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ABSTRACT

Magnetohydrodynamic simulations of fully convective, rotating spheres with volume heating near the center and
cooling at the surface are presented. The dynamo-generated magnetic field saturates at equipartition field strength
near the surface. In the interior, the field is dominated by small-scale structures, but outside the sphere, by the global
scale. Azimuthal averages of the field reveal a large-scale field of smaller amplitude also inside the star. The internal
angular velocity shows some tendency to be constant along cylinders and is “antisolar” (fastest at the poles and

slowest at the equator).

Subject headings: convection — MHD — stars: low-mass, brown dwarfs — stars: magnetic fields —

stars: pre—main-sequence — turbulence

Online material: color figures

1. INTRODUCTION

The Hayashi track in the Hertzsprung-Russell diagram char-
acterizes young stars in hydrostatic equilibrium that are fully
convective. Other fully convective stars are low-mass main-
sequence stars (M dwarfs) and some cool giants. These stars
show strong magnetic activity as is evidenced by chromospheric
emission in Ha (e.g., Hawley 1993; Hawley et al. 1999) and by
Zeeman broadening of classical T Tauri stars (e.g., Johns-Krull
et al. 1999b). In the latter case, the stars are generally rapidly
rotating with rotation periods of just a few days, and it is known
that the magnetic field shows strong departures from axisym-
metry (Johns-Krull et al. 1999a). However, for less massive stars
(M9 dwarfs and beyond) there is a sharp decline in chromo-
spheric magnetic activity (e.g., Gizis et al. 2000), which may be
connected with dust formation and the almost fully neutral photo-
spheres (Mohanty & Basri 2003).

Despite some progress in low-resolution Doppler imaging
(e.g., Joncourt et al. 1994), not much is known about the sur-
face differential rotation of these stars, and even less is known
about their internal angular and meridional velocities. Theory
suggests that the absolute differential rotation in fully convec-
tive stars decreases with increasing overall angular velocity due
to rotational quenching of the turbulent transport effect that
causes the differential rotation (Kiiker et al. 1993; Kitchatinov
et al. 1994; Kiiker & Riidiger 1997, 1999). As in the solar
case, the equator is still predicted to rotate more rapidly than
the poles. However, some observations of rapidly rotating stars
support what is sometimes referred to as ““antisolar” differential
rotation, where the equator spins less rapidly than the poles
(Barnes et al. 2004; Kitchatinov & Riidiger 2004; Weber et al.
2005). Since differential rotation enters as an important ingredi-
ent in dynamo theory, it is important to develop self-consistent
models of the large-scale velocity field in fully convective
stars.
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Magnetic field generation in fully convective stars is also
interesting from a dynamo theoretical point of view. With the
realization that the magnetic field inside stars might be highly
intermittent and concentrated in thin flux tubes, the question of
storing such intermittent and strongly buoyant magnetic fields
over the course of the 11 yr cycle became a growing concern
(e.g., Moreno-Insertis 1983). This led to the proposal that dy-
namos in convective shells (as in the case of the Sun) might
operate at or below the bottom of the convection zone. This sce-
nario would not be applicable to fully convective stars because
they lack the overshoot layer where strong flux tubes could be
stored. However, it is known that the chromospheric activity
does not disappear for later spectral types, i.e., toward fully con-
vective stars (Vilhu 1984; Vilhu et al. 1989; Berger et al. 2005).
It has therefore been claimed (Durney et al. 1993; Hawley et al.
2000) that fully convective stars lack large-scale magnetic fields
but can still have small-scale fields generated by nonhelical near-
surface turbulent dynamo processes.

Attempts to model such small-scale dynamo action (Dorch
& Ludwig 2002) have, however, led to the conclusion that the
photospheric conductivities of M dwarfs are most probably too
low to allow for local small-scale dynamo action. This would
imply that the observed magnetic activity must be due to dy-
namo action in deeper layers.

From a kinematic mean field o> dynamo model, Kiiker &
Riidiger (1999) predicted that rapidly rotating (Coriolis number
of 3 or larger) fully convective stars generate a nonaxisymmetric
steady magnetic field of quadrupolar symmetry and azimuthal
order m = 1 that looks roughly like a dipole field with the di-
pole axis lying in the equatorial plane.

Global models of convective dynamos are still in their
infancy, even though some tremendous progress was made
some 20 years ago when Gilman (1983) and Glatzmaier (1985)
presented the first simulations of dynamos in a spherical shell
representing a solar-like convection zone. These models pre-
dicted cyclic magnetic fields propagating toward the poles, in
contrast to the solar case. The reason for this discrepancy re-
mains a matter of debate even today, when much higher nu-
merical resolution is available. Recent simulations still predict
angular velocity to be roughly constant on cylinders, although
some simulations show at least a tendency toward solar-like
angular velocity contours (Miesch et al. 2000; Brun & Toomre
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2002). Recent simulations of dynamo action in spherical
shells now begin to produce useful models of global turbulent
dynamos (Brun 2004; Brun et al. 2004). Meanwhile, such global
models have also been applied to core convection (Browning
et al. 2004) and to dynamo action in these cases (Brun et al.
2005).

In this paper, we present global dynamo simulations in
spheres using a Cartesian grid; i.e., the sphere is embedded in a
cubic box. This may seem to be an unnatural approach to spher-
ical geometry, but it has distinct practical advantages. First, it
avoids the coordinate singularity at the center when using spher-
ical coordinates, without invoking expensive transformations
from and to spherical harmonics. Second, this approach has
proven useful in view of computational simplicity and numer-
ical parallelization efficiency; it has recently been applied by a
number of groups to purely hydrodynamic simulations (Porter
et al. 2000; Freytag et al. 2002; Woodward et al. 2003), and at-
tempts have already been made to model dynamo action in this
approach (Dorch 2004).

2. THE MODEL
2.1. Basic Setup

In our model the star is described as a spherical subregion of
radius R of a cubic box of size L} . The gas in the box is gov-
erned by the usual equations of magnetohydrodynamics (see
below) with impenetrable boundaries on the box faces such that
the mass My« in the box is conserved. If the gravitational well
®(r) is sufficiently deep, most of the mass M of the star is con-
centrated near the center, so M ~ M. Using a Newtonian
cooling term in the energy equation, the temperature outside
the star is kept close to the nominal surface temperature of
the star, T, r. An entropy gradient is maintained by prescrib-
ing a distributed energy source H(r) at the center (here 7 is the
spherical radius). The total luminosity is then given by L =
47 f(f H(r)r? dr and corresponds to the energy produced by nu-
clear burning. We recall, however, that some young stars on the
Hayashi track have not ignited yet and are sustaining their en-
ergy losses by contraction, which results in a less localized
energy source than nuclear fusion reactions. Although the mass
distribution can change during the evolution of our model, we
have chosen to ignore self-gravity.

The model is governed by five main input parameters: mass
M, radius R, luminosity L, surface temperature T, and aver-
age angular velocity €. We choose parameters that are typical
of M dwarfs, but we limit the degree of stratification to values
that are numerically more feasible by choosing a surface tem-
perature that is much higher than for real M dwarfs. We also
keep the Kelvin-Helmholtz timescale at a much smaller multi-
ple of the dynamical timescale than what is realistic. As is com-
mon in deep convection simulations (e.g., Chan & Sofia 1986;
Brandenburg et al. 2005), we do this by choosing a luminosity
that is much larger than the stellar value, and at the same time
we keep the radiative diffusivity much larger than in reality.
Since the Rayleigh number is, for a given Prandtl number, in-
versely proportional to the square of the radiative diffusivity,
a large luminosity translates to a small Rayleigh number. The
restriction to moderate values of the Rayleigh number is a
common problem of all astrophysically meaningful convection
simulations.

Our initial state is derived from a spherically symmetric, is-
entropic reference model; for details see Appendix A. This state
is perturbed by adding weak velocity and magnetic fields that
are both random.

2.2. Equations

In the computational domain, —Lyox/2 < X, 1,2 < Lpex/2, We
solve the equations of compressible magnetohydrodynamics,
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where ¢ and p denote mass density and pressure of the fluid,
s and T are specific entropy and temperature, u is the fluid ve-
locity, v the kinematic viscosity, ® the gravity potential, €2 the
angular velocity of the reference frame, f; is an artificial damp-
ing force discussed in § 2.3, and

1 (Ou; Oup 2
Sk = 2 <8xk + ox; 3 g u) (5)
is the traceless rate-of-strain tensor. The magnetic vector po-
tential A is related to the flux density B = V x A and the current
density j = V x B/p,, and n denotes the magnetic diffusivity.
Volume heating H and cooling C are described in § 2.3 below.
The radiative conductivity K is related to the thermal diffusiv-
ity x = K/(cp0). In the numerical calculations shown below,
we assume X, v, and 7 to be constant across the whole box. Our
equation of state is that of a perfect gas with adiabatic index
v =5/3.

For the gravity potential ®(r) we choose a Padé ap-
proximation obtained from our isentropic reference model (see
Appendix A),

GM  ag+ ayr'* + azr”
R 1+ bor”? + byr® + azr'*’

B(r) = — (6)

with 7’ = 7/R; we find that the coefficients, ag = 2.34, a, =
0.44, a3 = 2.60, b, = 1.60, and b3 = 0.21, yield a good ap-
proximation both inside and outside the star.

Note that, while retaining the Coriolis force term, we neglect
the centrifugal force. This is necessary for practical reasons,
since together with the luminosity, our turbulent velocities g
are exaggerated and we thus need far too large angular veloc-
ities in order to reach realistic Coriolis numbers (see eq. [13]).
It would therefore be unrealistic to include the strongly exag-
gerated centrifugal force in the expression for the inertial forces.
We emphasize that this kind of restricted mechanics does not
violate the balance of angular momentum L in any significant
manner: the component L, parallel to the rotation axis is strictly
conserved (the centrifugal force is a central force for that axis),
while the other two components are small for a nearly axisym-
metric system.

Our boundary conditions on the faces of the cubic box are
impenetrable free-slip conditions for velocity (u, = 0, 0,uwp, = 0)
and normal-field conditions for the magnetic field (9,8, = 0,
B = 0).
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1.0F ~ 0 for r < R and 1 for » > R. Our profile function is a tanh
i 6" 1 profile,
0.8F ] 1 r—R
L - fext(r) = 5 (1 + tanh —ml), 9)
r 1 Weool
= 0.6 B .. .
= L - where R0l and weoo denote the position and width of the tran-
3 [ i sition, respectively. We have chosen weoo; = 0.05R, and Reoo1 =
0.4 - 1.05R, i.e., slightly larger than the stellar radius, in order to
[ . . ] reduce the influence of the cooling term (8) inside the star. In
- - - - isentropic model . .
F . : the present model, the exterior has practically constant temper-
0.2k ¢ ¢ ¢ Gaussianw;=0.162R | - . .
[ . i ature (=T,f); i.¢., no attempt is made to model the hot corona of
—— Gaussianw, =0.1R . .
F 1 the star. In fact, since we have to restrict ourselves to moderate
0.0( ! ! ] stratification, the temperature ratio between the center and the
0.0 0.2 0.4 0.6 0.8 1.0 surface of the model is less than 10.

r/R

Fi. 1.—Comparison of luminosity function L,(r) = [y H(+"Y4nr'? dr’ ac-
cording to eq. (A4) (dashed line) with our Gaussian parameterization (7). The
choice w;, = 0.162R gives an excellent fit, while the narrower profile would be
more appropriate for a heavier star.

All numerical calculations were done using the Pencil Code,*
a high-order centered finite-difference code (sixth order in space
and third order in time) for solving the compressible hydromag-
netic equations. Weak shock-capturing viscosities were used to
cope with localized, transient events of supersonic flow. A high-
order upwind scheme is used for the advection operators for
density and entropy (see Appendix B).

2.3. Profile Functions

As outlined in § 2.1, the thermal structure of the star is
maintained by prescribing a certain distribution of heating and
cooling functions inside and outside the star, respectively. The
profile functions depend on spherical radius » = (x2 + y2 + z2)!2.
In the exterior, » > R, we add a velocity-damping term in order
to prevent excessive velocities outside the star, which are not
directly relevant to the dynamics inside the star.

The central parts of the sphere are heated according to a
normalized Gaussian profile,

L _—
H(r) = W exp (m)a (7)

which gives an excellent fit to the heating rate calculated ac-
cording to equation (A4) for our isentropic reference model if
the width w; of the nuclear burning region is chosen as w;, =
0.162R. Figure 1 shows a comparison of the resulting lumi-
nosity from the two parameterizations. Most of our simulations
use that value of w;, while some runs have been carried out with
wr = 0.1R, which would be more appropriate for a more mas-
sive star.
For r > R, we apply a Newtonian cooling term of the form

T—T. Sur
—0r) = ~06p——"fou) (8)

COr

to keep the temperature close to the surface value Ty, s. Here
fext(r) 1s a profile function that smoothly interpolates between

4 See http://www.nordita.dk /software/pencil-code. This code uses the Mes-
sage Passing Interface (MPI) library for communication between processors
and runs quite efficiently on clusters. Toroidal averages, spectra, and other
diagnostics can be calculated during the run, which avoids extensive post-
processing of the data.

Outside the star, a damping term
u
fa=——Fexl(r) (10)
Td

is applied in the equation of motion to limit flow speeds to mod-
erate values while still allowing the exterior to react to sudden
disturbances from the stellar surface with sufficient flexibility;
the profile fox¢(7) is the same as for the cooling term, i.e., equa-
tion (9) with wy, = 0.05R, and R; = 1.05R. By imposing fixed
radial profile functions for surface cooling and velocity damp-
ing, we suppress the possibility of irregular surfaces that would
develop, e.g., in red giants (Freytag et al. 2002), but this would
not apply to real M dwarfs.

2.4. Dimensionless Parameters

As mentioned in the beginning, our model is governed by the
five basic input parameters: M, R, L, Tg,f, and €. From these,
we can construct three dimensionless quantities that charac-
terize our model: the stratification parameter

c_vz,surf / Y

ngT/R’ (11)

(where ¢, qurf is the sound speed at the surface and G is
Newton’s gravity constant), the dimensionless luminosity
L

VGMS RS’

and the Coriolis number (or inverse Rossby number)

L

(12)

Co = 2R /ttrms, (13)

where u, is the rms velocity based on a volume average over
the full sphere. The remaining degrees of freedom determine
the natural units of our system. In particular, length will be
measured in units of the stellar radius [x] = R, velocity in units
of [u] = (GM/R)"?, density in units of [9] = M/R®, and spe-
cific entropy in units of [s] = ¢,. This implies that time is mea-
sured in units of the dynamical time [f] = (GM/R?)~"? and the
magnetic field is measured in units of [B] = (y[0])"*[u] =
(110G) "M /R2.

Note that £ is the ratio of the pressure scale height at the
stellar surface to the stellar radius, so & controls the amount
of stratification. The second dimensionless parameter, £, is
the ratio of the acoustic (or free-fall, or dynamic) timescale to
the Kelvin-Helmholtz time. For realistic models, both £ and £
are much less than unity. Using typical values for an M5 dwarf
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TABLE 1
SuMMARY OF RUNS DISCUSSED IN THE PAPER

Run Resol. v X n L Q Y ukin /g3t B Brms/thms Re Rm
1283 6 x 107* 4x107* 3x 1074 0.02 0.2 0.017 0.173/0.164 0.020 0.12 273 547

2563 4x10* 3x 1074 2x 1074 0.02 0.2 0.043 0.184/... 0.028 0.18 388 775

2563 4% 107 3x 107 2x 1074 0.01 0.2 .../0.130 0.023 0.18 325 650

1283 8 x 1074 8 x 107 4x10* 0.02 0.0 0.009 0.239/0.233 0.018 0.08 291 583

1283 8 x 107* 8 x 1074 4 x107* 0.02 0.5 0.017 0.213/0.185 0.046 0.25 231 463

1283 8 x 1074 8 x 107 4x 10 0.02 2.0 0.021 0.158/0.129 0.068 0.53 161 323

1283 8 x 1074 8 x 10~* 4x 10 0.02 5.0 0.036 0.112/0.087 0.099 1.14 109 218

1283 8 x 107* 8 x 1074 4 %1074 0.02 10.0 0.038 0.086/0.068 0.105 1.54 85 170

Nortes.—Diagnostic quantities listed are kinematic growth rate 4 of the magnetic field; rms values of velocity and magnetic flux density #;s and By, respec-
tively; ratio Byms/ums for the saturated state; kinetic Reynolds number Re (based on u,ys); and magnetic Reynolds number Rm (based on ). For all runs shown
here, the star is embedded in a cubic box of size Lyox = 3R. The gaps for runs 1b and 1c are due to the fact that we have not extended run 1b into the final saturated

regime, but rather lowered the value of £ and continued it as run lc.

(M =021 M;, R=027R;, L=0.008 Ls, and Tyt =
4000 K), we find £ =2.2x107* and £ =2.4x107'4. In the
simulations presented below, we are only able to reach values of
& and L that are somewhat below unity. In all models presented
here, we have & = 0.19; for most models we choose £ = 0.02
(i.e., ~10'? times higher than for a real M5 dwarf ), while we have
L = 0.01 in one of the higher resolution runs. The necessity of
exaggerated luminosities in numerical simulations of convec-
tion was first pointed out by Chan & Sofia (1986). For lower
values of £, yet higher numerical resolution would be required
to get sufficiently vigorous convection and dynamo action.

Other important dimensionless parameters are the kinematic
and magnetic Reynolds numbers,

UR
and Rm=—,
n

Re (14)

where U is the rms velocity within the sphere of radius R. In the
present simulations, Re and Rm are in the range 100—780 (see
Table 1). Realistic values of the fluid and magnetic Reynolds
numbers are much larger than what can be achieved in this type
of simulation.

3. RESULTS

The parameters for the runs discussed and presented in this paper
are summarized in Table 1. Throughout this paper, overbars denote
azimuthal averages. The rms values listed here are also averaged in
time. In runs la—1c, luminosity and resolution have been var-
ied, while in runs 2a—2e we have varied the angular velocity 2.

The simulations were typically run for about 87opm, where
Tonm = R2/(7%n) is the diffusive timescale for a structure of
wavelength 2R. One exception was the higher resolution runs
1b and Ic, which were only run for about 0.37gyy, each. In all
cases, the saturated state of the magnetic field was well estab-
lished (with the exception of run 1b, which we did not run long
enough) and quasi-stationary behavior was reached. To ensure
that we are not missing any slow trends, we continued run 2c
until 127op, but found nothing new during this somewhat pro-
longed saturated calculation.

For all runs listed in Table 1 the box size was Lyox = 3R. To
investigate the role of the boundaries of the numerical box, we
did a reference run in a larger box (Lyox = SR) at comparable
resolution. The results were fully compatible with Ly,x = 3R.

3.1. Radial Stratification

Figure 2 shows density, squared sound speed (proportional to
temperature), Mach number, and specific entropy as a function

of radius for run 1c. Density and squared sound speed vary by
a factor of about 5 from the center to the stellar surface. Apart
from a few localized transients, the maximum Mach number is
below unity and there is no evidence of shocks. The total var-
iation in specific entropy is about 0.6¢,. Even in the bulk of the
convection zone (0.15 < /R < 0.85) the specific entropy has a
standard deviation of about 0.05¢,, which is still much larger
than what mixing-length theory predicts for this type of star.
This is related to the high value of £ that we are using, which is
also the reason for the enhanced entropy values in the core. The
location of the specific entropy minimum is at #/R ~ 0.93, i.e.,
somewhat below the nominal surface of the star. This is pri-
marily a consequence of the rather large width of the profile func-
tions for cooling and velocity damping, which affect the interior
already inside » = R. At that effective radius, we naturally get a
thin overshoot layer (as found in real stellar chromospheres).

3.2. Hydrodynamic Flow Patterns

Since the initial magnetic field is weak (several orders of
magnitude below saturation), the kinematic phase of the dynamo
represents the hydrodynamic flow pattern in a nonmagnetic sce-
nario. Figure 3 shows an equatorial section of entropy and den-
sity for run 1b. One can clearly distinguish narrow cool structures
(downdrafts) that are familiar from box simulations of com-
pressible convection (e.g., Hurlburt et al. 1986; Nordlund et al.
1992). The flows are far from being laminar, as can also be seen
in Figure 4 (inset). However, given the numerical resolution,
only a limited range of scales can be resolved, as can be seen
from the magnetic energy spectrum during the kinematic dy-
namo phase (see next section).

Figure 5 shows a t-p average of kinetic helicity u - V x u for
the kinematic dynamo phase. As expected from the action of
the Coriolis force on expanding upflows and contracting down-
flows, the helicity is predominantly negative in the northern and
positive in the southern hemisphere. If kinetic helicity is con-
nected to a turbulent electromotive force, we find a distribution
of the «-effect that is reminiscent of classical mean field dy-
namo models (e.g., Roberts 1972). It should hence not be sur-
prising if the flow generates a large-scale magnetic field.

3.3. Dynamo Action

The turbulent kinetic energy quickly reaches a statistically
steady state after about 5 dynamical times (¢ ~ 5[¢]), while the
energy of the initially random magnetic field decays at first (see
Fig. 4). This is because most of the magnetic energy of the ran-
dom field is in the small scales and thus gets quickly dissipated.
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Fic. 5.—Average of kinetic helicity for run 2¢ during the kinematic phase.
Shown is the azimuthal average of u + V x u, averaged in time from 7 = 100[¢]
to 300[z]. [See the electronic edition of the Journal for a color version of this
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The magnetic field then grows exponentially with a growth rate
A = d In Byys/dt of about 0.04/[¢] (for run 1b).

During the kinematic stage of the dynamo, the magnetic field
grows exponentially with the same rate at all wavenumbers,
so the spectrum remains shape-invariant, as can be seen in
Figure 6. The maximum of the magnetic spectrum is around
k =~ 3x27/R. The growth time 1/4 is about 1 order of magni-
tude shorter than the global diffusive timescale 7opm, Which is
a manifestation of turbulent magnetic diffusion.

At later times, magnetic energy saturates first at the smallest
scales, while the large scales still accumulate energy. Eventually
all scales are saturated, but now the magnetic spectrum peaks at
a larger scale than during the kinematic stage. As the magnetic
field reaches saturation, the kinetic energy of the flow is de-
creased by a certain amount that depends on the relative impor-
tance of rotation (see Table 1). For slowly rotating spheres the
kinetic energy decreases by only about 10%—-20% (runs la and
2b), but for more rapidly rotating spheres, where the magnetic
energy is also much larger, the suppression of the kinetic en-
ergy is about 50%—-60% (runs 2c—2¢). The strong dependence
ofthe kinetic energy on the magnetic field strength suggests that
the flows are probably not strongly turbulent and still governed
by a large-scale more laminar flow pattern.

Increasing the resolution by a factor of 2, while at the same
time decreasing dissipative effects (cf. runs la, 1b), we see that
the growth rate increases significantly (by a factor of 2.5; see
Table 1), but in the saturated state the rms velocity changes in-
significantly. The rms magnetic field increases by about 40%,
which is rather large and may be a consequence of the dynamo
not being strongly supercritical. Decreasing the luminosity by a
factor of 2 (cf. runs 1b, 1c) decreases rms velocity and magnetic
field only by about 20%.

Figure 7 shows spatial spectra of kinetic and magnetic en-
ergy. Kinetic energy peaks at a wavenumber of about k, ~
Ix27/R ~ 6[x]71, which corresponds to the energy-carrying
scale [smaller scales have a negligible contribution to the total
kinetic energy [ E(k)dk]. The corresponding turnover time is
T= (urmskp)_1 ~ 2[t]. This results in a normalized growth rate
At = 0.08, which is comparable to the values for both helically
and nonhelically forced turbulence simulations where Ar =

108 --—

Ey(k)

107"k

kR/2T

Fic. 6.—Spectra of the magnetic field for times ¢ = 300[¢], 600[¢], 900[¢],
1200[7], 1500[¢], and 2100[¢] of run 2c (for this run, exponential field growth
levels off around 7 = 700[#]). Magnetic energy increases with time and even-
tually reaches saturation. At late times the largest scales dominate.

0.03-0.1 (see Brandenburg [2001] and Haugen et al. [2004],
respectively). The saturation value of magnetic energy is typi-
cally 1 order of magnitude below the kinetic energy of the tur-
bulence for the slowly rotating models. This is quite similar to
the ratio found in earlier simulations of convection-driven dynamos
in Cartesian and spherical geometries (Meneguzzi & Pouquet
1989; Nordlund et al. 1992; Brun 2004). For the faster rotating runs
2c—2e, however, magnetic energy is comparable to kinetic energy.

Theoretically, there is always the possibility of different so-
lutions to a nonlinear problem, depending on the initial condi-
tions. This possibility has been anticipated in connection with
the geodynamo (Roberts & Soward 1992), but it has so far not
been seen in any turbulent dynamo simulation (e.g., Glatzmaier
& Roberts 1995). In principle, there is even the possibility of
so-called self-killing dynamos that decay after full saturation
has been reached, but such behavior has so far only been found
under rather artificial conditions and in the absence of turbu-
lence (Fuchs et al. 1999). In some cases we have restarted our
simulations from a snapshot that has been obtained for different

10°F T ' 3
10 - 3
2107k 3
S E ]
10°E 3
ol — magnetic (sat.) ]
[ | - - - Kkinetic (sat.) ]

ook Lo kinetic (kinem.)
I !

1 10
kR/I27

Fic. 7—Magnetic (solid line) and kinetic (dashed line) power spectra for the
saturated phase of run 2c. While the velocity spectrum peaks around k ~ 27/R,
magnetic energy is distributed more flatly around the largest scales. For com-
parison, the dotted line shows the kinetic spectrum during the kinematic dy-
namo phase.
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Fic. 8.—Magnetic energy spectra for the saturated states of runs 2a, 2b, 2c,
2d, and 2e.

parameters. In such cases we always recovered statistically the
same solution that was obtained in the standard way by starting
from a weak seed magnetic field and a nonconvecting initial
state. This was further confirmed by restarting run 2¢ with a
10'° times weaker initial field, which led to an indistinguishable
time history of upay for f < 5[t],5 and to statistically equivalent
behavior for larger times.

The saturation appears to happen on a dynamical timescale;
i.e., we see no evidence for resistively limited saturation, as was
found in helically forced simulations in a triply periodic domain
(Brandenburg 2001). Inrun 1b, the total simulated time ¢ = 700(¢]
corresponds to about 27opm. The nonresistive saturation be-
havior could be due to the fact that in the present simulations the
boundaries are open and permit a magnetic helicity flux across
the equatorial plane and out of the box (Brandenburg & Dobler
2001; Brandenburg 2005). Another possibility is that the mag-
netic Reynolds number is still too small for magnetic helicity
conservation to have an effect.

3.4. Dependence on Rotation Rate

In runs 2a—2e, we vary the rotation rate {2y while keeping
all other parameters fixed. As the rotation rate is increased, the
rms velocity of the turbulence decreases. This is to be expected
because the presence of rotation is known to delay the onset of
convection (e.g., Chandrasekhar 1961). The rms magnetic field
strength increases monotonically with the Coriolis number (or
the rotation rate 2y) for the runs shown.

In the absence of rotation (run 2a), there is no net helicity or
net shear and hence no reason for the generation of a large-scale
magnetic field. However, we still find that the magnetic energy
increases, albeit more slowly and to a lower value than for the
rotating runs. This is a manifestation of the “fluctuating” or
“small-scale” dynamo (Kazantsev 1968; Meneguzzi et al. 1981,
Cattaneo 1999), which requires a considerably larger value of
the magnetic Reynolds number than the helical dynamo, and
there are indications that run 2a is only mildly supercritical.

Comparing the magnetic energy spectra for runs with dif-
ferent rotation rates (Fig. 8), we find that the magnetic energy at
the large scales increases with €2y at least up to {0y ~ 5 (corre-
sponding to Co = 100), while the small scales are only weakly
affected by rotation. The saturation for rapid rotation has been

5 The resulting Lyapunov timescale is a few turnover times R/uys, as one
would expect.
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Fic. 9.—Three-dimensional visualization of the magnetic field for run 2c¢ at
t = 2600[¢] (saturated phase). Magnetic field lines are shown, together with the
surface of the sphere. [See the electronic edition of the Journal for a color ver-
sion of this figure.]

predicted by mean field dynamo theory (Riidiger & Kichatinov
1993; Ossendrijver et al. 2001), and for even larger €2, one ex-
pects a reduction of large-scale dynamo efficiency. However,
for our models the peak dynamo efficiency occurs for rather
large values of Co. Another surprise is that dynamo activity at
small scales (kR/27 = 10) is not quenched for “superfast” ro-
tation, although the Coriolis force should play a significant role
until & reaches significantly larger values.

3.5. Large-Scale Field Structure

Although a lot of the magnetic energy is due to the small-
scale structures, as can be seen in the magnetic energy spectra,
outside the star the field shows features of a dipole-like structure
with a noticeable contribution from the first few multipoles; see
Figure 9, where we show a visualization of the three-dimensional
magnetic field lines.

A more quantitative presentation of the large-scale magnetic
and velocity fields is obtained by considering azimuthal aver-
ages, as shown in Figure 10 for one snapshot of run 2c. The
magnetic field shows a clear large-scale component with pre-
dominantly quadrupolar symmetry with respect to the midplane,
but still including dipolar contributions. The velocity field shows
little large-scale structure and varies strongly in time.

We find a considerably more regular structure when applying
time averaging to the azimuthally averaged data. In Figure 11
we show, for the saturated states, the correspondingly averaged
magnetic fields (fop row) and velocity fields (bottom row) for
four different runs with rotation rate ) increasing from left to
right. We note that for all runs the averaged velocity field changes
very little from the kinematic to the saturated stage of the dynamo.

With this averaging, we find almost perfect quadrupolar
symmetry for B in runs 2b and (slightly less pronounced) 2¢. On
the other hand, runs 2d and 2e show very pronounced hemispheric
asymmetry that appears to be relatively long-lived. For runs 2b
and 2c, the velocity field shows a meridional circulation pattern
that is directed outward at the equator, and surfaces of constant
angular velocity w are approximately cylindrical. For the rapidly
spinning runs 2d and 2e, the asymmetry in the magnetic structure
is reflected in differential rotation and meridional circulation.
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Fic. 10.—Azimuthal averages of (a) magnetic field and () velocity for run 2¢
at time 7 = 2100[7] (saturated phase). (a) Poloidal field lines of the p-averaged
magnetic field (orientation of the field lines in the top half is predominantly
counterclockwise), superimposed on a gray-scale representation of the azi-
muthal mean field, B, with light gray representing B, > 0 and dark gray
representing B, < 0. Note the mixed parity of the structure of the mean field
with a strong quadrupolar contribution. (b) Vectors of the mean poloidal ve-
locity superimposed on a gray-scale representation of the mean angular velocity
0Q(r, z) = u,/(r sin 0) with light gray for 62 > 0 and dark gray for 62 < 0.
Note that for different snapshots in time the velocity field # looks very different.
[See the electronic edition of the Journal for a color version of this figure.]

An explicit measure for the efficiency of large-scale field gen-
eration is the ratio

B2\ 1/2
a =100 (15)

which is given in Table 2. A similar quantity g, is also defined
for the velocity. Here the overbar denotes azimuthal averaging,
(), represents time averaging, while (), denotes spatial averag-
ing over the sphere, and By,s = ((B?),),.. Thisratiois gg = 0.19
for run 2b and increases further with the rotation rate. These
values are quite large, suggesting that large-scale field gener-
ation is quite efficient. However, in forced turbulence simu-
lations with open boundaries and no shear (Brandenburg &
Dobler 2001), g decreases with increasing magnetic Reynolds
number. On the other hand, simulations of forced turbulence
suggest that the presence of shear is critical for allowing the
dynamo amplitude to be independent of the magnetic Reynolds
number (Brandenburg 2005). Further numerical simulations
are necessary to see whether the same behavior occurs here as
well.

The ratios
RN 2 S (177 S
u — b) i —
(o) )11 (Bpot)y )11

quantify the importance of the azimuthal components in the
- and t-averaged fields. In the nonrotating case, p,, is very small,
indicating that systematic azimuthal flows are weak. With in-
creasing angular velocity, however, p, at first increases as sys-
tematic differential rotation evolves. The slight decline of p,
in runs 2d and 2e is connected with the stronger magnetic field

in those cases. In fact, both the azimuthal component ((@)% 12
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and the poloidal component ({zpe))1* decrease monotoni-
cally from runs 2b to 2e because of the increasing large-scale
magnetic field.

The ratio pp is 1.1 in the nonrotating case; it has a maxi-
mum already for 29 = 0.5 (run 2b) and then declines. The total
magnetic energy continues to grow with higher rotation rates
(see Table 1), indicating that with increasing rotation rate the
poloidal field continues to grow, while the toroidal field remains
roughly unchanged. This seems to be in qualitative agreement
with the simulations by Brun et al. (2004) for dynamos in con-
vective shells without tachocline. On the other hand, this ratio
is in all cases small compared to what is expected for the Sun,
where the tachocline can be expected to have a strong effect.

With the exception of run 2b, the absolute amplitude Aw
of the differential rotation for kinematic and saturated states
is similar. This is consistent both with theory (Kitchatinov &
Riidiger 1999) and with observations showing only a weak
dependence of surface differential rotation on stellar rotation for
late-type stars (Barnes et al. 2005), which are, however, not fully
convective.

Next, we show the energy ratios

2

_ (B))),:

op =
) > )
Brms

((@2),),

2
Uins

(17)

Oy

quantifying the fraction of energy contained in the axisym-
metric part of # and B. For most of the rotating runs, op in-
creases drastically from the kinematic stage to saturation. This
is another manifestation of the trend toward large-scale fields
once the small scales are saturated (see Fig. 6). On the other
hand, o,, which is strongly reduced by rotation, is not severely
affected by the magnetic field saturation.

Finally, we consider the parity of the mean field with respect
to the equatorial plane. Earlier work on mean field dynamos
in full spheres (Brandenburg et al. 1989) has shown that for
weakly supercritical dynamos the parity is dipolar (antisymmetry
with respect to the equator). However, as the dynamo becomes
more supercritical, the parity can become quadrupolar (sym-
metric with respect to the equator), but mixed and chaotic be-
haviors are also possible (Covas et al. 1999). Parity of the mean
field can be quantified as

_ Es—Ey4

p="2"0
Es+E,

(18)

where Eg and E, denote the energies contained in the symmet-
ric and antisymmetric parts of B. The values of P are listed
in Table 2 for the saturated stage of the dynamo. For runs 2b
and 2c the mean field is nearly quadrupolar, P =~ +1, as is also
evident from Figure 11.° Both in the absence of rotation and
for strong rotation the mean fields are of more mixed parity
character. Comparison with mean field dynamos would suggest
that our runs 2b and 2c are in the ““more supercritical” regime.
However, we have not found a case that would clearly belong
to the weakly supercritical regime, where dipolar fields are ex-
pected. In addition, mean field theory would suggest cyclic mean
fields, which have also not been seen. It is possible that such

® Note that the mean field for the snapshot shown in Fig. 9 is still pre-
dominantly symmetric, although its poloidal field lines look quite dipolar. This
is due to three factors: the dominance of the azimuthal component, the non-
axisymmetry of the field, and a hemispheric asymmetry that is not very prom-
inent in Fig. 9.
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Fic. 11.—Azimuthal averages for runs 2b—2e as in Fig. 10, but now the fields are additionally averaged over 1000—2000 time units [#] (about 150—300 turbulent
turnover times, or 47onm —870nm) during the saturated state. Angular velocity € increases from left to right; the panels are labeled by the names of the individual
runs. Top row: Magnetic field. Orientation of the field lines is predominantly counterclockwise in the top hemisphere and clockwise in the bottom hemisphere in all
four panels. Bottom row: Velocity. Note that the angular velocity shows some tendency to be constant along cylinders for runs 2b and 2¢, while magnetic and
velocity field are asymmetric for runs 2d and 2e. The amplitudes of magnetic and velocity fields have been scaled individually for each image; absolute values of
Bims and uyy are given in Table 1. [See the electronic edition of the Journal for a color version of this figure.]

features would emerge in a direct simulation only after many of the magnitude of large-scale fields on the magnetic Reynolds

more turnover times than what has been possible here. number. Observationally, of course, only the limit of very large

The ratios g and p allow us primarily to assess the mode of magnetic Reynolds numbers is relevant. More detailed com-

operation of the dynamo found in the simulations. In particular, parison of the g and p ratios with observations is hampered by

they provide a sensitive tool to assess the possible dependence the fact that the magnetic field in the star’s interior cannot be
TABLE 2

ADDITIONAL D1aGNosTIC QUANTITIES FOR RUNS 2a—-2e

Run Qo Qu qB Pu PB Awki AW okin/gsat okin/gsat P
0.0 0.30 0.02 0.04 1.10 0.53/0.24 0.240/0.214 0.071/0.079 —0.12
0.5 0.38 0.19 1.44 2.95 1.23/0.97 0.222/0.221 0.077/0.147 +0.99
2.0 0.14 0.39 1.80 2.36 0.56/0.22 0.062/0.079 0.124/0.271 +0.91
5.0 0.14 0.40 1.59 1.32 0.82/0.26 0.054/0.064 0.046/0.271 +0.28
10.0 0.14 0.46 1.27 1.17 0.50/0.14 0.080/0.063 0.047/0.326 —0.28

Note.—All quantities refer to the saturated state unless explicitly labeled “kin.”
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measured with current techniques. The interpretation of proxies
such as filling factors and the appearance of magnetic fields at
the stellar surface may be premature as long as we do not fully
understand the connection between magnetic fields at the sur-
face and at the interior. For example, the interpretation of bi-
polar spots in terms of distinct flux tubes may not be valid, and
hence the presence of spots may not necessarily indicate a high
degree of intermittency in the interior (Brandenburg 2005).
However, once the physics of the stellar surface is modeled more
realistically (e.g., without imposing an artificial cooling layer to
model radiation), it would be useful to produce synthetic surface
maps and light curves that can be compared with observations.

4. CONCLUSIONS

This work suggests that fully convective stars are capable
of generating not only turbulent magnetic fields but also strong
large-scale fields that dominate the magnetic energy spectrum.
In most of our models, the large-scale field has a strong quad-
rupolar component, in contrast to what is expected from mean
field theory for dynamo action in thick shells and in full spheres
(Roberts 1972). We have so far not seen evidence of magnetic
cycles. The resolution of our models is still too low to be able to
tell whether this type of magnetic field generation will continue
to operate at much larger magnetic Reynolds numbers, but our
results disprove the claim that a strong shear layer or a stably
stratified core are necessary ingredients for the generation of
large-scale magnetic fields. As one would expect in the absence
of strong shear layers, the toroidal and poloidal components of
the mean magnetic field are roughly comparable.

Another important result concerns the self-consistently pro-
duced differential rotation. In our simulations, the angular ve-
locity shows some tendency to be constant along cylinders, which
is plausible for rapidly rotating stars. Whether or not this is real-
istic is difficult to say. Asteroseismology may in the future be
able to reveal the internal angular velocity of stars, but at pres-
ent the time coverage is still too short and incomplete. There is
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at least some hope of observing the surface differential rotation,
at least of sufficiently rapidly rotating fully convective stars
such as T Tauri stars, using surface imaging (Collier Cameron
et al. 2004). This would be particularly interesting, given that
our simulations predict a more slowly rotating equator. This be-
havior is opposite that in the solar case. Thus far, theory in terms
of the A effect (e.g., Riidiger & Hollerbach 2004) also tends to
produce a faster equator, unless the turbulent motions possess
a predominantly radial structure (i mms > ,ms). In our case,
however, there is strong meridional circulation, which, due to
conservation of angular momentum, causes the outer layers to
rotate more slowly (see Kitchatinov & Riidiger 2004). Again,
this result may no longer hold in real stars because in our model
the degree of stratification is far too low and the luminosity too
high, so the convective velocities and meridional circulation tend
to be exaggerated.

Another reason for the slowly rotating equator could be con-
nected with the outer boundary condition. In connection with
geodynamo simulations there are indications that a no-slip outer
boundary condition (with respect to a rigidly rotating sphere) tends
to produce a more slowly rotating equator (Christensen et al.
1999). In the limit of a short damping time, our effective outer
boundary condition at » = R should indeed be closer to a no-
slip condition than to a free-slip condition. On the other hand,
in strongly magnetized stars the coronal magnetic field may en-
force a rigidly rotating exterior and hence produce conditions
close to what is represented by our model.
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comments on a draft of our paper and an anonymous referee for
suggesting many improvements to the paper. We acknowledge
support from the Isaac Newton Institute in Cambridge, where
part of this work has been completed. The Danish Center for
Scientific Computing is acknowledged for granting time on the
Linux cluster in Odense (Horseshoe).

APPENDIX A

REFERENCE MODEL

In order to specify the initial conditions and the gravity potential, we use a simple spherically symmetric, hydrostatic, self-
gravitating, isentropic model. The equations for this reference model are

dm,

P 47r?p, (A1)
d Gm, 0>
fe_ _omer (A2)
dr vKr?
where m, denotes the total mass inside the sphere of radius r, together with the boundary conditions
m(0)=0,  00) = g (A3)

Here K = ¢79/% = constant is the polytropic constant, relating pressure p and density o via p = K”, and s is the constant value of
entropy. The adiabatic exponent is v = 5/3, and thus our reference model is a polytropic model with polytropic index m = 3/2.

Equations (A1) and (A2) are integrated outward, starting with certain values (g, so) for central density and entropy, respectively. As
is common with polytropic models, the solution can have a surface (where o = p = T = 0) at some finite radius Ry, which must not
be smaller than the desired stellar radius R.

Varying the central values (g, sg), we can tune the reference model to match a given reference stellar radius R and total mass M.
We choose the values R = 0.27 R, = 1.9x10® mand M = 0.21 M, = 4.2x10% kg, which correspond to an M5 dwarf with a lu-
minosity of L = 0.008 L., = 3x10%** W.
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Once the temperature and density profiles are known, one can calculate the approximate volume heating rate according to the
formula

2 53
_ 0 T -3
T)~49x1074 W ) A4
e 1) x <105 ke m‘3> (106 K) m (a4)

The T3 dependence is an approximation for the pp1 chain of hydrogen burning near 7T, ~ 6x10° K (see § 18.5.1 of Kippenhahn
& Weigert 1990). We have used a Gaussian approximation to this (time-independent) radial dependence of H(r) for all simulations
presented here, while adjusting the total luminosity by a multiplicative factor. Figure 1 shows the luminosity L,(r) as a function of
radius.

APPENDIX B
HIGH-ORDER UPWIND DERIVATIVES

Convection simulations with high-order centered finite-difference schemes sometimes show a tendency to develop “wiggles”
(Nyquist zigzag) in In p. This can be avoided by using a high-order upwind derivative operator, where the point farthest downstream
is excluded from the stencil. We apply this technique only to the terms u « V In g and u - Vs. In the following we discuss the treatment

in the x-direction, but the treatment for the other directions is analogous. For u, > 0, we replace

—f A5 A4S =%+ L, XD (&)
Dcent,6ﬁ) = 606x *f(‘) + 140 ) x_3 < 66 < X3, (Bl)
by
—2f 5 4+ 15f 5 — 60f_; + 20f; + 30f; — 3 5x3F©
Dup,Sféz f3+ f2 fl+ fb+ ﬁ ﬁ:f/_ )Cf (65), x_3<£5<x2' (Bz)

606x

0 60

Both formulae follow from Markoft’s formula (Abramowitz & Stegun 1984, § 25.3.7).
The difference between the sixth-order central and fifth-order upwind derivative is proportional to the sixth derivative operator

[ =62+ 151 =20 + 15/ — 6h + /5 _

6x2f(8)(xO)
Dienfo = ; S+ 0, (B3)
ox 4
namely,

Dup,Sfb = Dcent,6 0 — a5st<6;em’2a (B4)
with o = 1/60. This allows us to represent the fifth-order upwind scheme in the advection term (for both signs of u,) by sixth-order
hyperdiffusion:

_uxfu/p,S = _uxfc/ent,6 +a |“x|6x5fc$1)t,2' (BS)
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