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ABSTRACT

The turbulent magnetic diffusivity tensor is determined in the presence of rotation or shear. The question is ad-
dressed whether dynamo action from the shear-current effect can explain large-scale magnetic field generation found
in simulations with shear. For this purpose a set of evolution equations for the response to imposed test fields is solved
with turbulent andmeanmotions calculated from themomentum and continuity equations. The corresponding results
for the electromotive force are used to calculate turbulent transport coefficients. The diagonal components of the tur-
bulent magnetic diffusivity tensor are found to be very close together, but their values increase slightly with increasing
shear and decrease with increasing rotation rate. In the presence of shear, the sign of the two off-diagonal components
of the turbulent magnetic diffusion tensor is the same and opposite to the sign of the shear. This implies that dynamo
action from the shear-current effect is impossible, except perhaps for high magnetic Reynolds numbers. However,
even though there is no alpha effect on the average, the components of the � tensor display Gaussian fluctuations
around zero. These fluctuations are strong enough to drive an incoherent alpha-shear dynamo. The incoherent shear-
current effect, on the other hand, is found to be subdominant.

Subject headinggs: MHD — turbulence
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1. INTRODUCTION

Many of the stellar and planetary magnetic fields are believed
to be the result of a dynamo process that converts kinetic energy
from turbulent motions and shear into magnetic energy. A par-
ticular challenge consists in explaining the field on length scales
that exceed the scale of the turbulence. This topic has tradition-
ally been addressed within the framework of mean-field electro-
dynamics (Krause & Rädler 1980).

Over the decades, the applicability of this theory has repeatedly
been questioned (e.g., Piddington 1981; Vainshtein & Cattaneo
1992). Meanwhile, direct simulations of hydromagnetic tur-
bulence have begun to show dynamo action (Meneguzzi et al.
1981; Meneguzzi & Pouquet 1989; Nordlund et al. 1992;
Brandenburg et al. 1996; Cattaneo 1999). In some particular cases,
large-scale fields are being generated (Glatzmaier & Roberts
1995; Brandenburg et al. 1995; Brandenburg 2001), which raises
the question about the mechanism responsible for this phenom-
enon. In cases where the flow is systematically nonYmirror sym-
metric, the association with an � effect is obvious. However,
there are nowalso examples of nonhelical large-scale dynamos ow-
ing to turbulence under the influence of shear alone (Brandenburg
2005a; Yousef et al. 2007). Their interpretation is not straightfor-
ward, because several possible mechanisms have been proposed
that might produce dynamo action from turbulence and shear
alone, i.e.,without rotation and stratification that otherwise would
have been the main ingredients of an � effect. The most detailed
investigations have been carried out in connection with the so-
called shear-current effect (Rogachevskii & Kleeorin 2003, 2004;
Rädler & Stepanov 2006; Rüdiger & Kitchatinov 2006). Another
possibility is a magnetic � effect that is driven by a current
helicity flux, as was suggested by Vishniac & Cho (2001; see also
Brandenburg & Subramanian 2005c). A third possibility might

be an incoherent (random)� effect with zeromean and finite var-
iance, suggested by Vishniac & Brandenburg (1997) in connec-
tion with accretion disks (see also Sokolov 1997; Silant’ev 2000;
Fedotov et al. 2006; Proctor 2007). The only reliable way to de-
termine what is the dominant effect is to calculate all relevant
components of the � and turbulent magnetic diffusivity tensors
in a general expansion of the electromotive force in terms of the
mean magnetic field.
The case considered in Brandenburg (2005a) is unnecessarily

complicated, because the shear employed there depends on two
Cartesian coordinates. A simpler possibility is to consider a shear
flow depending linearly on only one coordinate, and we shall
pursue this idea in the present paper. The shear-current effect and
the incoherent � effect could then still operate. Because we will
use periodic boundary conditions, there can be no magnetic
helicity flux, so the Vishniac & Cho (2001) effect is then ruled
out, even though it could still, at least in principle, explain the
generation of a mean magnetic field in the simulations of
Brandenburg (2005a), which do possess a helicity flux.
In this paper we calculate all relevant components of � ij and

�ijk using the so-called test field method. This method was in-
troduced by Schrinner et al. (2005, 2007) in connection with
convection in a spherical shell and used later by Brandenburg
(2005b), Sur et al. (2008), and Brandenburg et al. (2008) in con-
nection with forced turbulence in Cartesian boxes. The essence
of this method consists in solving evolution equations for the
fluctuations of the magnetic field around suitably defined test
fields such that all relevant coefficients can be computed.

2. BASIC ASSUMPTIONS AND METHOD

In the following we introduce first the mean electromotive
force and its relation to the mean magnetic field. We then dis-
cuss the equations describing the turbulent flow that eventually
leads to this electromotive force and explain the test field method
used to calculate the coefficients which relate it to the mean field.
Particular attention is paid to the possibility that the shear-current
effect may lead to self-excitation of mean magnetic fields.
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2.1. The Turbulent Electromotive Force

In mean-field electrodynamics, the behavior of the mean
magnetic field B depends crucially on the mean electromotive
force EEEEEEEE ¼ u < b, where u and b denote the deviations of the
fluid velocity U and the magnetic field B from their mean parts
U and B, respectively. For sufficiently weak variations of B in
space and time and if there is no small-scale dynamo producing
a mean electromotive force on its own, we have

Ei ¼ � ijBj þ �ijk@Bj=@xk ð1Þ

with tensors � ij and �ijk determined by u and U.
In this section it is sufficient to define mean quantities like EEEEEEEE

or B, referring to Cartesian coordinates (x; y; z), simply by aver-
aging over all x and y. Below, in x 2.3 a different definition is
introduced that covers and refines this simple one. Clearly, B
can now no longer depend on x and y, and hence, all its first-order
derivatives can be expressed by the components of : < B ¼
(�@By/@z; @Bx/@z; 0). Slightly deviating from the usual nota-
tion, in which : < B is equal to �0J, where �0 is the vacuum
permeability, we put in this paper simply : < B ¼ J, being
aware that J is then no longer exactly the electric current den-
sity. Instead of equation (1) we may now write

Ei ¼ � ijBj � �ij J j ð2Þ

with a new tensor �ij defined such that �i1 ¼ �i23 and �i2 ¼ ��i13.
As J 3 ¼ 0, the �i3 are without interest and wemay put them equal
to zero.

We further consider the background turbulence, which occurs
in the absence of rotation or shear, as homogeneous, isotropic,
and mirror symmetric. Then we have even under the influence of
rotation or shear � ij ¼ 0; see Appendix A.

As for �ij, consider first the case of rotation of the fluid with
an angular velocity6, which defines the Coriolis and centrifugal
forces and is assumed to be aligned with the z-axis. The actual
turbulence is then again homogeneous but no longer isotropic.
Instead, it is axisymmetric with respect to the z-axis, that is, all
mean quantities depending on the turbulent velocity field are
invariant under arbitrary rotations about the z-axis. We may then
conclude by usual symmetry arguments that

�ij ¼ �0�ij þ ��ijk�̂k þ � 0�̂i�̂j; ð3Þ

where 6̂ ¼ 6/� with � ¼ j6j, and �0, �, as well as �
0 are spa-

tially constant coefficients, which may depend on �. So we ar-
rive at

EEEEEEEE ¼ ��0J þ �6̂ < J: ð4Þ

Since J 3 ¼ 0, the � 0 term in equation (3) is without influence.
The last term in equation (4) describes the 6 < J effect (Rädler
1969). Whereas �0 approaches a nonzero value as � ! 0 (the
value determined by the background turbulence), � vanishes like
�. Note that Ez ¼ 0.

Consider next the case with shear defined by the velocity
US ¼ (0; Sx; 0). Now the actual turbulence is again homoge-
neous but no longer axisymmetric. In view of the application of
symmetry arguments we consider US first in the more general
(coordinate-independent) form Sggg(h = x), where ggg and h are unit
vectors which are orthogonal to each other and x is the position
vector. The only available construction elements for �ij are then

�kl, �klm, ggg, and h, for due to the homogeneity of the turbulence,
�ij cannot depend on x. Thus, we have

�ij ¼ �0�ij þ �1gigj þ �2hihj þ �3gihj þ �4gjhi þ : : : ; ð5Þ

where �0, �1, �2, �3, and �4 are spatially constant coefficients
and the dots stand for additional terms containing �klm. The afore-
mentioned coefficients may depend on S. (A dependence on
scalars defined by ggg and h is without interest, since ggg2 ¼ h2 ¼ 1
and ggg = h ¼ 0.) The terms containing �klm have structures like
�ijkgk or gi�jklgkhl. Since Sggg(h = x) is invariant under simulta-
neous sign changes of ggg and h, �ij must also have this property
and so these terms have to be canceled. Returning now to US ¼
(0; Sx; 0), that is, ggg ¼ (0; 1; 0) and h ¼ (1; 0; 0), we see that

EEEEEEEE ¼ ��0J � k = J ð6Þ

with

k ¼
�11 �12 0

�21 �22 0

0 0 0

0
B@

1
CA: ð7Þ

This covers the ‘‘shear-current effect’’ (Rogachevskii & Kleeorin
2003). We may assume that �0 is independent of S (that is, it is
determined by the background turbulence alone). Then �11 and
�22 are even functions of S that vanish like S

2 as S ! 0, whereas
�12 and �21 are odd functions that vanish like S. Again, we have
Ez ¼ 0.

In both cases, with rotation or with shear, we may restrict our
attention to

Ei ¼ ��ijJ j; 1 � i; j � 2: ð8Þ

The four quantities �ij are simply related to �0 and �, or �0 and the
�ij, respectively.

2.2. Turbulence with Rotation or Shear

We consider a compressible fluid satisfying an isothermal
equation of state. In the absence of rotation or shear, the momen-
tum and continuity equations can be written in the form

@U

@t
¼ �U = :U � c2s : ln �þ f þ Fvisc; ð9Þ

@ ln �

@t
¼ �U = : ln ��: = U; ð10Þ

where cs is the sound speed, here considered as constant, �
is the mass density, and f is a random forcing function. Fur-
thermore, Fvisc ¼ ��1: = 2��S is the viscous force, and Sij ¼
1
2
(Ui; j þ Uj;i)� 1

3
�ij: = U is the traceless rate of strain tensor.

To come as close as possible to the assumptions on the back-
ground turbulence adopted above, i.e., homogeneity, isotropy,
and mirror symmetry, the forcing function f was specified for a
cubic domain of size L ; L ; L as follows. During each time step
f is a single transverse (solenoidal) plane wave proportional to
kf < ê, where the wavevector kf is taken randomly from a set
of predefined vectors with components being integer multiples
of 2	/L andmoduli in a certain interval around an average value
which we simply denote by kf , and ê is an arbitrary random unit
vector not aligned with kf . The corresponding scale, 2	/kf , is
also referred to as the energy-carrying scale of the turbulence.
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Moreover, the time dependence of f is designed to mimic
�-correlation, which is a simple and commonly used form of
random driving (cf. Brandenburg 2001). Nevertheless, owing
to inertia, the correlation time of the turbulent velocity is of
course finite, even for perfect �-correlation of the forcing.

As mentioned above, we simulate the turbulence in a finite
domain using (shearing-) periodic boundary conditions (x 2.5).
Then the background turbulence can be at no instant in a strict
sense homogeneous, isotropic, or mirror symmetric. It would
approach these properties if the ratio of the size of this domain
and the scale of the forcing function (that is, kf /k1 with k1 ¼
2	/L) became very large. There are, however, practical bounds
on this ratio. For moderate values, which we have to accept, the
background turbulence approaches the mentioned properties
only after averaging over long times. Then, of course, the turbu-
lence appears also as statistically steady. By these reasons, mean
quantities, that is, averages over x and y, which are derived from
the turbulence, show still fluctuations in z and t, and these dis-
appear after averaging over sufficiently long time intervals.

When rotation is added, two new terms arise on the right-
hand side of equation (9), the Coriolis force,�26 < U, and the
centrifugal force, (6 < x) < 6. The latter is unimportant for
weak compressibility, to which we restrict ourselves in the fol-
lowing, and this termwould also not be compatible with periodic
boundary conditions, so it is neglected.

Turning now to the case with shear we redefine the velocityU
by splitting off the shear term US , that is, U ! U þ US . This
implies

U = :U ! U = :Uþ US = :Uþ U = :US þ US = :US : ð11Þ

The second term on the right-hand side corresponds to an addi-
tional advection with the mean flow and will be subsumed in the
definition of an advective derivative,

D=Dt � @=@t þ Sx @=@y: ð12Þ

The third term is equal to SUx ŷ, where ŷ is the unit vector in
the y-direction. The last term in equation (11) vanishes. Thus,
equations (9) and (10) turn into

DU

Dt
¼ �U = :U � SUx ŷ� c2s : ln �þ f þ Fvisc; ð13Þ

D ln �

Dt
¼ �U = : ln ��: = U: ð14Þ

It should be noted thatU resulting from these equations is not
purely turbulent, but also contains a large-scale flow which pro-
vides an additional shear and, therefore, a mean vorticity. This
is qualitatively suggestive of an hydrodynamic mean-field effect
analogous to the shear-current effect; see Elperin et al. (2003).

In this paper we deal, apart from one exception, with the purely
kinematic problem, so there is no Lorentz force in equation (13).
In x 4.1 the fully nonlinear problem is considered, and hence, the
Lorentz force is included in the momentum equation.

2.3. Test Field Method

Proceeding now to consequences of the induction equation
we consider primarily the case of shear, in which the fluid ve-
locity isU þ US . In the case of rotation we have to putUS equal
to zero. We further represent B according to B ¼ : < A by a

vector potential A. Uncurling the induction equation and using
a suitable gauge transformation of A we find4

DA

Dt
¼ �SAy x̂þ U < B� �J: ð15Þ

This equation as well as those derived from it in what follows
apply to the case of rotation if D/Dt is replaced by @/@t and S is
put equal to zero.
Now we define a mean field F belonging to the field F as

F(x; y; z) ¼ 1

L2

Z L=2

�L=2

Z L=2

�L=2

F(xþ 
; yþ �; z)d
 d� ð16Þ

with L as specified above. The following comments on the def-
inition from equation (16) as well as equations (17) and (18)
below apply, however, even if L is an arbitrary length, not nec-
essarily related to the domain size. Our definition from equa-
tion (16) implies that averaging of F commutes with taking
any derivatives of F with respect to x, y, z, or t, that is, the se-
quence of these operations can be changed. In what follows
we also use the rule FG ¼ FG, which applies exactly if F is
independent of x and y, and has otherwise to be considered as
an approximation. It is however only needed in cases in which
that independence of x and y can be justified, that is, in which
it applies exactly. Clearly, F is independent of x and y if F is
periodic in x and y with the period length L. We note further
that, owing to equation (16), we have x ¼ x, and that therefore
US has to be considered as a mean field.
Taking now the average of equation (15) we obtain

DA

Dt
¼ �SAy x̂þ U < Bþ u < b� �J: ð17Þ

In view of the determination of EEEEEEEE ¼ u < b we are interested in
b ¼ : < a, where a ¼ A� A. Taking the difference between
equations (15) and (17) we obtain

Da

Dt
¼ �Say x̂þ U < bþ u < Bþ u < b� u < b� � j; ð18Þ

where j ¼ J � J.
In order to determine the quantities �ij introduced above we

specify B in the relevant relations such that it is equal to one of
the elements out of a set of test fields, B

q
, and denote the cor-

responding EEEEEEEE, J, etc., by EEEEEEEE q
, J

q
, etc., respectively. Then, in par-

ticular, equation (8) turns into

E q

i ¼ ��ijJ
q

j ; 1 � i; j � 2: ð19Þ

After having calculated the EEEEEEEE q
numerically for two properly cho-

sen B
q
we may then determine the four �ij.

For the calculation of the EEEEEEEE q
we apply equation (18),5

Daq

Dt
¼ � Saq

y x̂þ U < bq þ u < B
q

þ u < bq � u < bq � � jq: ð20Þ

4 Note that US < B can be written as (US < : < A)i ¼ US
j (Aj;i � Ai; j). The

second term is an advection term and the first term can be written as US
j
Aj; i ¼

�US
j; i Aj plus a gradient term that can be removed with a gauge transformation.

Note also that US
j; i Aj ¼ SAy x̂i.

5 In the corresponding eq. (27) of Brandenburg (2005b), the U term is
incorrect. However, this did not affect his results, becauseU either vanished or it
consisted only of a shearing motion that was treated correctly in the code.
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Although ameanflowcan develop in some of the simulationswith
shear (see above), this term is still weak and is neglected in the
following, i.e., we put U ¼ 0 in equation (20).

As test fields B
q
we may use, e.g., the fields B

qc
defined by

B
1c ¼ B(cos kz; 0; 0); B

2c ¼ B(0; cos kz; 0); ð21Þ

with a constant B and a constant wavenumber k. Denoting the
corresponding EEEEEEEE q

by EEEEEEEE qc
we find

E1c

i ¼ �i2Bk sin kz; E 2c

i ¼ ��i1Bk sin kz; i ¼ 1; 2: ð22Þ

After having calculated the EEEEEEEE qc
, these equations allow us to de-

termine the �ij. In order to avoid difficulties at the zeros of sin kz,
it is useful to carry out the calculations with test fields B

qs
, de-

fined analogously to the B
qc

but with sin kz instead of cos kz.
For the corresponding EEEEEEEE qs

we find then equations analogous
to equations (22) but with �cos kz instead of sin kz. From equa-
tions (22) and the equations above we obtain immediately (see
also Brandenburg 2005b)

�i1 ¼ �(Bk)�1(E 2c

i sin kz� E 2s

i cos kz);

�i2 ¼ (Bk)�1(E1c

i sin kz� E1s

i cos kz); i ¼ 1; 2: ð23Þ

We recall that for homogeneous turbulence, which is consid-
ered here, the �ij have to be independent of z. That is, the cos kz
and sin kz in equations (22) and (23) should be compensated by
z-dependences of the E qc

i
and E qs

i
. However, due to fluctuations

(cf. x 2.2), no perfect compensation can be expected.
We further recall that in equation (1) and so also in equation (2)

all derivatives of B that are higher than first order have been
ignored. By this reason, the results for the �ij obtained with the
above test fields apply exactly only in the limit k ! 0. In general,
there is a dependence of the �ij on k. This corresponds to a non-
local connection between EEEEEEEE and B, which is considered here
only in a very weak sense (by taking into account first-order de-
rivatives of B). In a more general sense, it is investigated in
Brandenburg et al. (2008). Here we have used k ¼ k1, where
k1 means the smallest finite wavenumber in the z-direction in
the domain in which the turbulence is simulated, k1 ¼ 2	/L;
see x 2.5.

The results for �ij are also independent of the value of B. If
one wanted to address the question of nonlinearity, which is not
the purpose of this paper, one must also solve equation (15) and
allow the resulting magnetic field to feed back onto the flow via
the Lorentz force.

For the discussion of the results concerning �ij we introduce
the quantities

�t ¼
1

2
(�11 þ �22); �T ¼ � þ �t; � ¼ 1

2
(�11 � �22): ð24Þ

In the case of rotation we put further

� ¼ 1

2
(�12 � �21) ð25Þ

and expect � to be equal to zero, while �12 and �21 have to have
the same nonzero moduli, but opposite signs so that � is nonzero.
With shear, however, � can be in general nonzero, and there is no
simple relation between �12 and �21.

It is convenient to present �t in normalized form and express
it in terms of the quantity

�t0 ¼
1

3
u rmsk

�1
f ; ð26Þ

which is the result obtained under the first-order smoothing ap-
proximation applied to the high-conductivity limit under the as-
sumption that the correlation time is given by (urmskf )

�1, i.e., that
the Strouhal number is unity (cf. Brandenburg & Subramanian
2005b).

2.4. Dispersion Relation

In the case of rotation without shear, there are only decaying
solutions of the mean-field equations. This can be easily seen
from the energy balance equation for the mean magnetic field
(see Rädler 1980). The situation with shear alone is however
different, and the possibility of a so-called shear-current dy-
namo is still under debate (see Rogachevskii & Kleeorin 2003,
2004; Brandenburg 2005b; Rädler & Stepanov 2006; Rüdiger
& Kitchatinov 2006). We look therefore for solutions of equa-
tion (17) with u < b specified in the sense of equation (8). Using
the Ansatz A ¼ Ã exp(kt þ ikz) with a generally complex k and
any real k satisfying kTkf , we find first

kþ (�T þ �)k 2 �12k
2 þ S

�21k
2 kþ (�T � �)k 2

� �
Ãx

Ãy

 !
¼ 0: ð27Þ

The requirement of nonvanishing Ã poses an eigenvalue prob-
lem for k. The two eigenvalues, normalized to �T k

2, are

k�
�T k 2

¼ �1 � 1

�T

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S

k 2
þ �12

� �
�21 þ � 2

s
: ð28Þ

A necessary and sufficient condition for an exponentially grow-
ing solution is that the radicand in equation (28) is positive and
that it exceeds � 2

T . If the S term dominates and the others are
neglected, this condition turns into

D�S � S�21

(�Tk)
2
> 1: ð29Þ

As k can be made arbitrarily small (by making the domain size
large enough), this condition is always satisfiable if only S�21 > 0.
The neglect of the terms without S in the radicand is justified
if j�12�21 þ �2j/� 2

TTjD�S j, which can again always be guaran-
teed by sufficiently small k. Under this condition, the maximum
growth rate with respect to k is S�21/4�T and occurs at k ¼
S�21ð Þ1/2/2�T . Consequently, as long as �21 can be considered
linear in S the maximum growth rate is proportional to S 2 and the
corresponding k is proportional to S.

2.5. Simulations

For the numerical simulations we use the Pencil Code,6 where
the test field algorithm has already been implemented. We em-
ploy periodic boundary conditions in the y- and z-directions and
shearing-periodic boundary conditions in the x-direction (Wisdom
& Tremaine 1988; Hawley et al. 1995) and use a resolution of

6 See http://www.nordita.org /software/pencil-code.
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up to 2563 mesh points for the runs with the largest Reynolds
numbers. As mentioned above, a computational domain of size
L3 is used, so the smallest finite wavenumber is k1 ¼ 2	/L. As
initial conditions for the hydrodynamic part we assume vanish-
ing velocity,U ¼ 0, and uniform density equal to some value �0.
The initial condition in the test field calculations is aq ¼ 0. Ow-
ing to the use of periodic boundary conditions, the total mass in
the computational domain is conserved, and therefore, the mean
density will be always equal to the initial value, h�i ¼ �0, where
the angle brackets denote a volume average.

In all investigations reported in this paper, only weakly com-
pressible turbulence has been considered. The Mach number
urms /cs did not exceed a value of the order of 0.1.

3. RESULTS FOR THE DIFFUSIVITY COEFFICIENTS

As explained above, the test field procedure yields the coef-
ficients �ij first as functions of z and t. However, after averaging
over sufficiently long time intervals, we expect to approach the
results for homogeneous, isotropic, mirror-symmetric, and sta-
tistically steady background turbulence, in particular, coefficients
�ij, being independent of z and t. We present here results for the
�ij gained by averaging of the ‘‘raw’’ data first over z and then
over time. In this context, the effect of averaging over z consists
in a first reduction of the temporal fluctuations. This appears
plausible in the picture in which the domain contains a finite
number of turbulent ‘‘eddies’’ (Hoyng 1993). We may interpret
them as different realizations of a specific eddy and, thus, the av-
erage over the x, y, and z of a given domain as an average over the
ensemble of these realizations. When accepting the principle
that the ensemble average is equivalent to a time average we
see that the effect of averaging the original �ij over z is just
equivalent to some temporal smoothing. After having aver-
aged over z, time averages are then taken over a suitable stretch
of the full time series where these averages are approximately
steady. We use the time series further to calculate error bars as
the maximum departure between these averages and the averages
obtained from one of three equally long subsections of the full
time series.

Important control parameters that are being varied include the
hydrodynamic and magnetic Reynolds numbers, Re and ReM , as
well as the magnetic Prandtl number PrM , with

Re ¼ urms=(�kf ); ReM ¼ urms=(�kf ); PrM ¼ �=�: ð30Þ

In the case of rotation we define further the Coriolis number Co
and in the case of shear we define the parameter Sh,

Co ¼ 2�=(urmskf ); Sh ¼ S=(urmskf ): ð31Þ

We note that Co, like�, is never negative. In all cases with shear
presented below, S and thus Sh are negative. For most of the cal-
culations we use kf /k1 ¼ 5, except in x 4.1 where kf /k1 ¼ 10. In
both cases the range of forcing wavenumbers is kf � k1/2.

3.1. Effect of Rotation

In the case of rotation (Co 6¼ 0), but without shear (Sh ¼ 0),
the coefficients �t and � are relevant. Figure 1 shows their de-
pendence on the Coriolis number Co for fixed Reynolds num-
bers, Re ¼ 1:3 and ReM ¼ 13. We see that �t shows a drastic
decline when Co approaches and exceeds unity. This can be
understood as a consequence of an evolving Taylor-Proudman
state of the turbulent flow. Clearly, � is positive. The ratio �/�T
first increases with Co, but it begins to decline when Co has
exceeded a value of about 3. In Figure 2 the dependence of �t
and � on ReM is given for Re ¼ 16 and Co ¼ 1:3. As ReM is in-
creased, �t and � increase for ReM < 10.
According to the considerations in x 2.1 we have to expect

that the diagonal elements �11 and �22 of the magnetic diffusivity
tensor coincide. Indeed, the observed values of � (not shown) are
only of the order of the errors.
Our results are consistent with those obtained in the frame-

work of the second-order correlation approximation (see Ap-
pendix B). We take this consistency as a confirmation of the
correctness of the test field method.

3.2. Effect of Shear

We now discuss the case of shear (Sh 6¼ 0) in the absence of
rotation (Co ¼ 0). Figure 3 demonstrates that the value of �t/�t0

Fig. 1.—Dependence of the normalized �t and � on Co for homogeneous
turbulence with rotation for Re ¼ 1:3 and ReM ¼ 13. The vertical lines indicate
error bars. Note that there is amaximumof �/�T at Co � 3. For Co < 3 the results
for �/�T are best described by �/�T � 0:05Co0:35, given by the dash-dotted line, but
also a linear dependence, �/�T � 0:035Co, indicated by the dotted line, is com-
patible within error bars.

Fig. 2.—Dependence of the normalized �t and � on ReM for homogeneous tur-
bulencewith rotation forRe ¼ 1:3 andCo ¼ 1:3. The dotted lines show the power-
law fits �t /�t0 ¼ 0:45Re0:3M and �/�T ¼ 0:025ReM which apply for ReM < 7.
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clearly exceeds unity for not too small values of jShj, that is,
shear leads to a slight enhancement of the turbulent magnetic
diffusivity. At the same time, for negative values of Sh, both �12
and �21 attain finite positive values. In Figures 4 and 5 these
quantities are shown as functions of ReM , with Re ¼ 1:4 and
Sh ¼ �0:6, or PrM ¼ 20, respectively.

We recall the dynamo condition from equation (29). Since in
all our simulations S is negative, a dynamo would be possible
for negative �21 only. In Figure 5, with PrM ¼ 20, we see indeed
negative �21 for high ReM . Considering the large error bars, how-
ever, wemay hardly conclude that a dynamo is really possible. In
general, the errors could be reduced by extending the time series.
However, for large ReM small-scale dynamo action occurs that
introduces additional fluctuations whose amplitude increases ex-
ponentially with time, and so we have to stop the calculation.
One remedy might be to reset bq in regular time intervals, but
this has not been done yet.

As the considerations of x 2.1 show, there is no general reason
for an equality of the two diagonal elements �11 and �22 of the
diffusivity tensor, that is, � does not need to be equal to zero. As
shown in Figure 6, for ReM of order 10 and above, �may deviate
from zero, but its value is of the order of the error. Again, our
numerical results are in agreement with results obtained in the
second-order correlation approximation (see Appendix B).

4. COMPARISON WITH DIRECT SIMULATIONS
AND SIMPLIFIED MODELS

4.1. Large-scale Fields in Simulations with Shear

We report now on calculations with the original induction
equation (15), instead of the test field equation (20), together
with the hydrodynamic equations (9) and (10). In the momen-

tum equation (9), however, the Lorentz force was restored, thus
providing a nonlinear feedback of the magnetic field. In all cases
we used Sh ¼ �0:15 and kf /k1 ¼ 10. The results are shown in
Figures 7 and 8 for two different combinations of ReM and PrM .
In both cases there is an initial phase where the mean field grows
exponentially.Mean fields with a particularly prominent By com-
ponent occur. The Bx component seems to be in antiphase with
By, as expected for negative shear, but this component is much
more noisy. Furthermore, for PrM ¼ 7 and ReM ¼ 130 (Fig. 7)
there are episodes where By fades away and later reemerges, but
possibly with the opposite orientation. Similar results (not shown
here) have also been obtained for smaller values of ReM . In the
case with PrM ¼ 20 and ReM ¼ 200 (Fig. 8), however, By keeps
the same orientation throughout the run.

4.2. Magnitude and Effect of Fluctuations

In x 3.2 we have seen that the sign of �21 is not suitable for
enabling a shear-current dynamo except perhaps for high values
of ReM . On the other hand, as demonstrated in x 4.1, large-scale
magnetic fields are being generated. Explaining this in terms
of the shear-current effect is very questionable. Therefore, we
ask now whether an incoherent alpha-shear dynamo (Vishniac
& Brandenburg 1997) might play a role. Another explanation
would be an incoherent shear-current dynamo that we discuss
below in x 4.3.

The possibility that a random � with zero mean can produce
magnetic fields was first discussed by Kraichnan (1976) and
Moffatt (1978). In the presence of shear, strong large-scale fields
can be generated (Vishniac & Brandenburg 1997; Sokolov 1997;
Silant’ev 2000; Fedotov et al. 2006; Proctor 2007). Consider an
incoherent alpha-shear dynamowith a scalar� fluctuating around

Fig. 3.—Dependence of �t (normalized by �t0) as well as �12 and �21 ( both
normalized by �T ) for homogeneous turbulence with shear on Sh for Re ¼ 1:4
and ReM ¼ 14. The dotted lines represent linear dependences on Sh.

Fig. 4.—Dependences of �t (normalized by �t0), as well as �12 and �21 (both
normalized by �T ) for homogeneous turbulence with shear on ReM for Re ¼ 1:4
and Sh ¼ �0:6. The dotted lines correspond to �12/�T ¼ 0:2 ln ReM and �21/�T ¼
0:05 ln ReM and illustrate that �12/�T and �21/�T vary only weakly with ReM .
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zero. In the limit kTkf and if j� jkTjSj, the condition for
mean fields growing on the average exponentially reads

D�S ¼ � rmsjS j=(� 2
T k

3) > D crit
�S ; ð32Þ

where D crit
�S � 2:3 for a white-noise � effect (see Appendix C).

In a finite domain all mean-field coefficients show fluctuations,
and so � ij must fluctuate about zero. We may extend the test field
procedure for the determination of the �ij such that it provides us
the � ij too. When starting from equation (2) instead of equa-
tion (8) and using again the four test fieldsBqc andB

qs
, q ¼ 1; 2,

we find

� i1 ¼ B�1(E1c

i cos kzþ E1s

i sin kz);

� i2 ¼ B�1(E 2c

i cos kzþ E 2s

i sin kz); i ¼ 1; 2; ð33Þ

together with the relations from equation (23) for �i1 and �i2 (see
also Brandenburg 2005b).
In contrast to the considerations in x 3 we consider now the

mean-field coefficients, as obtained from the test field calcula-
tions, after averaging over z, but not over t. Then the � ij consist
of fluctuations around a zeromean, that is, we have an incoherent
� effect. (Without the averaging over z, the fluctuations would
be even bigger.) In the case of fluctuations of �ij we speak anal-
ogously about an incoherent shear-current effect.
We have calculated the rms values of the temporal fluctuations

of the� ij and �ij which are denoted by�
rms
ij and � rms

ij , respectively.
We have also taken the averages over all four components of
� rms

ij and over the two diagonal components of � rms
ij and denoted

them by � rms and � rms
t , respectively. Figure 9 shows these quan-

tities along with � rms
12 and � rms

21 for a small Reynolds number and
moderate shear as functions of ReM . They are all mildly growing.
In Figure 10 we show that the probability density functions

of � ij and �ij for a run with ReM ¼ 14, Re ¼ 1:4, and Sh ¼ �0:6
are approximately Gaussian. In order to improve the statistics we
have, in addition, averaged the results for all four components of
� ij. The result is similar to those for the individual components.
The diagonal components of �ij are distributed around finite av-
erages, and �21 is distributed around a positive, but small value.

4.3. An Incoherent Shear-Current Dynamo?

Yousef et al. (2007) have reported large-scale dynamo ac-
tion at low Reynolds numbers (Re ¼ ReM ¼ 5) for weak shear

Fig. 6.—Dependences of � (normalized by �T ) on Sh (left) and on ReM (right) for
the same runs as in Figs. 3 and 4, respectively.

Fig. 7.—Time dependence of the rms value (with respect to z) of By (top)
and spacetime diagrams Bx(z; t) and By(z; t) [all in units of Beq, where Beq ¼
�0h�u2ið Þ1/2] from a direct simulation with ReM ¼ 130, PrM ¼ 7, kf /k1 ¼ 10,
and Sh � �0:15. The top panel demonstrates the initial exponential growth of
the mean field (the growth rate is 0:009urmskf ). The other panels show episodes
of large scales in z especially in the By component. [See the electronic edition
of the Journal for a color version of this figure.]

Fig. 5.—Same as Fig. 4, but for a fixed magnetic Prandtl number, PrM ¼ 20.
Here, Re ¼ ReM /20 is not constant. Because urms increases with increasing ReM ,
Sh is also not constant and varies between �2.5 (for Re ¼ 0:16) and �0.3 (for
Re ¼ 13). Note that �21 turns negative at about ReM ¼ 100. However, the errors
are larger than the mean.
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[Sh < (3	)�1] in tall boxes so that the smallest wavenumber in
the z-direction, k1z, can be up to 128 times smaller than those in
the other two directions. They discuss in more detail the case
where it is 16 times smaller, i.e., k1z ¼ k1/16. Using small
Reynolds numbers has the advantage that small-scale dynamo
action is then impossible.

We have analyzed similar cases (Re ¼ 5 with PrM ¼ 1 and
0:01 < �Sh < 0:3) using, however, cubic domains of size L3,
so k1z ¼ k1, and a forcing with kf /k1 equal to 5 instead of 3. It
turns out that the value of the crucial coefficient �21 fluctuates
around zero. This is also plausible from Figure 3 (even if it

does not apply to PrM ¼ 1). We must therefore conclude that
the (coherent) shear-current effect cannot explain the generation
of the mean magnetic field found by Yousef et al. (2007).

With respect to the incoherent effects, it can be seen from
Figure 11 that the values of � rms and � rms

21 are more or less the
same for different PrM , ReM , and Sh. Let us consider the in-
stantaneous values of the growth rate k, as calculated from
equation (28) with the fluctuating �ij. If k ¼ k1, we get always
negative k. However, for the smaller value k ¼ k1/16, appro-
priate for the model of Yousef et al. (2007), it is possible to
have large positive k during extended periods of time. Although
B can be amplified during those episodes, it must decay during
episodes with the reversed sign of �21, and it is not certain from
this competition whether a dynamo powered by the incoherent
shear-current effect may result.

So far we have ignored the possibility of an incoherent alpha-
shear dynamo that must work at the same time. In order to assess
the relative importance of the two incoherent effects we have
considered a simple model with randoma and h tensors that are
delta-correlated in time. (Delta-correlated noise is the simplest
model; a more realistic case would be to assume colored noise

Fig. 9.—Dependences of the rms values of the temporal fluctuations � rms

(normalized by �t0kf ), �
rms
t , � rms

21 , and � rms
12 (normalized by �t0) on ReM for Re ¼

1:4 and Sh ¼ �0:6.

Fig. 10.—Probability density functions (PDFs) of � ij (top) and �ij (bottom)
for ReM ¼ 14, Re ¼ 1:4, and Sh ¼ �0:6. The PDFs for the different components
of� ij (dotted lines) are close together; their average is given by the solid staircase
line and compared with a Gaussian fit. The PDF of �21 (solid line) is around zero,
while those of �12, �11, and �22 are not. (The latter two are simply denoted by �t.)

Fig. 11.—Dependence of the rms values of the temporal fluctuations � rms

(normalized by �t0kf ) and � rms
21 (normalized by �t0) on Sh for models with

PrM ¼ 1 and Re ¼ 5 (dashed lines) compared with the models shown in Fig. 3
with PrM ¼ 0:1 and ReM ¼ 14 (solid lines).

Fig. 8.—Same as Fig. 7, but for ReM ¼ 200 and PrM ¼ 20. Initially, the field
grows exponentially at a rate 0:012urmskf . Note that themean field is nearly steady.
[See the electronic edition of the Journal for a color version of this figure.]
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with a finite correlation time.) The model is explained in Appen-
dix C. Under the assumptions j�11jTjS j/k and j�12j; j�21jT
�Tk, as well as j�12jTjSj/k 2 and j�jTj�T j, its governing pa-
rameters are the two dynamo numbers for the incoherent effects,

D�S ¼ C�CS ; D�S ¼ C�CS ; ð34Þ

which can be expressed in terms of the three quantities

CS ¼ jSj
�T k 2

; C� ¼ � rms
22

�T k
; C� ¼

� rms
21

�T
: ð35Þ

In Figure 12 we give a contour plot of the normalized growth
rate as a function of the two dynamo numbers,D�S andD�S . For
small values of D�S , the incoherent shear-current effect has
a slightly adverse effect on the dynamo, but for larger values,
it lowers the critical value of D�S significantly. For D�S ¼ 0,
even a purely incoherent shear-current dynamo is possible if
D�S > 6:5.

In interpreting simulations, we focus on domains whose
smallest finite wavenumber in the z-direction is k1z. In view of
the already discussed dynamo found by Yousef et al. (2007) we
employ the data for � rms

ij and �
rms
ij originating from our afore-

mentioned calculations of similar cases to derive growth rates
with the help of Figure 12. With k ¼ k1z ¼ k1/16 we find first
CS � 40, and from Figures 5 and 11, we have C� � 0:1 and
C� � 0:1 (using kf /k1 ¼ 3), so thatD�S � 4 and D�S � 4. This
suggests that the incoherent shear-current dynamo is subcriti-
cal, while the incoherent alpha-shear dynamo is supercritical.
Therefore, an incoherent alpha-shear dynamo seems to be a
plausible explanation. This explanation is further supported by
our finding that for constant rms values the growth rate is in
good approximation a linear function of SYjust as observed by
Yousef and coworkers.

An explanation in terms of the incoherent � effect is also
suited for the nonhelical dynamo of Brandenburg (2005a), where
CS � 25, C� � 0:15, and C� � 0:2 for the appropriate value of
the magnetic Reynolds number, ReM ¼ 80, so that D�S � 4 and
D�S � 5. For this model we used kf /k1 ¼ 5, although the shear
profile is here more complicated.

Finally, let us return to the cases of dynamo action consid-
ered in Figures 7 and 8. If we assume that the negative values of

�21 seen in Figure 5 for ReM > 100 are real, we have to ask for
the relative importance of the regular (coherent) shear-current
effect and the two incoherent effects. For both dynamo cases in
Figures 7 and 8, the values of CS are�30 (but uncertain because
the dynamo-generated field quenches the value of �t), so the
three dynamo numbers would beD�S � 1:5 for the regular shear-
current effect, D�S ¼ 1:5Y3 for the incoherent one and D�S ¼
3Y6, respectively, where we have usedC� ¼ 0:05Y0:1 andC� ¼
0:1Y0:2 (cf. Figs. 5, 9, and 11). The corresponding critical values
are 1, 6.5, and 2.3, respectively. Hence, with respect to the reg-
ular shear-current dynamo this case is only slightly supercrit-
ical, but subcritical with respect to the incoherent shear-current
effect and supercritical with respect to the incoherent alpha-shear
dynamo. By inspection of the values of the growth rate it is pos-
sible to infer safely that this situation is dominated by the inco-
herent � effect. The incoherent shear-current effect has a weakly
adverse influence, whereas its regular counterpart clearly supports
dynamo action. The values of D�S and D�S could be somewhat
smaller if one takes into account that the level of fluctuations is
smaller for kf /k1z ¼ 10 instead of 5.

5. CONCLUSIONS

The present work has demonstrated that the test field method
provides a robust means of determining all components of the
turbulent magnetic diffusivity tensor that are relevant for mean
fields depending only on z and t. Both rotating and weakly shear-
ing turbulence are studied. In either case, the diagonal compo-
nents of the turbulent diffusivity tensor are about equal to each
other. Shear slightly enhances the turbulent magnetic diffusiv-
ity, while rotation quenches it. In the presence of rotation, the
6 < J effect occurs, which is described by the off-diagonal com-
ponents of the turbulent magnetic diffusivity tensor. Shear leads
to the shear-current effect, again described by off-diagonal com-
ponents of this tensor. In both cases, the results are consistent
with those found in the framework of the second-order correla-
tion approximation.
The possibility of the so-called shear-current dynamo has been

scrutinized. It depends crucially on the sign of the component
�21 of the magnetic diffusivity tensor. It turns out that, within
the ranges of parameters considered, its sign is in general not
suited for driving a dynamo based on this effect, with a possible
exception at large magnetic Reynolds numbers. In this way, the
analytic results found in the second-order correlation approxima-
tion for incompressible fluids (Rüdiger & Kitchatinov 2006;
Rädler & Stepanov 2006) are confirmed and generalized.
Direct numerical simulations are presentedwhich exhibit grow-

ing mean magnetic fields in shear flow turbulence. An interpre-
tation as a (coherent) shear-current dynamo is hardly possible.
Instead, it is argued that it can be explained by an incoherent
alpha-shear dynamo. The incoherent shear-current effect has also
been determined, but it is found to be less important.
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Fig. 12.—Contour plot showing the normalized growth rate as a function of
the dynamo numbers for the incoherent alpha-shear and shear-current dynamos
from a numerical solution of themodel described in x 4.3. The zero line is given in
white. [See the electronic edition of the Journal for a color version of this figure.]
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APPENDIX A

CONCERNING � ij ¼ 0

In the case of rotation the tensorial structure of � ij must agree with that of �ij given in equation (3), that is,

� ij ¼ �0�ij þ �1�ijk�̂k þ �2�̂i�̂j: ðA1Þ

Since � ij is a pseudo-tensor and 6 an axial vector, the coefficients �0, �1, and �2 must be pseudo-scalars. Under our assumptions,
however, no pseudo-scalars can be constructed. So we have to conclude that � ij ¼ 0.

In the case of shear we may argue analogously. Referring to equation (5) and the subsequent explanations we have then

� ij ¼ �0�ij þ �1gigj þ �2hihj þ �3gihj þ �4gjhi ðA2Þ

with �0; �1; : : : ; �4 being pseudo-scalars. Again, it is impossible to construct pseudo-scalars. Thus, we have again � ij ¼ 0. Of
course, the situation would be different if the shear provided ( large-scale) kinetic helicity, as then the pseudoscalar US = (: < US)
would be available.

APPENDIX B

COMPARISON WITH RESULTS OF THE SECOND-ORDER CORRELATION APPROXIMATION

In a paper by Rädler & Stepanov (2006), the mean electromotive force has been calculated in the second-order correlation ap-
proximation for generally inhomogeneous turbulence in an incompressible rotating fluid showing a position-dependent mean motion.
In this context, the second-order correlation approximation was understood as the neglect of higher order terms in the induction
equation as well as in the momentum balance. Both the Coriolis force and derivatives of the mean velocity were assumed to be small
enough so that the mean electromotive force is linear in the angular velocity 6 and the gradient tensor of U. Detailed results were
obtained for a special correlation function of the background turbulence.

Let us apply the results to the situations considered in the present paper. In the case of rotation without shear we obtain

�

�t
¼ 1

4

ffiffiffiffi
	

2

r
CoReM (kckf )

2 ffiffiffi
q

p
� 0(q; PrM ); ðB1Þ

with Co, ReM , and PrM as defined above, q ¼ k2c /��c, and kc and �c being correlation length and time, respectively. When introducing
the Strouhal number St ¼ urmskf �c, we have q ¼ ReM /St. It seems plausible to assume that kckf � 2	. The function � 0 can be calcu-
lated according to �0 ¼ ½�0(�)(q; PrM )þ �0(�)(q; PrM )�/2�0(0)(q) from the functions �0(�), �0(�), and � 0(0) defined and plotted in Rädler
& Stepanov (2006). It turns out that �0 is never negative and approaches unity if PrM ¼ 1 and q ! 0. Of course, we have �/�T ¼
(�/�t)(�t/�T ). The factor �t/�T depends on ReM , kckf , and � 0(0)(q). It satisfies 0 � �t/�T < 1 and approaches unity as ReM ! 1.

Clearly, equation (B1) and the results reported in x 3.1 agree in the sign of �. Although these results do not really confirm the lin-
earity of � in Co, which is suggested by equation (B1), they are not in conflict with that (see Fig. 1). A further comparison of results is
difficult because of, e.g., the not exactly known value of kc and the errors of the data presented above.

Proceeding to the case of shear without rotation we note first that, due to the aforementioned assumption on the linearity in the mean
velocity gradient, that is, in S, both �11 and �22 are equal to zero. Furthermore, we have

�12
�t

¼ � 3

5
Sh ReM (kckf )

2�012(q; PrM );
�21
�t

¼ � 3

5
Sh ReM (kckf )

2�021(q; PrM ): ðB2Þ

Here �012 ¼ 1
2
½�0(D)(q; PrM )þ �0(W )(q; PrM )� and �021 ¼

1
2 ½�0(D)(q; PrM )� �0(W )(q; PrM )�, where �0(D) ¼ ½13�0(D)(q; PrM )�

7� 0(D)(q; PrM )�/6� 0(0)(q) and �0(W ) ¼ ½5�0(W )(q; PrM )þ �0(D)(q; PrM )�/6�0(0)(q), with the functions �0(D), �0(D), �0(W ), �0(W ), and
�0(0) of Rädler & Stepanov (2006). The quantities �012 and �

0
21 approach unity and zero, respectively, if PrM ¼ 1 and q ! 0.We note

that ��12/S and �21/S coincide with the quantities � 0 and � introduced in Appendix D of Rädler & Stepanov (2006), respectively. It
has been shown there that this � (different from that considered above) cannot take negative values. This applies then to �21 too.

Being aware that the second-order approximation applies only for ReM that is not too large, we may state that equation (B2) and the
numerical results reported in x 3.2 agree in the sign of �21. The possible deviation in Figure 5 is outside the validity range of this ap-
proximation. The linearity of �12 and �21 in Sh indicated in equation (B2) is well confirmed by the numerical results (see Fig. 3). Again,
further comparison of the results is, for the reasons mentioned above, rather difficult, but no striking disagreement has been found.

APPENDIX C

INCOHERENT ALPHA-SHEAR AND SHEAR-CURRENT DYNAMOS

We calculate numerically solutions of the dynamo equation with incoherent � and shear-current effects in unbounded space. It reads

DA

Dt
¼ �SAy x̂þ EEEEEEEE � �J; ðC1Þ
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where

Ei ¼ � ij(t)Bj � �ij(t)J j: ðC2Þ

The a and h tensors are delta-correlated in time with

h� ij(t)� ij(t
0)i ¼ � rms

ij

� �2
�(t � t 0); h� iji ¼ 0; ðC3Þ

h�ij(t)�ij(t 0)i � h�iji2 ¼ � rms
ij

� �2
�(t � t 0); ðC4Þ

where no summation over double indices is assumed and the angle brackets mean here a temporal or ensemble average. For solving
equation (C1) we use the Ansatz

A(z; t) ¼ Ã(t) exp (ikz) ðC5Þ

with an arbitrary, but fixed, wavenumber k and employ a third-order Runge-Kutta time-stepping scheme. At each time step of length
�t, the fluctuations of � ij and �ij are taken as random numbers from a Gaussian distribution and scaled by 1/ �tð Þ1/2 so that equa-
tions (C3) and (C4) hold.

We recall that, if � ij ¼ ��ij with � ¼ constTS/k, the critical value of the dynamo number D�S, as defined in equation (32) but
with � rms replaced by �, isDcrit

�S ¼ 2 (e.g., Brandenburg & Subramanian 2005a). In the case of a pure incoherent alpha-shear dynamo,
i.e., D�S ¼ 0, it is found that D crit

�S � 2:3 (see the left panel of Fig. 13). On the other hand, for D�S ¼ 0 we have D crit
�S � 6:5.

There are reversals on a typical timescale of about one diffusion time. However, this time can increase significantly if magnetic
helicity conservation (appropriate for a closed domain) is taken into account (Field &Blackman 2002; Blackman &Brandenburg 2002;
Subramanian 2002). This means that the � effect has to be amended by an additional term that results from the current helicity produced
by the dynamo. We assume again � ij ¼ ��ij and a nonfluctuating �ij ¼ �t�ij, further

� (t) ¼ �K (t)þ �M (t); ðC6Þ

where �K(t) is stochastic, just like � ij(t) in equation (C3), and �M (t) obeys the differential equation

d�M

dt
¼ �2�tk

2
f

ẼEEEEEEE � = B̃
�� ��
B2
eq

þ �M

ReM

 !
; ðC7Þ

with B̃ and ẼEEEEEEE defined analogously to Ã in equation (C5). The dynamo numberD�S is now defined with respect to � rms
K . Equation (C7)

is solved simultaneously with equation (C1) using the aforementioned time-stepping scheme. As here a nonlinearity is introduced, the
Ansatz from equation (C5) has now to be understood as a one-mode truncation. The model calculations show that the timescale for
reversals increases proportional to Re1/2M (see the right panel of Fig. 13).

Fig. 13.—Results for an incoherent alpha-shear dynamo (D�S ¼ 0). Left: Temporal evolution curves of Brms showing that the critical value of D�S is around 2.3.
Nonlinearity is here ignored and Brms is scaled by its initial value, B0. Right: With additional dynamical quenching, D�S ¼ 50 and kf /k1 ¼ 5. Note that the typical time
between reversals increases with ReM approximately like Re1/2M .
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