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ABSTRACT

Aims. To quantify the transient growth of nonaxisymmetric perturbations in unstratified magnetized and stratified non-magnetized rotating
linear shear flows in the shearing sheet approximation of accretion disc flows.
Methods. The Rayleigh quotient in modal approaches for the linearized equations (with time-dependent wavenumber) and the amplitudes
from direct shearing sheet simulations using a finite difference code are compared.
Results. Both approaches agree in their predicted growth behavior. The magneto-rotational instability for axisymmetric and non-axisymmetric
perturbations is shown to have the same dependence of the (instantaneous) growth rate on the wavenumber along the magnetic field, but in the
nonaxisymmetric case the growth is only transient. However, a meaningful dependence of the Rayleigh quotient on the radial wavenumber
is obtained. While in the magnetized case the total amplification factor can be several orders of magnitude, it is only of order ten or less
in the nonmagnetic case. Stratification is shown to have a stabilizing effect. In the present case of shearing-periodic boundaries the (local)
strato-rotational instability seems to be absent.
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1. Introduction

The gas in accretion discs is generally though to be turbu-
lent (Shakura & Sunyaev 1973). This allows potential energy
to be converted into kinetic energy which can then be dissi-
pated (e.g., Frank et al. 1992). This in turn can lead to signifi-
cant amounts of observable radiation. To sustain the turbulence,
there has to be some instability. This instability is now gener-
ally thought to be the Balbus-Hawley or magneto-rotational in-
stability (hereafter referred to as MRI; see Balbus & Hawley
1998 for a review). This instability is linear and local in that it
does not rely on the presence of boundaries. It exists already
in the axisymmetric case in the presence of an external vertical
field, which makes this instability technically easy to study.

In the nonaxisymmetric case, an azimuthal pattern will be
sheared out differentially, i.e. patterns in the inner parts of the
disc are advected faster than in the outer parts. After an increas-
ing number of orbits, this causes more and more rapid varia-
tions in the radial direction. Loosely speaking, this makes the
radial wavenumber time-dependent.

In the presence of radial boundaries or other radial non-
uniformities, and certainly also in the presence of nonlinear-
ity, any radial pattern that was initially harmonic will be-
come anharmonic. This produces a spectrum of wavenumbers

even for monochromatic initial conditions. Mathematically,
the stability of such a problem can be studied by solving
a one-dimensional eigenvalue problem subject to radial bound-
ary conditions (Ogilvie & Pringle 1996). Even though bound-
ary conditions are important in that case, the results may still
be relevant for driving turbulence provided the instability is not
limited to the vicinity of the boundaries.

In many numerical simulations of accretion disc turbulence
the shearing sheet (or shearing box) approximation has been
employed (Hawley et al. 1995; Matsumoto & Tajima 1995;
Brandenburg et al. 1995). This approximation represents the
other extreme, where boundaries and any non-uniformities are
strictly removed. Any instability that survives under these con-
ditions is often referred to as a “local” instability, even though
its onset properties may depend on the system size (as is typical
of all long-wavelength instabilities).

For nonaxisymmetric solutions, a purely analytic treatment
of the shearing sheet model is generally impossible, because
the solutions exhibit a complicated temporal behavior that can-
not even be approximated by an exponential time evolution.
In fact, all nonaxisymmetric solutions only exhibit transient
growth whose speed of growth depends on the instantaneous
wavevector. However, for the MRI it turns out that the Rayleigh
quotient obtained from the time-dependent nonaxisymmetric
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solution is a good approximation to the usual eigenvalue in
the much simpler axisymmetric problem. The purpose of the
present paper is to attempt a more systematic survey of the non-
axisymmetric problem by studying the dependence of Rayleigh
quotient in different two-dimensional parameter planes. We be-
gin with the fairly well understood MRI and then turn to the
less well understood problem with vertical density stratifica-
tion, but no magnetic field. The latter case is less well under-
stood, although it has been shown that in the presence of radial
boundaries there is a linear instability of the Taylor-Couette
problem with density stratification along the axis (Molemaker
et al. 2001; Shalybkov & Rüdiger 2005; Umurhan 2005). This
“strato-rotational” instability (hereafter refereed to as SRI) has
been confirmed numerically in the presence of boundaries
(Brandenburg & Rüdiger 2006), but it may still be local in char-
acter, i.e. its properties may not be sensitive to the presence of
boundaries (Dubrulle et al. 2005).

It turns out that in the nonaxisymmetric case without
boundaries there can at most only be transient growth. This is
also true of the MRI, which has an instantaneous growth rate
quite analogous to that in the axisymmetric case. In shearing
sheet simulations, sustained instability can only be the result of
nonlinearity allowing mode coupling and hence the recycling
of energy into new modes viable of repeated growth.

2. The shearing sheet formalism

The full hydrodynamic and magnetohydrodynamic equations
can always be written in the form

Dq
Dt
= F(q), (1)

where q is a state vector combining all components of velocity,
density, entropy, and the magnetic field, and D/Dt = ∂/∂t+U·∇
is the advective derivative. The velocity U can be subdivided
into an equilibrium solution (the mean flow U) and the depar-
tures from the mean flow, so

U = U + u. (2)

In the shearing sheet approximation, the mean flow depends
linearly on the cross-stream coordinate, say x, so we assume
the mean flow to be

U = (0, S x, 0)T , (3)

where S denotes the gradient of the shear flow. In a local model
of a keplerian disc we have S = − 3

2Ω, where Ω is the local
angular velocity.

Inserting Eq. (3) in Eq. (1) yields

∂q
∂t
+ S x

∂q
∂y
+ u · ∇q = F(q), (4)

where the second term on the left hand side has an explicit
x dependence. It turns out that none of the other terms have
an explicit x dependence. This is because we are restricting
ourselves only to linear shear flows, so the flow has constant
gradients.

Equation (4) can be linearized with respect to the departures
from the equilibrium solution, q, so we write q = q + q′ and
have

∂q′

∂t
+ S x

∂q′

∂y
= Lq′, (5)

where L is a matrix with differential operators and constant co-
efficients. Equation (5) can be solved by making the “shear-
ing sheet” ansatz (Goldreich & Lynden-Bell 1965; Balbus &
Hawley 1992a)

q′(x, y, z, t) = q̂(t) exp
[
ikx(t)x + ikyy + ikzz

]
. (6)

Note that by differentiating Eq. (6) with respect to t, one
pulls down a term proportional to i(dkx/dt)x. This explicitly
x-dependent term can be arranged to cancel the second term of
Eq. (5) by choosing

kx(t) = kx0 − kyS t. (7)

This leads to a set of ordinary differential equations,

dq̂
dt
= L̂q̂, (8)

where L̂ is a matrix with coefficients that are independent of x
and depend at most only on t.

In practice, we solve Eq. (8) numerically and monitor the
evolution of the norm, 〈q̂|q̂〉, and of the Rayleigh quotient

λ(t) =

〈
q̂|L̂q̂

〉
〈q̂|q̂〉 , (9)

where 〈a|b〉 =
N∑

i=1

a∗i bi defines a scalar product, and N is the

rank of the matrix L̂. We recall that, if the matrix was indepen-
dent of t, the Rayleigh quotient would be between the largest
and the smallest eigenvalue of L̂.

In the following we discuss first the MRI and turn then to
the case with stratification and address the possibility of the
strato-rotational instability (SRI).

3. MRI

3.1. Basic equations

Stratification is unimportant for the MRI, so we focus on the
simple case with uniform background density. To simplify the
problem further, we assume an isothermal equation of state, so
the pressure is given by p = c2

sρ. Here, cs is the sound speed
which is assumed constant. The full set of equations, in the
presence of rotation with angular velocityΩ, is then

ρ
DU
Dt
= −c2

s∇ρ − 2Ω × ρU − ρ∇ψ + J × B, (10)

DB
Dt
= B · ∇U − B∇ · U, (11)

Dρ
Dt
= −ρ∇ · U, (12)
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where D/Dt = ∂/∂t + U · ∇ is the advective derivative with
respect to the total flow velocity, B is the magnetic field,
J = ∇ × B/µ0 is the current density, and µ0 is the vacuum
permeability.

In an accretion disc, ψ = 1
2Ω

2(3x2− z2) is the tidal potential
that is derived by linearizing the gravitational potential with
respect to some point in the midplane of the disc some distance
away from the central object. However, in the following we
ignore vertical gravity and assume a more general body force
giving rise to the shear flow, so we assume ψ = ΩS x2. The
equilibrium solution is then given by U = (0, S x, 0), B = const,
and ρ = const. The mean flow is obtained by balancing 2Ω ×
U against ∇ψ. Inserting Eq. (2) into the U ·∇U nonlinearity of
the momentum equation, we obtain

U · ∇U = U · ∇u + u · ∇U + u · ∇u, (13)

where U · ∇U = 0 has been used. Note also that the term
u · ∇U = (0, S ux, 0) can be combined with the Coriolis force
−2Ω × u to give the force

f (u) =

⎛⎜⎜⎜⎜⎜⎜⎝
2Ωuy

−(2Ω + S )ux

0

⎞⎟⎟⎟⎟⎟⎟⎠ , (14)

which describes epicyclic deviations from purely circular mo-
tion. In terms of the departures from the mean flow, u, the mo-
mentum Eq. (10) can then be written as (Brandenburg et al.
1995)

ρ
Du
Dt
= ρ f (u) − c2

s∇ρ + J × B. (15)

Likewise, in the induction equation, there is the stretching
term B · ∇U on the right hand side of the induction Eq. (11),
which leads to a term B · ∇U = (0, S Bx, 0). We emphasize
again that in the two expressions (0, S ux, 0) and (0, S bx, 0),
shear only introduces terms with constant coefficients.

So far, all equations have been fully nonlinear. We can now
linearize the equations about u = 0, B = const and denote
the departures from the equilibrium solution by a prime. The
linearized Lorentz force can be written in the form(∇ × B′

) × B = B · ∇B′ − ∇
(
B · B′

)
. (16)

In the following two subsections we consider the cases of im-
posed fields that point either in the vertical or in the azimuthal
directions. The former case is particularly instructive, because
it allows an instability already in the much simpler axisymmet-
ric case.

3.2. Vertical field and axisymmetric perturbations

For a vertical field, B = (0, 0, Bz), we have

B · ∇B′ − ∇
(
B · B′

)
= Bz

⎛⎜⎜⎜⎜⎜⎜⎝
∂zB′x − ∂xB′z
∂zB′y − ∂yB′z

0

⎞⎟⎟⎟⎟⎟⎟⎠ , (17)

and the terms on the right hand side of the linearized induction
equation are

B · ∇u′ − B∇ · u′ = Bz

⎛⎜⎜⎜⎜⎜⎜⎝
∂zu′x
∂zu′y

−∂xu′x − ∂yu′y

⎞⎟⎟⎟⎟⎟⎟⎠ . (18)

Fig. 1. Axisymmetric MRI: evolution of the real part of λ (upper
panel) and the norm 〈q|q〉1/2 (or gain; see lower panel), for vAkz = 1
using a vertical initial field pointing in the z direction, with kx = ky = 0
and S = − 3

2Ω.

With these preparations we can write down the matrix L̂
(z)

for
the MRI with an imposed vertical equilibrium field,

L̂
(z)
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 2Ω 0 ikA
z 0 −ikA

x −ikc
x

−2ΩS 0 0 0 ikA
z −ikA

y −kc
y

0 0 0 0 0 0 −ikc
z

ikA
z 0 0 0 0 0 0

0 ikA
z 0 S 0 0 0

−ikA
x −ikA

y 0 0 0 0 0
−ikc

x −ikc
y −ikc

z 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

where we have used the abbreviations 2ΩS = 2Ω+S , kA
i = kivA

(sometimes also kA), kc
i = kics (or kc), and the state vector is

q̂ = (v̂x, v̂y, v̂z, b̂x, b̂y, b̂z, Λ̂)T , where the hats denote the shearing
sheet expansion analogously to Eq. (6). Here we have used the
rescaled variables Λ = cs ln ρ and b = B/

√
µ0ρ0 to make L̂

hermitian if S = 0. To ensure solenoidality of the magnetic
field, we calculate b̂x for the initial perturbation from (Balbus
& Hawley 1992a)

b̂x = −
(
kyb̂y + kzb̂z

)
/kx0 (for kx0 � 0). (19)

For kx = ky = 0, the matrix L̂ has an unstable eigenvalue λ =
1
2 S at kz =

15
16Ω. In Fig. 1 we present a solution of the ordinary

differential Eq. (8) using L̂
(z)

for S = − 3
2Ω and vAkz = 1. Note

that Re(λ/Ω) approaches 3
4 , i.e. the most unstable eigenvalue.

This suggests that the Rayleigh quotient λ(t) is indeed a good
approximation to the most unstable eigenvalue. In agreement
with earlier work (Balbus & Hawley 1992a; Kim & Ostriker
2000), the maximum growth rate agrees with the Oort A-value
(Balbus & Hawley 1992b), which is − 1

2 S , or 3
4Ω for keplerian

rotation.
In the special case ky = 0 (axisymmetry), L̂

(z)
is indepen-

dent of t and the solution is given by

q̂ = q̃eλt (for ky = 0). (20)

This leads to the well-known dispersion relation (Balbus &
Hawley 1991)[
λ4 + λ2

(
2k2

A + κ
2
)
+ k2

A

(
k2

A − 2ΩS
)] (
λ2 + k2

c

)
= 0, (21)
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Fig. 2. Nonaxisymmetric MRI: evolution of the real part of λ (upper
panel) and the norm 〈q|q〉1/2 (lower panel), for vAky/Ω = 1 using
an azimuthal initial field pointing in the y direction, and kz = 0.

where κ2 = 4ΩΩS is the square of the epicyclic frequency. The
resulting growth rates are

λ2
± = −v2

A k2 − 1
2κ

2 ±
√

4v2
A k2Ω2 + 1

4κ
4. (22)

In the range 0 < v2
A k2 < 2ΩS , λ can have real values, where

λ+ > 0, corresponding to instability.

3.3. Azimuthal field, nonaxisymmetric perturbations

Next we turn to the nonaxisymmetric problem. Of particular
interest is the case of a purely azimuthal field B = (0, By, 0),
which gives rise to the matrix

L̂
(y)
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 2Ω 0 ikA
y −ikA

x 0 −ikc
x

−2ΩS 0 0 0 0 0 −kc
y

0 0 0 0 −ikA
z ikA

y −ikc
z

ikA
y 0 0 0 0 0 0

−ikA
x 0 −ikA

z S 0 0 0
0 0 ikA

y 0 0 0 0
−ikc

x −ikc
y −ikc

z 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

Since L̂
(y)

is time dependent, the solution q̂ will not have an ex-

ponential time dependence and the eigenvalues of L̂
(y)

cannot
be interpreted as growth rate. Therefore we use the Rayleigh
quotient λ instead.

In Fig. 2 we show the evolution of Reλ as a function
of time, except that time is translated into a corresponding
variation of kx(t); see Eq. (7). In the second panel we show
the corresponding variation of 〈q|q〉1/2, where we see an in-
crease over about 8 orders of magnitude during the time in-
terval in which Reλ is systematically positive. Note also that
max(Reλ) ≈ 3

4Ω (upper panel of Fig. 2), which is indeed the
maximum growth rate of the axisymmetric MRI. This supports
our interpretation that the Rayleigh quotient provides a conve-
nient and quantitative means of estimating the growth rate of
the instability.

In Fig. 3 we show a two-dimensional parameter survey in
the (k, S ) plane of the gain factor and of max(Reλ). Note that
both the gain factor and max(Reλ) increase toward more neg-
ative values of S . Remarkable is the fact that on the Rayleigh

Fig. 3. Nonaxisymmetric MRI: dependence of the gain factor in log-
arithmic representation (upper panel) and of maxt(Reλ)/Ω (lower
panel) on S/Ω and vAk/Ω for a vertical field. Note that maxt(Reλ)/Ω
reaches the value of 1

2 S/Ω for different values of S/Ω.

line, S/Ω = −2, both quantities vary smoothly and do not show
any special behavior.

3.4. Direct numerical verification

It is instructive to compare the present modal analysis with a di-
rect three-dimensional simulation of the fully nonlinear equa-
tions in real space. This is done in Fig. 4 where we compare
the increase of 〈q|q〉1/2 with the resulting evolution of the root-
mean-square magnetic field from a direct simulation of the
shearing sheet equations. Here we also adopt an isothermal gas
with constant sound speed.

The initial condition for the 3-dimensional direct simula-
tion is obtained by evolving linearized shearing sheet equations
for ky = 1 and kz = 10 to the point where kx(t0) = −5. [The size
of the domain is (2π)3.] For definitiveness, we reproduce here
the numerical values in Eq. (6):

û =

⎛⎜⎜⎜⎜⎜⎜⎝
−0.311 − 0.037i
−0.461 − 0.054i
−0.088 − 0.010i

⎞⎟⎟⎟⎟⎟⎟⎠ , b̂ =

⎛⎜⎜⎜⎜⎜⎜⎝
+0.068 − 0.581i
−0.039 + 0.334i
+0.035 − 0.295i

⎞⎟⎟⎟⎟⎟⎟⎠ , (23)

and the logarithmic density is given by Λ̂ = 0.042 − 0.3647i.
The amplitude is chosen to be A = 10−4. Figure 5 shows images
of Bz on the periphery of the simulation domain at different
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Fig. 4. Transient amplification of the magnetic field by the nonaxisym-
metric MRI with an azimuthal field. The solid line shows the result
from the Rayleigh quotient method while the broken lines give the
result from direct three-dimensional simulations with zero viscosity
and zero resistivity. The square root of the Rayleigh quotient has been
scaled by a factor cq = 3.5 × 10−5 to make it overlap with Brms curve. A
resolution of only 323 meshpoints is completely insufficient to resolve
even the beginning of the instability. At least 2563 meshpoints are re-
quired to resolve the maximum (thick dashed line). After Ωt > 17
even the simulation with 2563 meshpoints becomes under-resolved.

times1. The simulations have been carried out using the Pencil
Code2 which is a high-order finite-difference code (sixth order
in space and third order in time) for solving the compressible
hydromagnetic equations.

The way how this transient amplification can lead to sus-
tained growth is through mode coupling, which is not consid-
ered in the present analysis. Relevant mode couplings could
come about either through nonuniformities in the cross-stream
or x direction and through boundary conditions, or through
nonlinearities. In the shearing sheet approximation only the lat-
ter is a viable possibility, and this is probably the mechanism
through which the early shearing sheet simulations produced
sustained turbulence (e.g. Hawley et al. 1995; Matsumoto &
Tajima 1995; Brandenburg et al. 1995).

We conclude this section by emphasizing the one-to-one
correspondence between numerical solutions of the shearing
sheet equations and the Rayleigh quotient method. The nonax-
isymmetric case is similar to the axisymmetric one in that the
maximum growth rate is the same. This is achieved for kx = 0,
which, in the nonaxisymmetric case, can only be the case at
one instance in time.

4. Shear flow with stratification

We now turn to the case with vertical stratification. In order
to allow for gravity waves, we need to abandon the isothermal
equation of state and use instead a perfect gas law. In terms of
specific entropy, s, we can formulate this as

s = cv ln p − cp ln ρ + s0, (24)

1 Animations of the flow can be found at
http://www.nordita.dk/brandenb/movies/disc and at
http://www.edpsciences.org

2 http://www.nordita.dk/software/pencil-code

where cp and cv are the specific heats at constant pressure and
constant volume, respectively. The specific entropy is only de-
fined up to an additive constant, s0. In the absence of heating
and cooling, the specific entropy remains constant on stream-
lines, i.e.

Ds
Dt
= 0. (25)

Using Eqs. (24) and (25) we can rewrite the continuity Eq. (12)
in the form

Dp
Dt
= −γp∇ · u, (26)

where γ = cp/cv is the ratio of specific heats and ∇ · U = 0
has been used. We solve Eqs. (25) and (26) together with the
momentum equation in the form

ρ
Du
Dt
= ρ f (u) − ∇p + ρg, (27)

where f (u) has been defined in Eq. (14). These equations have
an isothermal equilibrium solution (denoted by an overbar),

u = 0, s(z) =
cp − cv

H
, p(z) = p0e−z/H, (28)

where

H = c2
s/(γg) (29)

is the pressure scale height and cs is the sound speed. Both H
and cs are constants, and so is p0 which gives the pressure at
z = 0. The equilibrium density is given by ρ = γp/c2

s .
Linearizing Eqs. (24)–(27) about the z dependent equilib-

rium solution yields

s′

cp
=

p′

γp
− ρ

′

ρ
, (30)

∂s′

∂t
+ u′z

ds
dz
= 0, (31)

∂p′

∂t
+ u′z

dp
dz
= −γp∇ · u′, (32)

ρ(z)
∂u′

∂t
= ρ(z) f (u′) − ∇p′ + ρ′g, (33)

where primes denote deviations from the equilibrium. These
four equations have non-constant coefficients. Using rescaled
variables (denoted by a tilde),

s′ =
√
γ − 1 cp s̃ez/2H, (34)

p′ = γp0 p̃e−z/2H , (35)

u′ = csũez/2H, (36)

and eliminating ρ′ using Eq. (30), we can rewrite these equa-
tions in the form

∂s̃
∂t
= −√

γ − 1
cs

γH
ũz (37)
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Fig. 5. Images of the vertical component of the magnetic field, Bz, for the nonaxisymmetric MRI with an azimuthal field, using different values
of t, where the field at t = 0 corresponds to that given by Eq. (23).

∂ p̃
∂t
=

cs

γH
ũz − cs

( ũz

2H
+ ∇ · ũ

)
(38)

∂ũ
∂t
= f (ũ) + cs

(
ẑ

2H
− ∇

)
p̃ +

(
p̃ − √

γ − 1 s̃
) g

cs
· (39)

It is now convenient to introduce nondimensional time and
space coordinates. A natural length scale to choose might be H,
or better γH = c2

s/g. The problem with this is that the unstrat-
ified limit g → 0 is then ill-posed, because H → ∞. A more
flexible alternative is therefore to choose a “system” scale L, or
better γL, as our length scale. (The length scale L is not to be
confused with the matrix L.) Thus, we define nondimensional
inverse time and length scales via

∂

∂t
=

cs

γL
∂

∂t̃
and ∇ = 1

γL
∇̃. (40)

The final set of equations is then

∂s̃
∂t̃
= − L

H

√
γ − 1 ũz, (41)

∂ p̃
∂t̃
=

L
H

(
1 − γ

2

)
ũz − ∇̃ · ũ, (42)

∂ũ
∂t̃
= f̃ (ũ) − L

H

(
1 − γ

2

)
ẑ p̃ − ∇̃ p̃ +

L
H

√
γ − 1 ẑs̃, (43)

where we have defined f̃ (ũ) = (2Ω̃uy,−2Ω̃S ux, 0)T with 2Ω̃S =

2Ω̃+S̃ . Here, Ω̃ = γLΩ/cs and S̃ = γLS/cs are nondimensional
angular and shear velocities. We recall that g = (0, 0,−g). As
a nondimensional measure for the degree of stratification we
use in the following the symbol

g̃ =
γLg

c2
s
≡ L

H
· (44)

The case g̃ = 0 corresponds obviously to the completely
unstratified case.

Next, we write these equations in matrix form (5), make the
ansatz (6), and have a set of ordinary differential Eqs. (8) with
the matrix L̂ in the form

L̂ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 2Ω̃ 0 0 −ikx(t)
−2Ω̃S 0 0 0 −iky

0 0 0 Ñ −M̃ − ikz

0 0 −Ñ 0 0
−ikx(t) −iky M̃ − ikz 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (45)

operating on the state vector q̂ = (ûx, ûy, ûz, ŝ, p̂)T , which is
defined according to Eq. (6),

Ñ =
L
H

√
γ − 1 (46)

is the nondimensional Brunt-Väisälä frequency, and

M̃ =
L
H

(
1 − γ

2

)
(47)

is another nondimensional number characterizing the degree
of stratification. Note that in the absence of shear, S = 0, the
matrix L̂ is skew-hermitian, i.e. L̂i j = −L̂∗ji, and all eigenval-
ues are purely imaginary or zero. A similar nondimensional-
ization was used by Brandenburg (1988) for the case Ω = 0,
but space and time coordinates were scaled such that the coeffi-
cient M̃ became unity. As discussed above, this gives an unnec-
essary restriction in that it prevents us from making a contin-
uous transition to the unstratified case L/H = 0. Furthermore,
in the special case γ = 2, we have M̃ = 0, Ñ = L/H � 0,
which corresponds to the Boussinesq case if we also make
the assumption of incompressibility. Technically, the latter is
achieved by multiplying the left hand side of Eq. (8) by the
matrix diag(1, 1, 1, 1, 0). This means that p̃ can be expressed
in terms of ũ, and we are left with only 4 explicitly time-
dependent equations.

In the axisymmetric case, ky = 0, or in the absence of
shear, S = 0, the eigenvalues λ satisfy the dispersion relation
λD(λ, k) = 0 with

D = λ4 + λ2
(
k2 + κ2 + K̃2

)
+ k2

xÑ2 + κ2
(
k2

z + K̃2
)
, (48)

where k2 = k2
x+k2

z , κ is the nondimensional epicyclic frequency
with κ2 = 4Ω̃Ω̃S , and K̃2 = Ñ2 + M̃2 has been introduced as
an abbreviation. Written in dimensional form, this dispersion
relation is identical to the usual one for atmospheric waves in
an isothermally stratified atmosphere (Stein & Leibacher 1974;
Ryu & Goodman 1992). There are five solutions, one zero-
frequency mode, λ = 0, and four others with Im λ = ±ωp(k)
and Im λ = ±ωg(k), corresponding to p- and g-modes, respec-
tively.

Only in the axisymmetric case, ky = 0, L̂ becomes inde-
pendent of t (kx = kx0 = const) and so Eq. (48) can be used
even when S � 0. From Eq. (48) it is clear that now instability
requires

κ2 < −k2
xÑ2/

(
k2

z + K̃2
)
, (49)
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Fig. 6. Nonaxisymmetric stratified case: dependence of the gain factor
in linear representation (upper panel) and maxt(λ)/Ω (lower panel)
on S/Ω and g̃, for γLkz = 1.

which is also known as the Solberg-Høiland criterion
(e.g. Rüdiger & Shalybkov 2002; Narayan et al. 2002).
Negative values of κ2 = 4Ω̃Ω̃S are possible when −S > 2Ω,
corresponding to Rayleigh’s criterion. Instability occurs clos-
est to the Rayleigh line when k2

x is small and k2
z large.

In Fig. 6 we present the results of a two-dimensional pa-
rameter survey varying both the degree of stratification, g̃ as
well as the strength of the shear, S . The Rayleigh stability line,
S/Ω = −2, is particularly evident in the plot of the gain factor
(upper panel): for zero stratification the gain factor increases
sharply as one crosses the Rayleigh line. For stronger stratifica-
tion, the increase in the gain factor diminishes, suggesting that
stratification has a stabilizing influence on the Rayleigh-Taylor
instability.

For S/Ω > −2, the flow is known to be axisymmetrically
stable. Also in the nonaxisymmetric case the gain factor is neg-
ligible. Nevertheless, in the (g̃, S ) parameter plane there are re-
gions with an appreciable maximum value of λ (lower panel
of Fig. 6). However, as is seen more clearly in the correspond-
ing time trace (Fig. 7), a positive maximum of λ is more or
less compensated by a corresponding amount of negative con-
tributions. This explains the absence of a corresponding pat-
tern of maxt(λ) in the (g̃, S ) plane. This suggests also that,
in contrast to simulations of the MRI, the transients would be
insignificant to produce sustained growth.

Fig. 7. Nonaxisymmetric stratified case: dependence of the gain factor
and maxt(λ)/Ω on γLkx(t), for γLkz = 1.

5. Conclusions

The shearing sheet approximation is a powerful tool to ana-
lyze the behavior of an accretion disc locally. While this ap-
proximation eliminates a wide class of global instabilities, it
has the advantage of isolating local instabilities that are of-
ten believed to be responsible for driving turbulence. Our work
has demonstrated that for sufficiently weak perturbations there
is a direct correspondence between the solutions of shearing
sheet equations as obtained from a numerical code and the
Rayleigh quotient obtained by solving the modal equations
with a time-dependent radial wavenumber kx(t).

Within the framework of the shearing sheet approxima-
tion we have demonstrated the stability of a stratified isother-
mal atmosphere with horizontal keplerian shear to fully com-
pressible perturbations. The behavior of the solution is well
characterized by the Rayleigh quotient, λ(t), which is obtained
for a range of different initial conditions. The strato-rotational
instability (SRI), which has been seen in experiments and
calculations with radial boundaries (Molemaker et al. 2001;
Shalybkov & Rüdiger 2005), can therefore not be a local insta-
bility, as was already discussed by Umurhan (2005) and Lesur
& Longaretti (2005).

The present work has also highlighted the absence of any
correspondence between the growth rates obtained from the
pseudo-dispersion relation and the actual evolution of Re λ(t).
Of course, there will be transient growth from almost any initial
condition and for any value of S/Ω – including S/Ω > 0, which
would be stable even in the presence of magnetic fields (Balbus
& Hawley 1991). However, under certain conditions this can
lead to what is known as the bypass transition (Chagelishvili
et al. 2003; Afshordi et al. 2005), i.e. the transient growth that
can lead to a new state that is itself unstable. Nevertheless, the
presence of stratification (g̃ > 0) is here seen to have a stabiliz-
ing effect, making the connection with the SRI implausible.

We emphasize that in the non-Boussinesq stratified case it
is important to remove z-dependent coefficients before mak-
ing the exp(ikzz) ansatz. Otherwise, persistent real parts of λ(t)
will arise that reflect merely the fact that velocity increases as
a wave packet travels into less dense regions.
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Finally, it should be pointed out that, if keplerian shear
flows were locally unstable in stratified media, one might have
seen this in the fully nonlinear shearing sheet simulations of
Brandenburg et al. (1995), where the Lorentz force was re-
moved and the dynamo-driven turbulence was found to de-
cay rapidly; see their Fig. 4. A similar test was also done by
Hawley et al. (1995), but only for the unstratified case which
is not relevant here. We note that real discs have vertical shear
which does allow for a hydrodynamic instability, but it is far
less powerful than the Balbus-Hawley instability (e.g. Urpin
& Brandenburg 1998; Arlt & Urpin 2004). Other proposals
for hydrodynamic instability include the baroclinic instability
(Klahr & Bodenheimer 2003) that has been discussed in the
context of protostellar discs.

Acknowledgements. We thank Bérengère Dubrulle for numerous
email conversations on the subject of this paper. This work has
been supported by the European Commission under the Marie-Curie
grant HPMF-CT-1999-00411. The Danish Center for Scientific
Computing is acknowledged for granting time on the Horseshoe
cluster.

References

Arlt, R., & Urpin, V. 2004, A&A, 426, 755
Afshordi, N., Mukhopadhyay, B., & Narayan, R. 2005, ApJ, 629, 373
Balbus, S. A., & Hawley, J. F. 1991, ApJ, 376, 214
Balbus, S. A., & Hawley, J. F. 1992a, ApJ, 400, 610

Balbus, S. A., & Hawley, J. F. 1992b, ApJ, 392, 662
Balbus, S. A., & Hawley, J. F. 1998, Rev. Mod. Phys., 70, 1
Brandenburg, A. 1988, A&A, 203, 154
Brandenburg, A., & Rüdiger, G. 2006, A&A, submitted

[arXiv:astro-ph/0512409]
Brandenburg, A., Nordlund, Å., Stein, R. F., & Torkelsson, U. 1995,

ApJ, 446, 741
Chagelishvili, G. D., Zahn, J.-P., Tevzadze, A. G., & Lominadze, J. G.

2003, A&A, 402, 401
Dubrulle, B., Marié, L., Normand, Ch., et al. 2005, A&A, 429, 1
Frank, J., King, A. R., & Raine, D. J. 1992, Accretion power in astro-

physics (Cambridge: Cambridge Univ. Press)
Goldreich, P., & Lynden-Bell, D. 1965, MNRAS, 130, 125
Hawley, J. F., Gammie, C. F., & Balbus, S. A. 1995, ApJ, 440, 742
Kim, W.-T., & Ostriker, E. C. 2000, ApJ, 540, 372
Klahr, H., & Bodenheimer, P. 2003, ApJ, 582, 869
Lesur, G., & Longaretti, P.-Y. 2005, A&A, 444, 25
Matsumoto, R., & Tajima, T. 1995, ApJ, 445, 767
Molemaker, M. J., McWilliams, J. C., & Yavneh, I. 2001, PRL, 86,

5270
Narayan, R., Quataert, E., Igumenshchev, I. V., & Abramowicz, M. A.

2002, ApJ, 577, 295
Ogilvie, G. I., & Pringle, J. E. 1996, MNRAS, 279, 152
Rüdiger, G., & Shalybkov, D. 2002, PRE, 66, 016307
Ryu, D., & Goodman, J. 1992, ApJ, 388, 438
Shakura, N. I., & Sunyaev, R. A. 1973, A&A, 24, 337
Shalybkov, D., & Rüdiger, G. 2005, A&A, 438, 411
Stein, R. F., & Leibacher, J. 1974, A&AR, 12, 407
Umurhan, O. M. 2006, MNRAS, 365, 85
Urpin, V., & Brandenburg, A. 1998, MNRAS, 294, 399


