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ABSTRACT

Aims. We determine the alpha effect and turbulent magnetic diffusivity for mean magnetic fields with profiles of different length
scales from simulations of isotropic turbulence. We then relate these results to nonlocal formulations in which alpha and the turbulent
magnetic diffusivity correspond to integral kernels.
Methods. We solve evolution equations for magnetic fields that give the response to imposed test fields. These test fields correspond
to mean fields with various wavenumbers. Both an imposed fully helical steady flow consisting of a pattern of screw-like motions
(Roberts flow) and time-dependent, statistically steady isotropic turbulence are considered. In the latter case the evolution equations
are solved simultaneously with the momentum and continuity equations. The corresponding results for the electromotive force are
used to calculate alpha and magnetic diffusivity tensors.
Results. For both, the Roberts flow under the second-order correlation approximation and the isotropic turbulence alpha and turbulent
magnetic diffusivity are greatest on large scales and these values diminish toward smaller scales. In both cases, the alpha effect and
turbulent diffusion kernels are approximated by exponentials, corresponding to Lorentzian profiles in Fourier space. For isotropic
turbulence, the turbulent diffusion kernel is half as wide as the alpha effect kernel. For the Roberts flow beyond the second-order
correlation approximation, the turbulent diffusion kernel becomes negative on large scales.
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1. Introduction

Stars and galaxies harbor magnetic fields whose scales are
larger than those of the underlying turbulence. This phenomenon
is successfully explained in terms of mean-field dynamo the-
ory discussed in detail in a number of textbooks and reviews
(e.g. Moffatt 1978; Krause & Rädler 1980; Brandenburg &
Subramanian 2005a). In this context, velocity and magnetic
fields are split into large-scale and small-scale components,
U = U + u and B = B + b, respectively. The crucial quantity
of the theory is the mean electromotive force caused by small-
scale fields, E = u × b. In many representations it is discussed
under strongly simplifying assumptions. Often the relationship
between the mean electromotive force and the mean magnetic
field is tacitly taken both as (almost) local and as instantaneous;
that is, in a given point in space and time, E is considered as de-
termined by B and its first spatial derivatives in this point only.
In addition, the possibility of a small-scale dynamo is ignored.
Then the mean electromotive force is given by

Ei = αi jBj + ηi jk∂Bj/∂xk (1)

with two tensors αi j and ηi jk. If the turbulence is isotropic, the
two tensors are isotropic, too; that is αi j = αδi j and ηi jk = ηtεi jk

with two scalar coefficients α and ηt. Then the expression (1)
simplifies to

E = αB − ηt J , (2)

where we denote ∇ × B simply by J (so that J is µ0 times the
electric current density, where µ0 is the magnetic permeability of

free space). The coefficient α is, unlike ηt, only non-zero if the
turbulence lacks mirror-symmetry. The coefficient ηt is referred
to as the turbulent magnetic diffusivity.

In general, the mean electromotive force has the form

E = E0 + K ◦ B, (3)

where E0 stands for a part of E that is independent of B, and
K ◦ B denotes a convolution in space and time of a kernel K
with B (see, e.g., Krause & Rädler 1980; Rädler 2000; Rädler &
Rheinhardt 2007). Due to this convolution, E in a given point in
space and time depends on B in a certain neighborhood of this
point, with the exception of future times. This corresponds to a
modification of (1) such that also higher spatial and also time
derivatives of B occur.

In this paper we ignore the possibility of coherent effects
resulting from small-scale dynamo action and therefore put E0
equal to zero. For the sake of simplicity we assume the connec-
tion between E and B to be instantaneous so that the convolution
K◦B only refers to space coordinates. The memory effect, which
we thus ignore, has been studied previously by solving an evo-
lution equation for E (Blackman & Field 2002).

For homogeneous isotropic turbulence, we may then write,
analogously to (2),

E = α̂ ◦ B − η̂t ◦ J , (4)

Article published by EDP Sciences

http://dx.doi.org/10.1051/0004-6361:200809365
http://www.aanda.org
http://www.edpsciences.org


740 A. Brandenburg et al.: Scale dependence of alpha effect

or, in more explicit form,

E(x) =
∫ [

α̂(ξ)B(x − ξ) − η̂t(ξ)J(x − ξ)
]

d3ξ (5)

with two functions α̂ and η̂t of ξ = |ξ| that vanish for large ξ.
The integration is in general over all ξ-space. Although E and B,
as well as α̂ and η̂t, may depend on time, the argument t is
dropped everywhere. For a detailed justification of the rela-
tions (4) and (5), we refer to Appendix A. In the limit of a weak
dependence of B and J on space coordinates, i.e. when the vari-
ations of B(x − ξ) and J(x − ξ) with ξ are small in the range
of ξ where α̂(ξ) and η̂t(ξ) are markedly different from zero, the
relations (4) or (5) turn into (2), and we see that α =

∫
α̂(ξ) d3ξ

and ηt =
∫
η̂t(ξ) d3ξ.

At first glance, the representations (4) and (5) of E look
rather different from (3). Considering J = ∇ × B and carrying
out an integration by parts, we may however easily rewrite (5)
into

Ei(x) =
∫

Ki j(ξ)Bj(x − ξ) d3ξ (6)

with

Ki j(ξ) = α̂(ξ)δi j +
1
ξ

∂η̂t(ξ)
∂ξ

εi jkξk. (7)

We further note that due to the symmetry of α̂(ξ) in ξ only the
part of B(x − ξ) that is symmetric in ξ, i.e. the part that can be
described by B(x) and its derivatives of even order, contributes
to the α̂ terms in (5) or in (6) and (7). The symmetry of η̂t(ξ)
implies that only that part of B(x − ξ) that is antisymmetric in
ξ, which corresponds to the derivatives of B(x) of odd order,
contributes to the η̂t terms.

Finally, referring to a Cartesian coordinate system (x, y, z),
we define mean fields by averaging over all x and y, so that in
particular E and B only depend on z and on time. Then (5) turns
into

E(z) =
∫ [

α̂(ζ)B(z − ζ) − η̂t(ζ)J(z − ζ)
]

dζ. (8)

The functions α̂(ζ) and η̂t(ζ) are just averages of α̂(ξ) and η̂t(ξ)
over all ξx and ξy. They are therefore real and symmetric in ξz ≡
ζ. The integration in (8) is in general over all ζ. The remark made
in connection with (4) and (5) on the limit of weak dependencies
of B and J on space coordinates applies analogously to (8). We
now have α =

∫
α̂(ζ) dζ and ηt =

∫
η̂t(ζ) dζ.

Relation (8) can also be brought in a form analogous to (6)
and (7),

Ei(z) =
∫

Ki j(ζ)Bj(z − ζ) dζ (9)

with

Ki j(ζ) = α̂(ζ)δi j +
∂η̂t(ζ)
∂ζ

εi j3 . (10)

The remarks made under (6) and (7) apply, now due to the sym-
metries of α̂(ζ) and η̂t(ζ) in ζ, analogously to (8)–(10).

It is useful to consider in addition to (8) the corresponding
Fourier representation. We define the Fourier transformation in
this paper by Q(z) =

∫
Q̃(k) exp(ikz) d(k/2π). Then this repre-

sentation reads as

Ẽ(k) = α̃(k)B̃(k) − η̃t(k) J̃(k). (11)

Both α̃(k) and η̃t(k) are real quantities, and they are symmetric
in k. The limit of weak dependencies of B and J on z corre-
sponds here to k → 0, and we have α = α̃(0) and ηt = η̃t(0).
Detailed analytic expressions for α̂(ζ) and η̂t(ζ), or α̃(k) and
η̃t(k), can be derived, e.g., from results presented in Krause &
Rädler (1980). A numerical determination of quantities corre-
sponding to α̂(ζ) and η̂t(ζ) has been attempted by Brandenburg
& Sokoloff (2002) for shear flow turbulence.

In this paper, two specifications of the velocity field u will be
considered. In the first case u is chosen such that it corresponds
to a steady Roberts flow, which is periodic in x and y and in-
dependent of z. A mean-field theory of a magnetic field in fluid
flows of this type, which are of course different from genuine tur-
bulence, has been developed in the context of the Karlsruhe dy-
namo experiment (Rädler et al. 2002a,b; Rädler & Brandenburg
2003). It turned out that the mean electromotive force E, except
its z component, satisfies relation (2) if any nonlocality in the
above sense is ignored (see also Appendix B). Several analytical
and numerical results are available for comparison with those of
the present paper. In the second case u is understood as homo-
geneous, isotropic, statistically steady turbulence, for which the
above explanations apply immediately. Employing the method
developed by Schrinner et al. (2005, 2007), we will in both cases
numerically calculate the functions α̃(k) and η̃t(k), as well as
α̂(ζ) and η̂t(ζ).

2. The method

We first relax the assumption of isotropic turbulence used in the
Sect. 1 (but will later return to it). We remain, however, with the
definition of mean fields by averaging over all x and y. Then,
as already roughly indicated above, Bx and By may only depend
on z and time but Bz, because of ∇ · B = 0, must be indepen-
dent of z. Furthermore, all first-order spatial derivatives of B can
be expressed by the components of ∇ × B, that is, of J , where
Jz = 0. Instead of (8) we then have

Ei(z) =
∫ [

α̂i j(ζ)Bj(z − ζ) − η̂i j(ζ)J j(z − ζ)
]

dζ, (12)

and instead of (11),

Ẽi(k) = α̃i j(k)B̃ j(k) − η̃i j(k)J̃ j(k), (13)

with real α̂i j(ζ) and η̂i j(ζ), which are even in ζ, and real α̃i j(k)
and η̃i j(k), which are even in k. A justification of these relations
is given in Appendix A. We have further

α̃i j(k) =
∫

α̂i j(ζ) cos kζ dζ, η̃i j(k) =
∫

η̂i j(ζ) cos kζ dζ. (14)

Since J3 = 0, the η̂i3, as well as the η̃i3, are of no interest.
In the following we restrict our attention to Ex and Ey and

assume that Bz is equal to zero. We note that Ez and the contri-
butions of Bz to Ex and Ey are without interest for the mean-field
induction equation, which only contains E in the form ∇ × E;
that is, they do not affect the evolution of B. We may formulate
the above restriction in a slightly different way by saying that

we consider in the following Ei, αi j, and ηi j, as well as Ẽi, α̃i j,
and η̃i j only for 1 ≤ i, j ≤ 2.

As for the mean-field treatment of a Roberts flow
depending only on x and y (and not on z), we re-
fer to the aforementioned studies (Rädler et al. 2002a,b;
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Rädler & Brandenburg 2003). Following the ideas explained
there, we may conclude that α̂i j(ζ) = α̂(ζ)δi j and η̂i j(ζ) = η̂t(ζ)δi j
with functions α̂ and η̂t of ζ, and analogously α̃i j(k) = α̃(k)δi j
and η̃i j(k) = η̃t(k)δi j with functions α̃ and η̃t of k, all for
1 ≤ i, j ≤ 2. For obvious reasons the same is true for homo-
geneous isotropic turbulence.

2.1. Test-field method

We calculate the α̃i j(k) and η̃i j(k), or α̃(k) and η̃(k), numer-
ically by employing the test-field method of Schrinner et al.
(2005, 2007). It was originally developed to calculate the full α
and η tensors (in the sense of (1)) for convection in a spheri-
cal shell. Brandenburg (2005) employed this method to obtain
results for stratified shear flow turbulence in a local cartesian
domain using the shearing sheet approximation. More recently,
Sur et al. (2008) calculated the dependencies of α and ηt in this
way for isotropic turbulence on the magnetic Reynolds number,
and Brandenburg et al. (2008) calculated the magnetic diffusiv-
ity tensor for rotating and shear flow turbulence. However, in all
these cases no nonlocality in the connection between E and B
has been taken into account.

Following the idea of Schrinner et al., we first derive expres-
sions for E with several specific B, which we call “test fields”.
We denote the latter by B

pq
and define1

B
1 c
= B (cos kz, 0, 0), B

2 c
= B (0, cos kz, 0),

B
1 s
= B (sin kz, 0, 0), B

2 s
= B (0, sin kz, 0), (15)

with any constant B and any fixed value of k. We then replace
B and J in (12) by B

p c
and ∇ × B

p c
or by B

p s
and ∇ × B

p s
.

Denoting the corresponding E by Ep c
or by Ep s

, respectively,
and using (14) we find

Ep c
i (z) = B

[
α̃ip(k) cos kz − η̃†ip(k) k sin kz

]
,

Ep s
i (z) = B

[
α̃ip(k) sin kz + η̃†ip(k) k cos kz

]
, (16)

for 1 ≤ i, p ≤ 2, where

η̃†ip = η̃ilεlp3 =

(−η̃12 η̃11
−η̃22 η̃21

)
. (17)

From this we conclude that

α̃i j(k) = B−1
[
E j c

i (z) cos kz + E j s
i (z) sin kz

]
,

η̃†i j(k) = −(kB)−1
[
E j c

i (z) sin kz − E j s
i (z) cos kz

]
, (18)

for 1 ≤ i, j ≤ 2.
These relations allow us to calculate the α̃i j and η̃i j if the

Epq
i with 1 ≤ i, p ≤ 2 for both q = c and q = s are known. In

preparing the numerical calculation, we start from the induction
equation. Its uncurled form reads

∂A
∂t
= U × B − ηJ , (19)

where A is the magnetic vector potential, B = ∇ × A, and J =
∇ × B. Here the Weyl gauge of A is used; that is, an additional

1 The notation used here differs slightly from that in Brandenburg et al.
(2008), where test fields B

p
were originally introduced, and only later

were the two versions B
pc

and B
ps

considered.

gradient in (19) has been ignored. Taking the average of (19) we
obtain

∂A
∂t
= U × B + u × b − ηJ . (20)

From (19) and (20) we conclude

∂a
∂t
= U × b + u × B + u × b − u × b − η j, (21)

where a = A − A and j = J − J = ∇ × b.
For calculating theEpq

we are interested in the bpq = ∇×apq,
which occur in response to the test fields B

pq
. Specifying (21) in

that sense we obtain2

∂apq

∂t
= U × bpq + u × B

pq
+ u × bpq − u × bpq − η jpq. (22)

In the following, equations of this type are referred to as “test-
field equations”.

So far, no approximation has been made such as the
second-order correlation approximation (SOCA), also known as
first order smoothing approximation. If we were to make this as-
sumption, terms that are nonlinear in the fluctuations would be
neglected and (22) would simplify to

∂apq

∂t
= U × bpq + u × B

pq − η jpq (for SOCA only). (23)

In the following SOCA results will be shown in some examples
for comparison only.

In the general case, as well as under SOCA, the α̃i j and η̃i j

are to be calculated from Epq
= u × bpq. More details of the nu-

merical calculations of the Epq
will be given below in Sect. 2.3.

Returning once more to (18), we note that the Epq
depend

on both k and z introduced with the B
pq

. As a consequence of
fluctuating averages, they may also depend on time t. The α̃i j

and η̃i j however should depend on k but no longer on z and t. We
remove the latter dependencies of our results by averaging α̃i j
and η̃i j over z and t. For the Roberts flow there should be no
such z or t dependencies.

The relations (18) allow the determination of all components
of α̃i j and η̃i j with 1 ≤ i, j ≤ 2. We know already that α̃i j = α̃δi j
and η̃i j = η̃tδi j, that is, α̃11 = α̃22 = α̃, η̃11 = η̃22 = η̃ and
α̃12 = α̃21 = η̃12 = η̃21 = 0. We may therefore determine α̃
and η̃t according to α̃ = α̃11 and η̃t = η̃11 by using the two test

fields B
1 q

and the relations (18) with i = j = 1 only.

2.2. Flow fields

2.2.1. Roberts flow

We consider here a special form of a steady flow that, in view of
its dynamo action, has already been studied by Roberts (1972).
It has no mean part, U = 0, and u is given by

u = − ẑ × ∇ψ + kfψ ẑ, (24)

where

ψ = (u0/k0) cos k0x cos k0y , kf =
√

2 k0 (25)

2 The U term is incorrect in the corresponding expression (27) of
Brandenburg (2005). This did not affect his results, because U = 0.
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with some constant k0. The vorticity of the flow is ∇ × u = kfu,
so the helicity is maximal; this implies u · ∇ × u = kfu2. The
component form of u as defined by (24) and (25) reads

u=u0

(
− cos k0x sin k0y, sin k0 x cos k0y,

√
2 cos k0x cos k0y

)
. (26)

We note that u2 = u2
0.

2.2.2. Turbulence

Next, we consider isotropic, weakly compressible turbulence
and use an isothermal equation of state with constant speed of
sound, cs. Considering first the full velocity field U = U + u, we
thus accept the momentum equation in the form

∂U
∂t
= −U · ∇U − c2

s∇ ln ρ + f + ρ−1∇ · 2ρνS, (27)

where f is a random forcing function consisting of circularly
polarized plane waves with positive helicity and random direc-
tion, and Si j =

1
2 (Ui, j + U j,i) − 1

3δi j∇ · U is the traceless rate of
strain tensor. The forcing function is chosen such that the mag-
nitudes of the wavevectors, |kf |, are in a narrow interval around
an average value, which is again denoted simply by kf . The cor-
responding scale, k−1

f , is also referred to as the outer scale or the
energy-carrying scale of the turbulence. More details concerning
the forcing function are given in the appendix of Brandenburg &
Subramanian (2005b). With the intention of studying the mean
electromotive force in the purely kinematic limit, the Lorentz
force has been ignored.

In addition to the momentum equation we use the continuity
equation in the form

∂ ln ρ
∂t
= −U · ∇ ln ρ − ∇ · U. (28)

In all simulations presented in this paper the strength of the forc-
ing is adjusted such that the flow remains clearly subsonic, that
is, the mean Mach number remains below 0.2. Hence for all
practical purposes the flow can be considered incompressible
(Dobler et al. 2003). In these simulations no mean flow devel-
ops, that is U = 0, so U = u.

2.3. Simulations

The relevant equations are solved in a computational domain of
size L × L × L using periodic boundary conditions. In the case
of the Roberts flow (26), we fix L by L = 2π/k0. The test-field
Eqs. (22) with p = 1, q = c, and q = s (six equations altogether)
are solved numerically. With turbulence in the kinematic regime,
the four Eqs. (27) and (28) for U and ln ρ are solved, together
with these six test-field Eqs. (22).

Due to the finiteness of the domain in z direction and
the periodic boundary conditions, quantities like E and B
have to be considered as functions that are periodic in z.
The Fourier integrals used for representing these quantities,
Q(z) =

∫
Q̃(k) exp(ikz) d(k/2π), turn into Fourier series, Q(z) =∑

Qn exp(iknz)/L, where kn = 2πn/L and the summation is over
n = 0,±1,±2, . . . For this reason only discrete values of k, i.e.
k = kn, are admissible in (13)–(18). In this framework we may
determine the α̃ and η̃t only for these kn.

As explained above, the test-field procedure yields α̃ and
η̃t not as functions of k alone. They may also show some de-
pendence on z and t. After having averaged over z, time aver-
ages are then taken over a suitable stretch of the full time se-
ries where these averages are approximately steady. We use the

Fig. 1. Dependencies of the normalized α and ηt on Rm for the Roberts
flow in the general case, i.e. independent of SOCA (solid lines), and in
SOCA (dotted lines).

time series also to calculate error bars as the maximum depar-
ture between these averages and the averages obtained from one
of three equally long subsections of the full time series.

In all cases the simulations were carried out using the Pencil
Code3, which is a high-order finite-difference code (sixth order
in space and third order in time) for solving the compressible hy-
dromagnetic equations, together with the test-field equations. In
the case of the Roberts flow, of course, only the test-field equa-
tions are being solved.

3. Results

3.1. Roberts flow

Let us first recall some findings of earlier works, such as Rädler
(2002a,b). We use here the definitions

α0 = − 1
2 u0, ηt0 =

1
2 u0/kf , Rm = u0/ηkf . (29)

Adapting the results of analytic calculations in the framework of
SOCA to the assumptions and notations of the present paper (see
Appendix B), we have

α/α0 = ηt/ηt0 = Rm. (30)

Moreover, in the general case, without restriction to SOCA, it
was found that

α = α0Rm φ(
√

2Rm) (31)

with a function φ satisfying φ(0) = 1 and vanishing with growing
argument. This function has been calculated numerically and is
plotted, e.g., in Rädler et al. (2002a,b).

Figure 1 shows results for α and ηt obtained both by gen-
eral test-field calculations using (22) and under the restriction
to SOCA using (23). These results for α agree completely
with both (30) and (31), and those for ηt agree completely
with (30). Unfortunately we have no analytical results for ηt be-
yond SOCA.

3 http://www.nordita.org/software/pencil-code

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361:200809365&pdf_id=1
http://www.nordita.org/software/pencil-code
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Fig. 2. Dependences of the normalized α̃ and η̃t on k/kf for the Roberts
flow with Rm = 10/

√
2 ≈ 7.1 (solid lines), compared with normalized

SOCA results for α̃/Rm and η̃t/Rm, which are independent of Rm (dotted
lines).

Proceeding now to α̃(k) and η̃t(k), we first note that in SOCA,
as shown in Appendix C,

α̃(k) =
α0Rm

1 + (k/kf)2
, η̃t(k) =

ηt0Rm

1 + (k/kf)2
· (32)

The corresponding α̂(ζ) and η̂t(ζ), again in SOCA, read as

α̂(ζ)= 1
2α0kfRm exp(−kf |ζ |), η̂t(ζ)= 1

2ηt0kfRm exp(−kf |ζ |). (33)

In Fig. 2 results of test-field calculations for the functions α̃(k)
and η̃t(k) with Rm = 10/

√
2 ≈ 7.1 are shown. We note that η̃t

becomes negative for small k. The same has been observed with
another similar flow of the Roberts type (Rädler & Brandenburg
2003). In the present case we have η/ηt0 = 2/Rm ≈ 0.28, which
is larger than the most negative value of η̃t/ηt0. Therefore the to-
tal magnetic diffusivity is still positive. For comparison, SOCA
results obtained in two different ways are also shown: those ac-
cording to the analytic relations (32) and those calculated nu-
merically by the test-field method with (23). Both agree very
well with each other.

To obtain the results for the kernels α̂(ζ) and η̂t(ζ), we have
numerically calculated integrals as in (14) using the data plotted
in Fig. 2. The results are represented in Fig. 3. Again, analytical
and numerical SOCA results are shown for comparison. Note
that the profiles of α̂(ζ) and η̂t(ζ) beyond SOCA are rather nar-
row compared with those under SOCA, and that of η̂t(ζ) even
narrower than that of α̂(ζ).

3.2. Isotropic turbulence

Results for homogeneous isotropic turbulence were obtained by
solving the hydrodynamic Eqs. (27) and (28) simultaneously
with the test-field Eq. (22) in a domain of size L × L × L. The
forcing wavenumbers kf are fixed by kf/k1 = 5 and 10. Instead
of the definitions (29), we now use

α0 = − 1
3 urms, ηt0 =

1
3 urms/kf , Rm = urms/ηkf . (34)

Fig. 3. Normalized integral kernels α̂ and η̂t versus kfζ for the Roberts
flow with Rm = 10/

√
2 ≈ 7.1 (crosses), compared with normalized

SOCA results for α̂/Rm and η̂t/Rm, which are independent of Rm (dotted
lines).

Within this framework the dependence of α and ηt on Rm has
been studied by Sur et al. (2008). They consider two cases, one
with ν/η = 0.1 and another with urms/νkf = 2.2. Remarkably,
they find that α/α0 and η/η0 approach unity for Rm � 1.

Figure 4 shows results for α̃(k) and η̃t(k) with ν/η = 1. Both
α̃ and η̃t decrease monotonously with increasing |k|. The two val-
ues of α̃ for a given k/kf but different kf/k1 and Rm are always
very close together. The functions α̃(k) and η̃t(k) are well repre-
sented by Lorentzian fits of the form

α̃(k) =
α0

1 + (k/kf)2
, η̃t(k) =

ηt0

1 + (k/2kf)2
· (35)

Note the different dependencies of α̃ and η̃t on k/kf .
In Fig. 5 the kernels α̂(ζ) and η̂t(ζ) are depicted, again with

ν/η = 1, obtained by calculating numerically integrals as in (14).
Also shown are the Fourier transforms of the Lorentzian fits,

α̂(ζ) = 1
2α0kf exp(−kf |ζ |), η̂t(ζ) = ηt0kf exp(−2kf |ζ |). (36)

Evidently, the profile of η̂t is half as wide as that of α̂. This cor-
responds qualitatively to our observation with the Roberts flow
beyond SOCA, see the crosses in Fig. 3. There is, however, no
counterpart to the negative values of η̂t that occur in the example
of the Roberts flow.

The results presented in Figs. 4 and 5 show no noticeable de-
pendencies on Rm. Although we have not performed any system-
atic survey in Rm, we interpret this as an extension of the above-
mentioned results of Sur et al. (2008) for α and ηt to the integral
kernels α̂ and η̂t. Of course, this should also be checked with
higher values of Rm. Particularly interesting would be a confir-
mation of different widths for the profiles of α̂ and η̂t.

4. Discussion

Our results are important for calculating mean-field dynamo
models. The mean-field induction equation governing B, here

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361:200809365&pdf_id=2
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Fig. 4. Dependences of the normalized α̃ and η̃t on the normalized
wavenumber k/kf for isotropic turbulence forced at wavenumbers
kf/k1 = 5 with Rm = 10 (squares) and kf/k1 = 10 with Rm = 3.5 (tri-
angles), all with ν/η = 1. The solid lines give the Lorentzian fits (35).

defined as an average over x and y, with E according to (8), al-
lows solutions of the form Re

[
B0 exp(ikz + λt)

]
, B0z = 0, with

the growth rate

λ = − [η + η̃t(k)
]
k2 ± α̃(k)k. (37)

A dynamo occurs if λ is non-negative. Since α̃ ≤ 0 in all ex-
amples considered this occurs with the lower sign, and we focus
attention on this case only. In the limit of a local connection
between E and B, the η̃t(k) and α̃(k) turn into η̃t(0) and α̃(0),
respectively.

When using the definitions (29) for the Roberts flow or (34)
for isotropic turbulence, we may write (37) in the form

λ = ηt0k2
f

{
−
[
γ

Rm
+
η̃t(k/kf)
ηt0

]
k
kf
+
α̃(k/kf)
α0

}
k
kf
, (38)

where γ = 2 for the Roberts case and γ = 3 for the isotropic
case. Since η̃t and α̃ only depend on k via k/kf we have chosen
the arguments k/kf .

Consider first the Roberts flow, that is, (38) with γ = 2.
Clearly λ is non-negative in some interval 0 ≤ k/kf ≤ κ0 and
it takes a maximum there. Dynamos with k/kf > κ0 are impos-
sible. Of course, κ0 depends on Rm. With the analytic SOCA
results (32), we find κ0 =

1
2 R2

m for small Rm and that κ0 grows
monotonically with Rm, approaching unity in the limit of large
Rm. For small Rm, a dynamo can work only with small k/kf ,
that is, with scales of the mean magnetic field that are much
larger than the size of a flow cell. Furthermore, κ0 never ex-
ceeds the corresponding values for vanishing nonlocal effect,
which is 1

2 R2
m/(1 +

1
2 R2

m). In that sense the nonlocal effect fa-
vors smaller k, that is, larger scales of the mean magnetic field.
With the numerical results beyond SOCA represented in Fig. 2,
with Rm = 10/

√
2, we have κ0 ≈ 0.90...0.95, again a value less

than unity. In this case, too, a dynamo does not work with scales
of the mean magnetic field smaller than that of a flow cell. There
is no crucial impact of the negative values of η̃t for k/kf < 0.8 on
the dynamo.

We proceed now to isotropic turbulence and consider (38)
with γ = 3. Again, λ is non-zero in an interval 0 ≤ k/kf ≤ κ0 and

Fig. 5. Normalized integral kernels α̂ and η̂t versus kfζ for isotropic tur-
bulence forced at wavenumbers kf/k1 = 5 with Rm = 10 (squares) and
kf/k1 = 10 with Rm = 3.5 (triangles), all with ν/η = 1. The solid lines
are defined by (36).

it takes a maximum there. Some more details are shown in Fig. 6.
With the Lorentzian fits (35) of the results depicted in Fig. 4, we
find κ0 ≈ 0.60 for Rm = 10, and κ0 ≈ 0.45 for Rm = 3.5. In
the limit of vanishing nonlocal effects it turns out that κ0 ≈ 0.82
for Rm = 10, and κ0 ≈ 0.59 for Rm = 3.5. We have to conclude
that dynamos are only possible if the scale of the mean magnetic
field clearly exceeds the outer scale of the turbulence. In addition
we see again that the nonlocal effect favors smaller k, or larger
scales of the mean magnetic field.

These findings may become an important issue, espe-
cially for nonlinear dynamos or for dynamos with bound-
aries. Examples of the last kind have been studied, e.g., by
Brandenburg & Sokoloff (2002) and Brandenburg & Käpylä
(2007). In these cases, however, the underlying turbulence is no
longer homogeneous, so the kernels α̂ and η̂t are no longer in-
variant under translations; that is, they depend not only on ζ but
also on z. The finite widths of the α̂ and η̂t kernels may be par-
ticularly important if there is also shear, because then there can
be a traveling dynamo wave that may also show strong gradients
in the nonlinear regime (Stix 1972; Brandenburg et al. 2001).

For another illustration of the significance of a finite width
of the kernels α̂ and η̂t, we consider a one-dimensional nonlinear
mean-field model with periodic boundary conditions. We mod-
ify here the model of Brandenburg et al. (2001, Sect. 6) with a
dynamo number of 10 (corresponding to 5 times supercritical)
and Rm = 25, by introducing the integral kernels (36). Figure 7
shows the components of the mean magnetic field for two differ-
ent values of kf/k1 and for the conventional case where the ker-
nels are delta-functions. Note that k1 corresponds to the largest
scale of the magnetic field compatible with the boundary condi-
tion. It turns out that the magnetic field profiles are not drasti-
cally altered by the nonlocal effect. Low values of kf/k1, how-
ever, correspond to smoother profiles.
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Fig. 6. Normalized growth rate λ(k) for isotropic turbulence, calculated
according to relation (38) with γ = 3 and with η̃t/ηt0 and α̃/α0 as given
in (35), for Rm → ∞ (upper solid line), as well as Rm = 10 and 3.5
(next lower solid lines). For comparison, λ is also shown for the case in
which η̃t/ηt0 coincides with α̃/α0 as given in (35) (dotted lines), and for
that of vanishing nonlocal effect in which η̃t/ηt0 = α̃/α0 = 1 (dashed
lines), each for the same three values of Rm.

Fig. 7. Mean magnetic field components Bx and By, normalized by the
equipartition field strength Beq, in the one-dimensional nonlinear dy-
namo model characterized in the text, for different values of kf/k1 and
for vanishing nonlocal effects.

Let us start again from E in the form (8). We specify there,
in view of isotropic turbulence, α̂ and η̂t according to (36), and
represent B(z− ζ) and J(z− ζ) by Taylor series with respect to ζ.
A straightforward evaluation of the integrals provides us then
with

E(z) =
∑
n≥0

(
α0

k2n
f

∂2nB(z)
∂z2n

− ηt0

(2kf)2n

∂2n J(z)
∂z2n

)
· (39)

This corresponds to relations of the type (1) or (2), generalized
simply by taking higher than first–order derivatives of B into
account.

The terms with derivatives of J in (39) can be interpreted in
the sense of hyperdiffusion. While all of them have the same
signs in real space, the signs of the corresponding terms in
Fourier space alternate, which implies that every second term
acts in an anti-diffusive manner. Thus, a truncation of the expan-
sion should only be done such that the last remaining term has

even n, or else anti-diffusion would dominate on small length
scales and cause B to grow beyond any bound.

There are several investigations in various fields in which
hyperdiffusion has been considered. In the purely hydrody-
namic context, Rüdiger (1982) derived a hyperviscosity term and
showed that this improves the representation of the mean veloc-
ity profile in turbulent channel flows. In the context of passive
scalar diffusion, Miesch et al. (2000) have determined the hyper-
diffusion coefficients for turbulent convection and find that they
scale with n like in Eq. (39). We are, however, not aware of ear-
lier studies differentiating between diffusive and anti-diffusive
terms.

We investigated the nonlocal cases presented in Fig. 7 us-
ing truncations of the expansion (39). However, two problems
emerged. Firstly, terms with higher derivatives produce Gibbs
phenomena, i.e. wiggles in B, so the results in Fig. 7 are not re-
produced well. Secondly, high-order hyperdiffusion terms tend
to give severe constraints on the maximum admissible time step,
making this approach less attractive computationally. It appears
therefore that a direct evaluation of the convolution terms is most
effective.

5. Conclusions

The test-field procedure turned out to be a robust method for
determining turbulent transport coefficients (see Brandenburg
2005; Sur et al. 2008; Brandenburg et al. 2008). The present
paper shows that this also applies to the Fourier transforms of
the integral kernels, which occur in the nonlocal connection be-
tween mean electromotive force and mean magnetic field, in
other words, to the more general scale-dependent version of
those transport coefficients. For isotropic turbulence, the ker-
nels α̂ and η̂t have a dominant large-scale part and decline
monotonously with increasing wavenumbers. This is consistent
with earlier findings (cf. Brandenburg & Sokoloff 2002), where
the functional form of the decline however remained rather un-
certain. Our present results suggest exponential kernels, corre-
sponding to Lorentzian profiles in wavenumber space. The ker-
nel for the turbulent magnetic diffusivity is about half as wide
as for the alpha effect. This result is somewhat unexpected and
would be worthwhile confirming before applying it to more re-
fined mean field models. On the other hand, the effects of nonlo-
cality only become really strong when the scale of the magnetic
field variations is comparable to or smaller than the outer scale
of the turbulence.

One of the areas where future research of nonlocal turbulent
transport coefficients is desirable is thermal convection. Here the
vertical length scale of the turbulent plumes is often comparable
to the vertical extent of the domain. Earlier studies by Miesch
et al. (2000) of turbulent thermal convection confirmed that the
transport of passive scalars is nonlocal, but it is also more ad-
vective than diffusive. It may therefore be important to also al-
low for nonlocality in time. This would make the expansion of
passive scalar perturbations more wave-like, as was shown by
Brandenburg et al. (2004) using forced turbulence simulations.
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Appendix A: Justification of Eqs. (5) and (12)

In view of (5) we start with Eq. (3) for E, put E0 = 0 and as-
sume that K ◦ B is a purely spatial convolution. Applying then
the Fourier transform as defined by Q(x) =

∫
Q̃(k) exp(ik ·

x) d3(k/2π), we obtain

Ẽi(k) = K̃i j(k)B̃ j(k). (A.1)

Since E and B have to be real, we conclude that K̃∗i j(k) =

K̃i j(−k). Furthermore, the assumption of isotropic turbulence re-
quires that the components of K̃i j are invariant under arbitrary
simultaneous rotations of ũ and k. We have therefore

K̃i j = α̃(k)δi j + α̃
′(k)kik j + iη̃t(k)εi jkkk (A.2)

with α̃, α̃′, and η̃t being real functions of k = |k|. Considering

further that k · B̃ = 0 and ik × B̃ = J̃ , we find

Ẽ(k) = α̃(k)B̃(k) − η̃t(k) J̃(k). (A.3)

Transforming this in physical space we immediately obtain (5).
In view of (12) we start again from Eq. (3) and put E0 =

0, but we have to consider K ◦ B now as a convolution only
with respect to z. Applying a Fourier transformation defined by
Q(z) =

∫
Q̃(k) exp(ikz) d(k/2π), we obtain a relation analogous

to (A.1),

Ẽi(k) = K̃i j(k)B̃ j(k), (A.4)

and may now conclude that K̃∗i j(k) = K̃i j(−k). We thus arrive at

K̃i j = α̃i j(k) + ikη̃′i j(k) (A.5)

with real tensors α̃i j and η̃′i j, which are even in k.

Combining (A.4) and (A.5), considering that ikB̃1 = J̃2, ikB̃2 =

−J̃1 and ikB̃3 = 0, and putting ikη̃′i j = η̃i j J̃ j with a proper tensor
η̃i j, we may confirm first (13) and so also (12).

Appendix B: Mean-field results for the Roberts flow

A mean-field theory of the Roberts dynamo, developed in view
of the Karlsruhe dynamo experiment, has been presented, e.g.,
in papers by Rädler et al. (2002a,b), in the following referred to
as R02a and R02b. There a fluid flow like the one given by (26)
is considered but without any coupling of its magnitudes in the
xy-plane and in the z-direction. The mean fields are defined by
averaging over finite areas in the xy-plane so that they may still
depend on x and y in addition to z. As shown in those papers,
when contributions with higher than first-order derivatives of B
are ignored, then E has the form

E = −α⊥
[
B − ( ẑ · B) ẑ

]
− β⊥∇ × B − (β‖ − β⊥)

[
ẑ · (∇ × B)

]
ẑ

−β3 ẑ ×
[
∇( ẑB) + ( ẑ · ∇)B

]
(B.1)

with constant coefficients α⊥, β⊥, β‖, and β3 (see (9) of R02a
or (9) of R02b). Reducing this to the case considered above, in
which B no longer depends on x and y, we find

E = α
[
B − ( ẑ · B) ẑ

]
− ηt∇ × B, (B.2)

where ∇ × B = ẑ × ∂B/∂z, and

α = −α⊥ , ηt = β⊥ + β3. (B.3)

Results for α⊥, β⊥, β‖, and β3 obtained under SOCA are given
in (19) and (38) of R02a, as well as in (19) and (49) of R02b.
When fitting them with u⊥ = (2/π)u0, u‖ =

√
2(2/π)2u0,

π/a = k0,
√

2π/a = kf , Rm⊥ =
√

2Rm, and Rm‖ = (8/π)Rm
to the assumptions and notations used above, we find just (30).
Likewise (20) of R02a and (20) of R02b lead to (31).

Appendix C: α̃ and η̃t under SOCA for Roberts flow

Let us start with the relation (B.2) and subject it to a Fourier
transformation with respect to z so that

Ẽ = u × b̃ = α̃
[
B̃ − ( ẑ · B̃) ẑ

]
− ik η̃t ẑ × B̃. (C.1)

From the induction equation, we have

η(∇2 − k2)b̃ = − (∇ + ik ẑ) × (u × B̃), kb̃z = 0. (C.2)

The solution b̃ reads

b̃ = − 1

η(k2 + k2
f )

{
ẑ × ∇(B̃ · ∇ψ) − kf(B̃ · ∇ψ) ẑ

+ik
[
ẑ × ∇ψ ( ẑ · B̃) + kfψ(B̃ − ( ẑ · B̃) ẑ)

]}
, (C.3)

where u is expressed by ψ according to (24). Calculate now Ẽx or

Ẽy utilizing ψ2 = 1
4 (u0/k0)2, (∂ψ/∂x)2 = −ψ∂2ψ/∂x2 = 1

4 u2
0 and

∂ψ/∂x ∂ψ/∂y = ψ∂2ψ/∂x ∂y = 0. When comparing the result
with (C.1) we immediately find (32). Using then relations of the
type (14), we also find (33).
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