = (0, S x, 0) is the
imposed large-scale shear flow. A is the magnetic vector poten-
tial, B = ∇ × A the magnetic field, and J = ∇ × B/μ0 is the
current density, μ0 is the magnetic permeability, η and ν are the
magnetic diffusivity and kinematic viscosity, respectively, K is
the heat conductivity, ρ the density, U the velocity, g = −g ẑ the
gravitational acceleration, and Ω = Ω0(− sin θ, 0, cos θ) the ro-
tation vector. The fluid obeys an ideal gas law p = ρe(γ − 1),
where p and e are the pressure and internal energy, respectively,
and γ = cP/cV = 5/3 is the ratio of specific heats at constant
pressure and volume, respectively. The specific internal energy
per unit mass is related to the temperature via e = cVT . The rate
of strain tensor S is given by

Si j =
1
2 (Ui, j + U j,i) − 1

3δi j∇ · U. (5)

The last term of Eq. (4) describes cooling at the top of the do-
main. Here, τ(z) is a cooling time which has a profile smoothly
connecting the upper cooling layer and the convectively unstable
layer below, where τ→ ∞.

The positions of the bottom of the box, bottom and top of
the convectively unstable layer, and the top of the box, respec-
tively, are given by (z1, z2, z3, z4) = (−0.85, 0, 1, 1.15) d. Initially
the stratification is piecewise polytropic with polytropic indices
(m1,m2,m3) = (3, 1, 1), which leads to a convectively unstable
layer above a stable layer at the bottom of the domain and an
isothermal cooling layer at the top. All simulations with rotation
use θ = 0◦ corresponding to the north pole.

2.1. Nondimensional units and parameters

Non-dimensional quantities are obtained by setting

d = g = ρ0 = cP = μ0 = 1, (6)

where ρ0 is the initial density at z2. The units of length, time,
velocity, density, entropy, and magnetic field are

[x] = d, [t] =
√

d/g, [U] =
√

dg, [ρ] = ρ0,

[s] = cP, [B] =
√

dgρ0μ0. (7)

We define the fluid and magnetic Prandtl numbers and the
Rayleigh number as

Pr =
ν

χ0
, Pm =

ν

η
, Ra =

gd4

νχ0

(
− 1

cP

ds
dz

)
0

, (8)

where χ0 = K/(ρmcP) is the thermal diffusivity, and ρm is the
density in the middle of the unstable layer. The entropy gradient,
measured in the middle of the convectively unstable layer in the
non-convecting hydrostatic state, is given by(
− 1

cP

ds
dz

)
0

=
∇ − ∇ad

HP
, (9)

where ∇ − ∇ad is the superadiabatic temperature gradient with
∇ad = 1 − 1/γ, ∇ = (∂ ln T/∂ ln p)zm, where zm = z3 − z2, and
HP being the pressure scale height (Brandenburg et al. 2005).
The amount of stratification is determined by the parameter ξ0 =
(γ − 1)e0/(gd), which is the pressure scale height at the top of
the domain normalized by the depth of the unstable layer. We
use in all cases ξ0 = 0.3, which results in a density contrast of
about 23. We define the magnetic Reynolds number via

Rm =
urms

ηkf
, (10)

where kf = 2π/d is assumed as a reasonable estimate for the
wavenumber of the energy-carrying eddies. Note that our defini-
tion of Rm is smaller than the usually adopted one by a factor 2π.
The amount of shear and rotation is quantified by

Sh =
S

urmskf
, Co =

2Ω0

urmskf
· (11)

The denominators in Eq. (11) give an estimate of the convective
turnover time. The equipartition magnetic field is defined by

Beq ≡ 〈μ0ρU2〉1/2, (12)

where the angular brackets denote volume averaging.

2.2. Boundary conditions

Stress-free boundary conditions are used for the velocity,

Ux,z = Uy,z = Uz = 0, (13)

and either vertical field or perfect conductor conditions for the
magnetic field, i.e.

Bx = By = 0, (Vertical Field) (14)

Bx,z = By,z = Bz = 0, (Perfect Conductor) (15)

respectively. We may think of them as open and closed bound-
aries, respectively, because they either do or they do not permit
a magnetic helicity flux. In the y and x directions we use pe-
riodic and shearing-periodic boundary conditions, respectively.
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Table 1. Summary of the runs. The numbers are given for the saturated state of the dynamo (except for Run E1, which was not run to saturation).

Runs D and D3 are the same model. Here, Ma = urms/(gd)1/2, B̃rms ≡ Brms/Beq, 〈B̃2

y〉1/2 = 〈B
2
y〉1/2/Brms, and Q−1 = 〈B2

x〉1/2/〈B
2
y〉1/2. The last column

gives the magnetic field boundary condition at the z-boundaries, except for the last two lines where the x-boundary condition is given. Pm = 5 in
all models except D6 where Pm = 10.

Run grid Pr Ra Rm Sh Co Ma B̃rms 〈B̃2

y〉1/2 Q−1 BC

A 2563 0.69 6.1 × 105 70 0 0 0.044 0.19 0.05 0.90 vf
B 2563 0.69 6.1 × 105 61 0 0.42 0.038 0.31 0.05 0.83 vf
C 2563 0.69 6.1 × 105 74 −0.17 0 0.046 1.09 0.55 0.11 vf
C′ 2563 0.69 6.1 × 105 92 −0.14 0 0.058 0.37 0.22 0.31 pc
D 2563 0.69 6.1 × 105 56 −0.23 0.46 0.036 1.41 0.61 0.15 vf

D1 643 2.74 1.5 × 105 11 −0.28 0.56 0.028 1.72 0.82 0.13 vf
D2 1283 1.37 3.1 × 105 25 −0.25 0.50 0.032 1.45 0.67 0.17 vf
D3 2563 0.69 6.1 × 105 56 −0.23 0.46 0.035 1.41 0.61 0.15 vf
D4 3843 0.48 8.8 × 105 83 −0.22 0.44 0.036 1.37 0.58 0.16 vf
D5 5123 0.34 1.2 × 106 121 −0.21 0.42 0.038 1.52 0.53 0.19 vf
D6 5123 0.34 1.2 × 106 250 −0.20 0.40 0.039 1.42 0.51 0.20 vf

D2d 1282 × 192 1.37 3.1 × 105 23 −0.27 0.54 0.029 2.44 0.89 0.08 vf
D2w 2562 × 128 1.37 3.1 × 105 26 −0.24 0.48 0.033 1.56 0.68 0.15 vf

E1 1283 1.37 3.1 × 105 42 −0.03 0 0.052 0.03 0.08 0.64 vf
E2 1283 1.37 3.1 × 105 33 −0.08 0 0.041 0.83 0.48 0.19 vf
E3 1283 1.37 3.1 × 105 30 −0.15 0 0.038 1.08 0.63 0.13 vf
E4 1283 1.37 3.1 × 105 29 −0.22 0 0.036 1.14 0.74 0.09 vf
E5 1283 1.37 3.1 × 105 41 −0.22 0 0.051 1.01 0.55 0.14 vf

VSA 1283 1.37 3.1 × 105 46 −0.27 0 0.058 0.27 0.07 0.90 p
VSA′ 1283 1.37 3.1 × 105 45 −0.28 0 0.056 0.31 0.39 0.17 nf

The simulations were made with the Pencil Code1, which uses
sixth-order explicit finite differences in space and third order ac-
curate time stepping method. Resolutions of up to 5123 mesh
points were used.

3. Results

3.1. Description of the hydrodynamic state

The hydrodynamics of local rotating convection simulations
similar to ours has been discussed previously in the literature
(e.g. Brandenburg et al. 1996; Käpylä et al. 2004). However,
the imposed shear flow used in the present runs is a new el-
ement. Thus it is interesting to consider the differences to the
cases where it is absent. We consider four representative runs
where physical ingredients are added individually in order to see
their respective effects. In Run A neither rotation nor shear are
present, whereas in Runs B and C only rotation and only shear
are applied, respectively. In Run D both shear and rotation are
used (see Table 1 for details).

All our runs start with a weak magnetic field (10−5 times the
equipartition value). For Runs A to D it takes about 200 turnover
times for this field to grow to values such that it affects the flow,
so we consider this as the kinematic stage of the simulation. We
use this time span to characterize the basic hydrodynamic state.

The upper row of panels in Fig. 1 shows the vertical velocity
in the middle of the convectively unstable layer for Runs A to D.
In the cases without shear (Runs A and B), the convective pattern
is dominated by large cells which are isotropic in the horizontal
plane. In the case with rotation (Run B), the downflows at the
vertices of convective cells tend to exhibit vortical structures,
contributing to net helicity. When shear is added the convective
cells are slightly elongated along the y direction, which is the
direction of the imposed large-scale flow.

1 http://www.nordita.org/software/pencil-code/

The horizontally averaged root mean square velocity shows
a very similar profile in all models, i.e. peaking near the top of
the convectively unstable layer and decreasing towards the base
of the layer, see Fig. 2. The runs without shear are close to each
other, with somewhat smaller velocities in the case with rotation
(Run B). When a horizontal shear flow is added, the rms ve-
locity is somewhat larger, but in Run D urms decreases again.
The shear flow itself does not contribute to the definition of the
rms velocity.

The left panel of Fig. 3 shows the horizontal averages of ki-
netic helicity density for Runs A to D averaged over the initial
kinematic stage of the simulations. In the case without rotation
or shear (Run A) very little net helicity is produced. Adding rota-
tion corresponding to the north pole (g ·Ω < 0; Run B) produces
significant negative helicity within the convection zone, sugges-
tive of a positive α-effect. In the case with only shear (S < 0, so
that g ·∇×U > 0; Run C) the helicity profile is similar to Run B,
but of opposite sign and roughly half the magnitude. If both ro-
tation and shear are present, as in Run D, the sign and profile
are very similar to Run B, but the magnitude is smaller by ap-
proximately a factor of two. This suggests that there is partial
cancellation of the two effects.

In the late stages of the simulations when the magnetic field
has saturated the convective pattern does not change signifi-
cantly in the cases without shear (see the lower row of Fig. 1). In
Runs C and D, there seems to be a larger change, i.e. clearer
elongation of cells along the y direction, possibly due to the
strong large-scale magnetic field that develops in those cases.
Figures 2 and 3 show that velocity and helicity decrease some-
what in comparison to the hydrodynamic state in all cases ex-
cept Run D where the helicity seems to increase. Part of this
change can be attributed to the fact that some of the runs were
not yet fully relaxed during the kinematic phase and that they
are still undergoing a slow thermal adjustment, especially in
the cases without shear. However, in Runs C and D where the

http://www.nordita.org/software/pencil-code/
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Fig. 1. Vertical velocity in the middle of the convectively unstable layer of Runs A−D (from left to right) during the kinematic stage of the
simulations (upper row of panels, t = 200 (d/g)1/2 corresponding to turmskf ≈ 50) and the saturated state (lower row, t = 2000 (d/g)1/2 or
turmskf ≈ 500).

Fig. 2. Horizontal averages of the rms velocity in the kinematic (left
panel) and saturated states (right panel) for Runs A to D. Linestyles are
indicated in the legend in the left panel. The vertical lines at z = (0, 1) d
denote the base and top of the convectively unstable layer, respectively.

dynamo grows to super-equipartition strengths, the magnetic
field is likely to be responsible for much of the change.

In the absence of shear the spectra are similar to those pub-
lished previously (e.g. Brandenburg et al. 1996), but with shear
we should really only look at one-dimensional spectra in the
streamwise direction, because this is the only periodic direction.
In the kinematic stage little difference is seen between the four
runs (see the left panel of Fig. 4). However, in the saturated state
the spectra for the shearing runs are steeper than for the non-
shearing runs. This may indicate the development of large-scale
ordered velocity structures.

3.2. Excitation of dynamo action

We consider first the effects of shear and rotation on the dy-
namo. In Fig. 5 we show the resulting growth of the rms mag-
netic field for Rm = 56 . . .74 and Pm = 5 for Runs A to D
introduced in the previous section. The slowest growth occurs in
Run A with no rotation and no shear (λ = 0.016 urmskf). Adding
rotation (Run B; Co = 0.42) almost doubles the growth rate
(λ = 0.03 urmskf), and the saturation field strength of the hori-
zontally averaged field is somewhat higher: B ≈ 0.4 Beq. Next,

Fig. 3. Horizontal averages of kinetic helicity in the kinematic (left
panel) and saturated states (right panel) for Runs A to D. Linestyles
are indicated in the legend in the left panel.

Fig. 4. Power spectra of velocity from the middle of the convectively
unstable layer from the kinematic (left panel) and saturated states (right
panel). Linestyles as in Fig. 2. The straight lines with a slope of −5/3
are given for comparison.

adding shear (Run C) raises the growth rate further and, more
importantly, it raises the saturation field strength by a factor of
about 3 (B ≈ 1.1 Beq). Again, adding rotation (Run D) increases
the growth rate further (λ = 0.04 urmskf ), and increases the satu-
ration level by almost fifty per cent. In the absence of shear and
rotation the critical Reynolds number is ≈30 for open (vertical
field) boundary conditions (see Sect. 3.6 for more details on the

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361:200810307&pdf_id=1
http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361:200810307&pdf_id=2
http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361:200810307&pdf_id=3
http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361:200810307&pdf_id=4
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Fig. 5. Growth of the total rms magnetic field from four runs, which
were performed without shear or rotation (solid line, Run A), with only
rotation (dashed, Run B), only shear (dash-dotted, Run C), and with
shear and rotation (triple-dot-dashed, Run D), respectively. Pm = 5,
Rm ≈ 56 . . . 74, and grid resolution 2563 in all runs, see also Table 1.

Fig. 6. Horizontally averaged magnetic fields Bx (upper panel) and By
(lower panel), normalized by the volume average of Beq, as functions of
time and z for Run D5 with Rm = 121, Sh = −0.21, and Co = 0.42. The
dotted white lines show top (z = d) and bottom (z = 0) of the convection
zone.

effects of boundary conditions). If shear is included, the dynamo
is excited already at Rm ≈ 5.

We note that in the kinematic phase the mean and total
fields have the same growth rate. The two begin to depart
from each other only in the saturation phase which is achieved
more quickly for the small-scale field. This behaviour is
reminiscent of dynamos where the saturation of the large-scale
field is controlled by magnetic helicity evolution (Blackman &
Brandenburg 2002).

3.3. Large-scale magnetic fields

Adding a large-scale shear flow not only makes the dynamo eas-
ier to excite, it also helps the generation of large-scale magnetic
fields and, most importantly, it is expected to drive magnetic he-
licity fluxes along lines of constant shear (Vishniac & Cho 2001;
Subramanian & Brandenburg 2006). A representative solution
from Run D5 with Rm = 121, Sh = −0.21, and Co = 0.42 is
shown in Fig. 6. Note that in runs with rotation the large-scale
field has opposite sign in the overshoot layer and the convection
zone, whereas in models with only shear the field has the same
sign everywhere; see Fig. 7.

In all cases the magnetic energy grows exponentially from a
weak small-scale seed magnetic field. Generally the small-scale

Fig. 7. Same as Fig. 6, but for Run C with Rm = 74, Sh = −0.17, and
Co = 0.

Fig. 8. Rms-values of the total magnetic field (solid line), the mean field

Brms = 〈B2
x+B

2
y〉1/2 (dashed line) and fluctuating field with b2

rms = B2
rms−

B
2
rms (dot-dashed line) for Run D5.

dynamo saturates first and a large-scale field develops later; see
Fig. 8 for representative results from Run D5. Figure 9 shows
that during this process the magnetic field changes from a fil-
amentary field to a more diffuse one. This behaviour has also
been seen in simulations of forced turbulence with shear and
open boundaries (Brandenburg 2005). The signs of Bx and By
are always opposite to each other; see Fig. 10. This is simply
because of negative shear, S < 0, so, for example, a positive Bx

results in a negative By. In some simulations we have observed
sign changes of the large-scale field in the saturated stage but
these do not seem to be periodic but rather one-off events.

The rms value of the mean field contains a major frac-

tion of the total field, i.e. 〈B2
y〉1/2/Brms ≈ 0.5 . . .0.8. Without

shear the large-scale field is weaker by an order of magnitude
(Table 1). Note that at comparable Reynolds numbers the small-
scale dynamo is excited in the absence of rotation and shear
(Run A). A very similar large-scale field pattern is also obtained
for Rm ≈ 10 and ≈30 where the small-scale dynamo is absent
or marginally excited. Further below we will show that the final
saturation levels are only weakly dependent on Rm.

It turns out that in the range 0.05 < |Sh| < 0.25 the growth
rate is proportional to the shear rate, so the ratio λ/|S | ≈ 0.1 is
approximately independent of the value of |S |; see Fig. 11, where

λ is the growth rate of 〈B2
y〉1/2. The same scaling was found

in the simulations of non-helical turbulence with shear (Yousef
et al. 2008a). It becomes increasingly difficult to perform runs
with −Sh > 0.2 without rotation due to the simultaneous

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361:200810307&pdf_id=5
http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361:200810307&pdf_id=6
http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361:200810307&pdf_id=7
http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361:200810307&pdf_id=8
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Fig. 9. Snapshots of By in the early phase (left: t = 200 (d/g)1/2, corresponding to turmskf ≈ 50) and saturated phase (right: t = 1500 (d/g)1/2, or
turmskf ≈ 360) for Run D5. The sides of the box show the periphery of the domain whereas the top and bottom slices show By at vertical heights
z = d and z = 0, respectively. See also http://www.helsinki.fi/~kapyla/movies.html

Fig. 10. Horizontal averages of the total rms magnetic field (top panel),
Bx(z) (middle), and By(z) (bottom) for Runs A to D. The data are av-
eraged in time over the saturated state of the dynamo. Linestyles as
indicated in Fig. 2. The dotted vertical lines denote the convectively
unstable layer between 0 < z < d.

generation of large-scale vorticity. The theory for such a “vor-
ticity dynamo” has been developed by Elperin et al. (2003) and
has also been found numerically from forced turbulence simula-
tions by Yousef et al. (2008a,b) and Brandenburg et al. (2008).
The vorticity generation is an interesting subject in itself and has
been studied in a separate paper (Käpylä et al. 2008). To avoid
complications due to the vorticity dynamo we add rotation into
the system which stabilizes the shear terms in the Navier-Stokes
equations.

When rotation is added, the growth rate divided by the shear
rate seems to stay approximately constant for Sh > −0.25. When
shear is increased further, −λ/S decreases rapidly, see the left
panel of Fig. 11. On the other hand, if the shear is kept constant

Fig. 11. Left panel: growth rate of 〈B2
y〉1/2 divided by the shear rate S

as a function of Sh for two sets of runs with Co = 0 (solid line) and

Co ≈ 0.5 (dashed line). Right panel: growth rate of 〈B2
y〉1/2 normalized

by the rotation rate Ω for two sets of runs with Sh ≈ −0.25 (solid line)
and Sh = − 3

4 Co (dashed line). Rm ≈ 30 in all runs. The horizontal
dotted lines show curves proportional to the shear rate S (left panel)
and rotation rate Ω (right panel) for reference.

the quantity λ/Ω stays constant up to Co ≈ 0.5 after which it
decreases rapidly, see the right panel of Fig. 11. The last case
considered is to fix the ratio q ≡ −S/Ω = 1.5. In that case the be-
haviour of λ/Ω is almost identical to the case where Sh was kept
fixed. A very similar trend was found by Yousef et al. (2008b).

The left hand panel of Fig. 12 shows one dimensional power
spectra of the magnetic field in the saturated state for Runs A
to D. The runs with shear exhibit a steeper spectrum in com-
parison to the cases without shear. However, it is clear, that the
spectrum of the streamwise component of the magnetic field is
sharply peaked at ky = 0 and drops almost by an order of mag-
nitude at the next wavenumber 1 (in units of k1), because of the
large-scale field. This is the reason why we have also plotted
spectra in linear scale in the right hand panel so as to accommo-
date the ky = 0 wavenumber.

3.4. Dependence on box size

Convective overshooting in the present simulations is compara-
ble to that presented in Käpylä et al. (2004) and certainly does
not reach all the way down to the lower boundary. However, in
order to determine whether the lower boundary still affects the
results appreciably, we modify Run D2 such that the lower stable
layer reaches down to z = −1.85 d in comparison to z = −0.85 d
in the other runs. We denote this run as D2-deep. We find that
the large-scale magnetic field develops much the same as in the

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361:200810307&pdf_id=9
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Fig. 12. One-dimensional power spectra of the magnetic field EM(k)
(left panel) and the y-component of the magnetic field E(y)

M (k) (right
panel) in the saturated state of the dynamo. Linestyles as indicated in
Fig. 2. The straight lines with a slope of −5/3 are given for comparison.

Fig. 13. The rms value of By for the runs indicated in the legend. The
inset shows the same in linear scale.

standard case, with the exception that the saturation of the field
in the overshoot layer is slower, see Fig. 13. In the saturated
state the magnetic field occupies the whole overshoot layer. This
is probably due to the large diffusion and the shear flow in the
overshoot layer which are absent in the Sun.

Figure 1 shows that relatively few convective cells are
present in the computational domain. In order to test the effects
of increasing the horizontal size of the domain we again take
Run D2 as the basis and double the horizontal extent. This run is
referred to as D2-wide. We find that the average magnetic field
shows less fluctuations. This is due to the averaging over a larger
number of convective cells. Growth rate and saturation level of
the magnetic field are slightly larger than those of Run D2, see
Fig. 13. This is because a bigger box results in more scale sepa-
ration, which in turn increases the mean-field dynamo effect; see
Eq. (80) of Brandenburg et al. (2002).

3.5. Dependence on Rm

Originally catastrophic quenching of the mean-field dynamo ef-
fect was conjectured to derive from the action of the small-scale
magnetic field whose magnitude was expected to increase as the
magnetic Reynolds number is increased (Vainshtein & Cattaneo
1992). This should lead to Rm-dependent saturation levels of
the magnetic field. In our Runs D1 to D6 listed in Table 1, Rm is
varied from 11 (roughly a third of the critical value for exciting
the small-scale dynamo) to 250 (roughly eight times supercriti-
cal). In all of these runs the saturation level of the magnetic field
is essentially the same, bearing in mind the large fluctuations
in the relatively short time series of the higher resolution runs;
see Fig. 14. Below, we demonstrate that the boundary conditions

Fig. 14. Upper panel: root mean square values of By for the Runs D1
to D6. Linestyles as indicated in the legend. Lower panel: close-up of
the interval where the dynamo saturates for the five largest Reynolds
numbers. Data for the lower Reynolds numbers are shifted so that the
saturation occurs approximately at the same point in the figure. The
inset shows the saturated state in linear scale.

Fig. 15. Growth rate of the total magnetic field for runs with only shear
(solid line) and Runs D1 to D6 with both shear and rotation (dashed
line).

play a much more crucial role in allowing large-scale dynamos
to operate efficiently.

We recall that our definition of kf in terms of the depth of
the convectively unstable layer (2π/d) is somewhat arbitrary.
However, it turns out that our values of λ/(urmskf) are in agree-
ment with those of forced turbulence (Haugen et al. 2004), where
kf is well defined. Over the range 35 < Rm < 250, our values
of λ scale still almost linearly with Rm (see Fig. 15); it is known
from forced turbulence simulations that the Rm1/2 scaling occurs
only for Rm > 200.

The growth rate of the mean field in the late stages of growth
does not seem to be strongly dependent on Rm, see the lower
panel of Fig. 14. Note also that the saturation field strengths are
similar for different values of Rm.
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Fig. 16. Root mean square values of the total magnetic field and the
horizontally averaged component By for Runs C and C′. VF denotes
vertical field and PC perfect conductor boundary conditions.

3.6. Effects of boundary conditions

Here we compare Runs C and C′ made with vertical field and
perfect conductor boundary conditions, respectively. The former
allows flux of magnetic helicity across the boundary whereas the
latter does not. Figure 16 shows the time evolution of Brms and

〈B2
y〉1/2 for these runs. The run with vertical field boundary con-

ditions clearly exhibits dynamically important large-scale mag-
netic fields. The rms value of the mean magnetic field is approx-
imately 60 per cent of the equipartition value of the turbulent
velocity field (see also Table 1). Contrasting this with the same
run performed with perfect conductor boundaries, the differ-
ence is striking: although the total magnetic field is roughly
40 per cent of the equipartition value by virtue of small-scale
dynamo action, the mean field is weak, contributing now only
roughly 20 per cent of the total.

The difference between the runs can be understood in terms
of magnetic helicity evolution: allowing a non-zero vertical field
at the boundary enables small-scale magnetic helicity to escape
from the computational domain. With perfect conductor bound-
ary conditions the magnetic helicity flux vanishes and thus the
total magnetic helicity can change only resistively, which leads
to slow saturation of the large-scale field. The fact that large-
scale magnetic fields have not yet been seen in convection simu-
lations with perfectly conducting boundaries does therefore not
mean that this is not possible, but rather that it would presum-
ably take a very long time (see the slow but persistent rise for
model C′ in Fig. 16).

3.7. Horizontal versus vertical shear

In an earlier study, Tobias et al. (2008) used a vertical shear pro-

file, i.e. U
(0)
y (z), and found that no appreciable large-scale mag-

netic fields were generated even though open boundary condi-
tions were used in the z-direction. In order to compare with their
results we have made runs with a shear profile

U
(0)
= 1

2 U0

[
1 + tanh

( z − z2

d1

)]
êy, (16)

where U0 = −0.1(gd)1/2 and d1 = 0.4d. This flow is imposed
through an additional relaxation term in the Navier-Stokes equa-
tion of the form

∂tU = . . . − τ−1
(
U − U

(0)
)
, (17)

Fig. 17. Root mean square values of the horizontally averaged compo-
nent By for Runs VSA’ (solid line) and VSA (dotted line). The inset
shows the rms values of the total magnetic field from the same runs. NF
denotes normal field condition and P periodic boundary condition in the
x-direction.

Fig. 18. Horizontally averaged magnetic fields Bx (upper panel) and By
(lower panel), normalized by the volume average of Beq, as functions of
time and z for Run VSA’.

where τ = 0.5 (d/g)1/2. In these runs with vertical shear we put
S = 0.

We confirm the results of Tobias et al. (2008) in the case
where the horizontal boundaries are periodic and find that
the rms value of the large-scale (horizontally averaged) field
amounts to only a few per cent of the total field. We believe
that this is due to the inefficiency of the magnetic helicity flux
through the vertical boundaries. In this case the isocontours of
shear are horizontal and thus the shear-mediated flux, which we
conjecture to be efficient, cannot leave the system. To test this
hypothesis, we have made additional runs where the x-direction
is no longer periodic but instead a stress-free boundary condition
for velocity and a normal-field condition for the magnetic field
according to

Ux = Uy,x = Uz,x = By = Bz = 0 (18)

is used. In this case the shear-mediated magnetic helicity flux
can escape through the x-boundaries and significant (up to
50 per cent of the total) large-scale magnetic fields are indeed
produced, see Fig. 17. This result lends credence to the hypoth-
esis that the shear-induced flux is an important ingredient in al-
lowing large-scale dynamos to saturate to full strength on a dy-
namical timescale.

In order to illuminate the circumstances around the time
when the mean toroidal field becomes suddenly quite weak
(turmskf ≈ 1600), we show in Fig. 18 the mean fields in the

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361:200810307&pdf_id=16
http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361:200810307&pdf_id=17
http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361:200810307&pdf_id=18


P. J. Käpylä et al.: Large-scale dynamos in turbulent convection with shear 361

Fig. 19. Vertical magnetic field component at the top of the convectively
unstable layer at z = z3 for Run D2-wide toward the end of the run. The
plot is oriented such that the mean shear flow points to the left in the
lower part of the plot (x/d = 4) and to the right in the upper part of
the plot (x/d = −4). See also http://www.helsinki.fi/~kapyla/
movies.html.

cross-stream and streamwise directions. Note that there is no
field reversal associated with the sudden drop of toroidal mag-
netic field, as one might have expected from simulations of dy-
namo action that is driven purely by magnetic buoyancy, as in
the work of Cline et al. (2003).

3.8. Surface appearance of large scale field

In order to make contact with observations, one must eventually
compute the field as it would be observable at the surface of
the domain. This process can be rather complicated and would
involve radiation transfer of polarized light. Here we consider
instead just the vertical components of the magnetic field at the
top of the convectively unstable layer at z = z3; see Fig. 19.

Two things are immediately evident: firstly, the magnetic
structures tend to be inclined by up to 30 degrees relative to
the y-direction and, secondly, there are bipolar regions with a
systematic magnetic field orientation such that a negative po-
larity follows a positive one, which is in agreement with an
overall positive mean toroidal field. Comparing with a similar
plot of Brandenburg (2005), the bipolar regions are here much
more compact. Also, the inclination is here such that it would
correspond to the southern hemisphere, because dUy/dx is here
negative.

4. Conclusions

The present simulations provide a clear demonstration that con-
vection can produce large-scale magnetic fields of equipartition
strengths in an open Cartesian domain with shear crossing the
surface. Our results also demonstrate that this is not possible
within a comparable time span using a closed domain with per-
fectly conducting boundaries. The sensitivity on boundary con-
ditions has also been noted in earlier work with forced turbu-
lence and shear (Brandenburg 2005). This can be interpreted
as being due to magnetic helicity fluxes allowing the system
to dispose of excess small-scale magnetic helicity along con-
tours of constant shear (Vishniac & Cho 2001; Brandenburg &
Subramanian 2005b; Subramanian & Brandenburg 2006). In our
case this is the vertical direction, but in Tobias et al. (2008), it is

the horizontal direction. Thus, in our case shear-driven magnetic
helicity flux can escape the domain whereas in theirs it cannot
due to the periodicity in the horizontal directions. This could ex-
plain why no large-scale dynamo develops in their case. Their
model is otherwise similar to ours (same values of Co and Pm,
whilst Rm is about two times smaller, and Sh is twice as large).
Control simulations show that replacing their periodic boundary
condition in the x direction by a normal-field boundary condition
allows strong large-scale fields also in their setup (Fig. 17).

The precise nature of the dynamo found here cannot be
pinned down rigorously unless one is able to identify unambigu-
ously the mechanisms that are actively at work. In addition to the
α-effect, there are other possible alternatives, in particular the
incoherent alpha-shear dynamo (Vishniac & Brandenburg 1997;
Proctor 2007), which could produce a large-scale magnetic field
even without stratification and hence no regular α-effect. This
interpretation has been favoured in some recent work where the
shear-current effect was found not to be excited (Brandenburg
et al. 2008). However, this matter is still under debate and there
are arguments in favour of a shear-current effect (e.g. Kleeorin
& Rogachevskii 2008).

In order to disentangle the relative roles of different mech-
anisms in the present work it will be important to establish a
closer connection with mean-field theory by determining the
components of the α and turbulent magnetic diffusivity tensors
for different boundary conditions and as a function of Rm. Only
when the results are shown to be converged with Rm may we
expect them to be relevant for the Sun and perhaps other astro-
physical bodies.

We emphasize that large-scale dynamo action is normally
only seen in the nonlinear stage, whilst the linear stage is dom-
inated by small-scale magnetic fields. It is therefore important
to consider mean-field transport coefficients that are affected by
the magnetic field. It is in principle even possible that the rele-
vant dynamo mechanism is an intrinsically nonlinear one, as it
is in the case of accretion disc turbulence where the turbulence
is the result of the dynamo itself (Brandenburg et al. 1995). The
present results do not give any indications in this direction, be-
cause there seems to be a continuous transition from low-Rm to
higher-Rm large-scale dynamo action. For example at Rm = 11,
small-scale dynamo action in the usual sense is not expected,
and nevertheless, the final saturation strength of the large-scale
field is similar to the case of higher-Rm dynamos.

Another important aspect to consider in future work is
the degree of scale separation. As the Reynolds number in-
creases, the turbulence becomes more vigorous and the con-
vection plumes will no longer penetrate the entire depth of the
unstable layer. Therefore, we expect the wavenumber of the
energy-carrying eddies to increase, i.e. kf > 2π/d. This means
that the degree of scale separation, i.e. the ratio kf/k1, will also
increase. However, as discussed at the end of Sect. 3.4, more
scale separation is only expected to enhance large-scale dynamo
action.
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