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ABSTRACT

The effect of a dynamo-generated mean magnetic field of Beltrami type on the mean electromotive force is
studied. In the absence of the mean magnetic field the turbulence is assumed to be homogeneous and isotropic,
but it becomes inhomogeneous and anisotropic with this field. Using the test-field method the dependence of the
a and turbulent diffusivity tensors on the magnetic Reynolds number is determined for magnetic fields thatReM

have reached approximate equipartition with the velocity field. The tensor components are characterized by a
pseudoscalar a and a scalar turbulent magnetic diffusivity . Increasing from 2 to 600 reduces by a factorh Re ht M t

≈5, suggesting that the quenching of is, in contrast to the two-dimensional case, only weakly dependent onht

. Over the same range of , however, a is reduced by a factor ≈14, which can be explained by a correspondingRe ReM M

increase of a magnetic contribution to the a-effect with opposite sign. Within this framework, the corresponding
kinetic contribution to the a-effect turns out to be independent of for . The level of fluctuationsRe 2 ≤ Re ≤ 600M M

of a and is only 10% and 20% of the respective kinematic reference values.ht

Subject headings: MHD — turbulence

1. INTRODUCTION

Magnetic fields in stars and galaxies tend to display large-
scale spatial order, and in the case of the Sun also long-term
temporal order (the 22 year cycle). The underlying process is
generally believed to be a turbulent large-scale or mean-field
dynamo—the simplest of which is an dynamo, which works2a
with helical turbulence and no mean flows. This can be modeled
by direct numerical simulations in a periodic box where the
flow is driven by helical isotropic forcing. Corresponding sim-
ulations by Brandenburg (2001) show that in the nonlinear
regime there is a resistively slow saturation phase associated
with nearly perfect conservation of magnetic helicity. This slow
saturation imposes tight constraints on the quenching of the
electromotive force. By comparing with suitable mean field
models one can only constrain the quenching of the full elec-
tromotive force, but not the individual quenchings of a and

, because the saturated mean magnetic field of an dynamo2h at

tends to become force-free, so the mean magnetic field and the
mean current density are aligned (Blackman & Brandenburg
2002, hereafter BB02). As a consequence an infinitude of com-
binations of quenching expressions for a and describe theht

same saturation behavior.
The saturation of the mean magnetic field is well described

by a mutual cancellation of kinetic and magnetic a-effects,
where the latter depends on the production rate of mean mag-
netic helicity. To reproduce the resistively slow saturation, both
kinetic a-effect, , and turbulent magnetic diffusivity, , coulda hK t

be assumed completely unquenched. This is however an un-
realistic simplification (Kleeorin & Rogachevskii 1999). Some
level of quenching of was found to be necessary to reproduceht

the simulations (BB02).
Since the early work of Vainshtein & Cattaneo (1992), a lot

of effort has gone into determining the quenching of a. It is
now clear that for mean fields defined as volume averages over
a periodic box a is “catastrophically” quenched like with�1ReM
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mean fields of equipartition strength (Cattaneo & Hughes
1996). However, subsequent work showed that this is a par-
ticular consequence of the use of full volume averages, in which
case the mean current density is zero (BB02).

The quenching of is much less understood. While in theht

two-dimensional case, is indeed catastrophically quenchedht

(Cattaneo & Vainshtein 1991), in three dimensions the quench-
ing may depend just on , but not on . This has already2B ReM

been found from the decay rate of a nonhelical large-scale
magnetic field in driven nonhelical turbulence (Yousef et al.
2003). Similar indications come also from fitting mean field
models to corresponding simulations (BB02).

Quantifying more precisely the simultaneous quenching of
a and is the goal of the present Letter. We admit both a andht

to be tensors, denoted by and , respectively, and weh a ht ij ij

calculate them using the test-field method (e.g., Brandenburg
et al. 2008; Sur et al. 2008). However, unlike earlier kinematic
work, we now allow the velocity to be the result of the fully
nonlinear hydromagnetic equations, i.e., to be influenced by
the resulting mean magnetic field.

2. THE METHOD

Following earlier work by Brandenburg (2001), we consider
a compressible isothermal gas with sound speed cs , but in ad-
dition we also solve a set of test-field equations, as was done
in Brandenburg et al. (2008) for the kinematic case. The full
set of governing equations is then

�U 2 �1p �U · �U � c � ln r � f � r (J � B � � · 2rnS),s
�t

(1)

� ln r
p �U · � ln r � � · U, (2)

�t

�A
p U � B � m hJ, (3)0

�t
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Fig. 1.—Compensated time-averaged spectra of kinetic and magnetic en-
ergy, as well as of kinetic and magnetic helicity, for a run with .Re p 600M

pq�a pqpq pq pq pqp U � b � u � B � u � b � u �b � m h j ,0
�t

(4)

where mean fields are defined as horizontal (xy) averages, thus
being functions of z and t only, and indicated by overbars
whereas lowercase vectors denote deviations from the averages
(“fluctuations”). The superscripts pq refer to four separate equa-
tions that are characterized by four different test fields pqB
having a or dependence ( s) in the x or ycos kz sin kz q p c,
component ( , 2). We employ a magnetic vector potentialp p 1
both for the magnetic field and for the responsesB p � � A
to the test fields, . We reinitialize to zeropq pq pqb p � � a a
every 30–60 turnover times to suppress small-scale dynamo
action (cf. Sur et al. 2008). Of course, the velocity is nowU
affected by the magnetic field through the Lorentz force.B
The current density is , where is the magneticJ p � � B/m m0 0

permeability. The flow is driven by random forcing described
by a forcing function consisting of circularly polarized planef
waves with positive helicity and random direction (giving rise
to a flow with maximal helicity), and ( )1S p U � U �ij i, j j,i2

is the traceless rate of strain tensor. The forcing func-1 d � · Uij3

tion is chosen such that the moduli of the wavevectors, ,FkFf
are in a narrow interval around an average value, which is
denoted simply by .kf

Owing to our definition of averages, is independent of xB
and y and all its first-order spatial derivatives can be expressed
by the components of . If we ignore higher order derivativesJ
of the mean electromotive force has the formB E p u � b

E p a B � m h J (5)ij 0 iji j j

with two tensors and , and we restrict our attention toa hij ij

, . For details see Brandenburg et al. (2008). Solving1 ≤ i j ≤ 2
the test-field equations allows us to calculate pq pqE p u � b
and, via equation (5), all 4�4 components of and .a hij ij

Important control parameters are the magnetic Reynolds and
Prandtl numbers, ( ) and , whereRe p u / hk Pr p n/hM rms f M

is the actual (magnetically affected) rms velocity2 1/2u p Au Srms

and angular brackets denote volume averages. The smallest
possible wavenumber in a triply periodic domain of size

is . In order to achieve large values ofL # L # L k p 2p/L1

, the value of should be small, but still large enoughRe k /kM f 1

to allow for a clear separation of scales between the domain
scale and the energy-carrying scale. We use as ak /k p 3f 1

compromise.
The structure of the turbulence is determined by the vectors
and , but for a Beltrami field they are aligned, so we haveB J

ˆ ˆa (B) p a (B)d � a (B)B B , (6)ij 1 ij 2 i j

ˆ ˆh (B) p h (B)d � h (B)B B , (7)ij 1 ij 2 i j

where means the unit vector in the direction of . WhenB̂ B
inserting this into the general expression for the electromotive
force given above this reduces to , withE p aB � m h J0 t

coefficients

a p a � a � h k and h p h , (8)1 2 2 m t 1

where ( ) is a pseudoscalar that quan-2k p k z, t { m J · B/Bm m 0

tifies the helicity of the large-scale field. (Here .)k /k ≈ �1m 1

We emphasize that for Beltrami fields the assignment of a1,
a2, , and to a and is not unique. In the general situation,h h h1 2 t

when the mean field is not of Beltrami type, instead of anda2

eight new coefficients emerge which contribute in an un-h2

ambiguous way to field generation and dissipation. Future work
must show whether our and are then still dominant.a h1 t

3. RESULTS

Throughout this Letter we fix and vary betweenPr p 1 ReM M

2 and 600. For large values of a broader range of scalesReM

is excited, as can be seen in spectra of kinetic and magnetic
energy, and , shown in Figure 1. In the rangeE E 4 !K M

both spectra are comparable to a spectrum. For�3/2k/k ! 30 k1

comparison, spectra of kinetic and magnetic helicity, andHK

, are also shown.HM

For there is no dynamo action, but in all other casesRe ≤ 2M

a large-scale magnetic field is maintained (Fig. 2), just as in
Brandenburg (2001), except that here instead of 5k /k p 3f 1

or larger. The dynamo is of type and hence the mean field2a
a Beltrami field,

B(z, t) p B(t)(cos v, sin v, 0), v p k z � f, (9)1

with phase f. To shorten the transient phase we use this field
also as initial condition.

Inserting equation (9) into equations (6) and (7) and cal-
culating suitable averages over z (or volume) we get

a p 8 a cos v sin v p 8 a cos v sin v , (10)G H G H2 12 21

a � a /2 p a p a , (11)G H G H1 2 11 22

and analogous for and . Obviously, the determination ofh h1 2

a1, a2, h1, and requires knowledge of the Beltrami phase f,h2

which often drifts away from its initial value during the course
of the run. We determine therefore the actual phase byf(t)
applying a suitable Fourier analysis to .B

In general, a-quenching can involve time derivatives (e.g.,
Kleeorin & Ruzmaikin 1982; BB02). In order to avoid such
complications we focus on statistically steady (dynamo) so-
lutions, that is, on the saturated dynamo fields. For given values
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Fig. 2.—Visualization of on the periphery of the computational domainBx

for a run with and a resolution of mesh points. Note that on3Re p 600 512M

average the field is compatible with that in eq. (9). Note also the clear an-
isotropy with structures elongated in the direction of the field. For an animation
see http://www.nordita.org/software/pencil-code/movies/icascade/.

TABLE 1
Transport Coefficients for Runs in the Range at Saturation Field Strengths2 ≤Re ≤ 600M

Run ReM
2B̃ 2b̃ ã h̃t h̃ l̃ ˜�a2 ˜�h2 ãrms h̃rms ˜�aK ˜�aM

˜Dt

A 2 0.0 0.0 0.70 � 0.03 0.67 � 0.07 1.57 �0.14 � 0.01 0.04 � 0.05 �0.02 � 0.06 0.09 0.12 1.03 0.01 150
B 4 0.9 0.4 0.44 � 0.01 0.58 � 0.02 0.72 0.01 � 0.00 0.34 � 0.02 �0.12 � 0.01 0.11 0.22 1.01 0.32 736
C 12 1.7 0.7 0.23 � 0.01 0.44 � 0.02 0.25 �0.02 � 0.01 0.39 � 0.02 �0.04 � 0.01 0.08 0.16 1.00 0.55 682
D 30 1.9 0.8 0.16 � 0.01 0.36 � 0.02 0.11 �0.00 � 0.01 0.37 � 0.02 0.03 � 0.03 0.07 0.14 1.02 0.62 350
E 60 2.0 0.8 0.09 � 0.01 0.22 � 0.02 0.05 0.00 � 0.01 0.33 � 0.01 0.05 � 0.01 0.09 0.22 1.00 0.66 711
F 150 2.0 0.9 0.07 � 0.00 0.19 � 0.01 0.02 0.01 � 0.01 0.24 � 0.05 0.08 � 0.01 0.07 0.16 1.01 0.69 225
G 300 1.8 0.9 0.06 � 0.00 0.15 � 0.00 0.01 0.01 � 0.01 0.21 � 0.02 0.05 � 0.02 0.06 0.16 1.01 0.66 177
H 600 1.8 0.9 0.05 � 0.01 0.13 � 0.01 0.005 0.01 � 0.04 0.14 � 0.05 0.04 � 0.01 0.05 0.10 1.03 0.64 44

of the parameters of the system (1)–(3), the saturation strength
of is uniquely determined. Hence, by changing the forcingB
strength or h we are only able to follow a specific path in the

plane, but not to scan it in a 2D fashion.B-ReM

In Table 1 we represent the results in nondimensional form
with normalized quantities indicated by a tilde. We normalize
the rms values of the mean field and the fluctuations with the
equipartition field strength ( ) and introduce2 2B p m Aru B Seq 0

˜ ˜ ˜h p h /h , h p h /h , h p h/h , (12)1 1 t0 2 2 t0 t0

˜ ˜a p a /a , a p a /a , (13)1 1 0 2 2 0

where ( ) , ( ), and ( ) is the1 1�1h p u B k a p � u B u Bt0 rms f 0 rms rms3 3

rms velocity of the saturated state, so the reference values are
already magnetically affected. This normalization implies that
in the kinematic case (Sur et al. 2008), while˜ ˜a p h p 11 1

. Error bars are calculated based on the maximum˜ ˜a p h p 02 2

departure obtained from the three time series, each taken over
one third of the full sequence.

The consistency of the results for a and with the presenceht

of a steady state can be assessed by calculating the growth rate,
l, of the associated kinematic mean field dynamo for a Beltrami
field with , i.e., . In the sat-2k p �k l p �ak � (h � h)km 1 1 t 1

urated state l should vanish. Again, we present l in nondi-
mensional form, here in terms of the turbulent decay rate,

2˜ ˜˜ ˜ ˜l { l/(h k ) p ak � (h � h), (14)t0 1 f t

where and . Within error bars, the value˜ã p a/a k p k /k0 f f 1

of l is consistent with zero, thus supporting the consistency
of a and with the established steady state; see Table 1. (Anht

exception is Run A, because it is subcritical and so .)l ! 0
This in turn supports the applicability of the test-field method
to the nonlinear case. However, as in almost all supercritical
runs a small-scale dynamo is operative, our results which are
derived under the assumption of its influence being negligible
may contain a systematic error. If present, it should be small,
though, given the good precision of the results for l. A more
thorough study of the role of the small-scale dynamo will be
the subject of future work.

A measure of the reliability of the averages is the length of
the time series in “turnover” times, ( ).˜Dt p u k t � trms f max min

Our results presented in Table 1 show a decline of by a factorã
≈15 and a decline of by a factor ≈5 as increases by ah̃ Ret M

factor 300 while .B p (0.9–1.4)Beq

As expected, there are random fluctuations of a and , rep-ht

resented here by their non-dimensional rms values, ã prms

and . Even for large the fluctuations˜a /a h p h /h Rerms 0 rms rms t0 M

remain around 0.1 and 0.2, respectively. This is less than in
the kinematic case (Brandenburg et al. 2008), but still com-
parable to the mean values of and , respectively.˜ ˜a ht

4. DISCUSSION

Let us now put our results in relation to earlier work, which
mostly used mean fields defined as full volume averages, hence
being uniform. In that case a was quenched all the way to zero
like . This result can be understood in terms of a mutual�1ReM

cancellation of kinetic and magnetic contributions to the a
effect (Pouquet et al. 1976),

1 1a p a � a , a p � tq ·u, a p tj ·b/r, (15)K M K M3 3

where . Assuming (Brandenburg &q p � � u tu k ≈ 1rms f

Subramanian 2007), we estimate t and hence, by measuring
and , we determine and ; see˜ ˜q · u j · b a p a /a a p a /aK K 0 M M 0

Table 1 and Figure 3. It turns out that is essentially inde-ãK

pendent of and approaches a certain fraction of ,˜ ˜Re a aM M K

reducing the residual a in equation (15) as increases. ThisReM

agrees only qualitatively with the measured decline of , be-ã
cause the residual a is still too big. However, equation (15)
assumes isotropy and that the values of t are the same for

and , which is not borne out by simulations (Brandenburga aK M

& Subramanian 2007). By contrast, our direct calculation
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Fig. 3.— -dependence of and together with and � .˜˜ ˜ ˜˜Re a h /k a aM t f K M

shows that is quenched to values of order , as is necessary˜˜ ˜a h /kt f

for a steady state; see equation (14). Note that the decline of
is much weaker than in the two-dimensional case whereh̃ ht t

decreases like (Cattaneo & Vainshtein 1991).�1ReM

5. CONCLUSIONS

For the first time it has been possible to determine both
and in the magnetically quenched case. These tensorsa hij ij

are here characterized by the non-tensorial quantities a and

. The consistency of the results of the test-field method sug-ht

gest that the nonlinear a can be determined from the knowledge
of ( ) over several past correlation times. Qualitatively, theu x, t
quenching of a can be explained by approaching for�a aM K

finite field strengths and large . Generally, a will beReM

quenched to whatever is the value of ( ) (BB02). How-h � h kt 1

ever, until now we had no idea how big the quenched value
of is. There was the possibility that was quenched to veryh ht t

small values, just like in the two-dimensional case (Cattaneo
& Vainshtein 1991). If that were true, a would also be very
small. We can now say that this is not the case, because isht

only reduced to about 20% of the kinematic value, while the
normalized value is quenched to 7% of its kinematic˜˜ ˜a ≈ h /k ≈t f

value, as is seen in Figure 3.
Obvious extensions of this work include the application to

non-Beltrami fields and to domains with boundaries and/or
shear. In the latter case there exists a great deal of earlier work
with relevant simulation data supporting the idea of an a effect
that is strongly controlled by magnetic helicity evolution, and
that catastrophic quenching can be decisively alleviated in the
presence of shear-driven magnetic helicity fluxes.
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