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The problem of small and large scale fields in the solar dynamo
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Abstract. Three closely related stumbling blocks of solar mean field dynamo theory are discussed: how dominant are the
small scale fields, how is the alpha effect quenched, and whether magnetic and current helicity fluxes alleviate the quenching?
It is shown that even at the largest currently available resolution there is no clear evidence of power law scaling of the magnetic
and kinetic energy spectra in turbulence. However, using subgrid scale modeling, some indications of asymptotic equipartition
can be found. The frequently used first order smoothing approach to calculate the alpha effect and other transport coefficients
is contrasted with the superior minimal tau approximation. The possibility of catastrophic alpha quenching is discussed as a
result of magnetic helicity conservation. Magnetic and current helicity fluxes are shown to alleviate catastrophic quenching
in the presence of shear. Evidence for strong large scale dynamo action, even in the absence of helicity in the forcing, is
presented.
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1. Introduction

Over the past 30 years, the standard approach to understand-
ing the origin of the solar cycle has been mean field dynamo
theory. This approach can be justified simply by the fact that
the sun does have a finite azimuthally averaged mean field,
B(r, θ, t), where r and θ are radius and colatitude. Obser-
vationally, we really only know with some certainty its ra-
dial component at the surface, Br(R, θ, t), where R is the
radius of the sun. There is also some indirect evidence for
the toroidal field, Bφ(rspot, θ, t), where rspot is the not well
known radius where sunspots are anchored. Both components
give a very clear indication of the spatio-temporal coherence
of the mean field, with a 22 year cycle and latitudinal migra-
tion.

Mean field theory has certainly been successful in show-
ing that a solar-like mean field can be produced if there is an
α effect, i.e. if the mean electromotive force has a component
along the mean field (Weiss 2005). A number of complica-
tions have arisen in the mean time.

Correspondence to: brandenb@nordita.dk

(i) The standard theory for calculating the value of α and
other relevant transport coefficients (such as turbulent
magnetic diffusivity) relies on the first order smooth-
ing (FOSA) or second order correlation approximation
(SOCA). This approach is valid if either the magnetic
Reynolds number is small (poor microscopic conductiv-
ity of the gas) or if the so-called Strouhal number (Käpylä
et al. 2005) is small compared to unity. The latter means
that the correlation time is supposed to be much less than
the turnover time of the turbulence, which is not usually
the case. The former assumption is equally inappropriate.

(ii) Shortly after mean field theory became popular there have
been recurrent concerns about its applicability when the
field strength is comparable to the equipartition value of
the turbulence, i.e. if the magnetic energy is compara-
ble to the kinetic energy of the turbulence. Such con-
cerns where first addressed by Piddington (1970, 1972),
but more recently by Vainshtein & Cattaneo (1992) and
Kulsrud & Anderson (1993).

(iii) In more recent years the problem of the resistively slow
evolution of magnetic helicity has been discussed in con-
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nection with a correspondingly slow saturation if the dy-
namo (Brandenburg 2001, Mininni et al. 2003). This re-
sistively slow time scale in the problem can also af-
fect the cycle period in an αΩ dynamo (Brandenburg et
al. 2001, 2002). The presence of boundaries may help
(Blackman & Field 2000a,b, Kleeorin et al. 2000, 2002,
2003), but it may also make matters worse (Brandenburg
& Dobler 2001). The question is therefore whether suit-
ably arranged shear is needed to transport magnetic he-
licity out of the domain (Vishniac & Cho 2001, Subrama-
nian & Brandenburg 2004). The indications are that with
shear and open boundary conditions the otherwise cata-
strophic α quenching can be alleviated (Brandenburg &
Sandin 2004).

In the following we discuss the current status on all three
issues. Indeed, there has been a lot of progress, and from an
optimistic viewpoint one might almost think that these issues
have now been solved. But, of course, as always in science,
new problems and unexpected issues emerge all the time.
Also, having proposed one solution to a problem does not
exclude alternative solutions, and so only with time will we
be able to look back and say how it really was.

2. Problem I: dominance of small scale fields?

The first issue of the relative importance of small scale versus
large scale fields can be discussed in terms of the magnetic
energy spectrum. We begin with a historical perspective.

2.1. Turbulent diffusion and turbulent cascade

Turbulent diffusion relies on the ability of the turbulence to
transport energy from large scales to small scales. This is an
important consideration that was discussed by Stix (1974) in
the context of early criticism raised against dynamo theory.
The situation is illustrated in Fig. 1.

The assumption of a magnetic energy spectrum being par-
allel or even coincident with that of kinetic energy, and this
being equivalent to the cascade in ordinary (nonmagnetic)
turbulence is natural, but not trivial and not fully confirmed
by simulations, as will be discussed in the next section.

2.2. Numerical indications for a magnetic cascade

Over the past decades some steady progress has been brought
about; see Fig. 2, where we show kinetic and magnetic en-
ergy spectra from Meneguzzi et al. (1981), Kida et al. (1991),
Maron & Cowley (2001), representing the improvement of
the state of the art simulations over the past three decades.
The spectra from all three papers show that at large scales
the spectral magnetic energy is below the spectral kinetic en-
ergy. In the spectra of Meneguzzi et al. (1981) and Maron &
Cowley (2001) the spectral magnetic energy peaks at about
k ≈ 5. However, there has not really been any evidence for
power law behavior. One exception is the spectrum obtained
by Kida et al. (1991) who find a k0 spectrum, but this has

Fig. 1. A sketch from the original review by Stix (1974) where he
illustrates the role of a turbulent cascade in converting large scale
poloidal and toroidal flux into small scale fields where it can be con-
verted into heat by microscopic resistivity.

not been found in subsequent simulations by Maron & Cow-
ley (2001) or Maron et al. (2004), for example. The numeri-
cal resolution used in the three cases is 643, 1283, and 2563

meshpoints, respectively. Obviously, much higher resolution
is needed to begin to address the possibility of powerlaw be-
havior. This was the main reason for Haugen et al. (2003) to
push the resolution to 10243 meshpoints; see Fig. 3. Based on
these results, one can begin to see the development of what
looks like an inertial range with a tentative k−3/2 scaling.
If this is confirmed, it would rule out earlier claims that the
magnetic energy spectrum peaks at the resistive scale (Maron
& Blackman 2002, Schekochihin et al. 2002). However, the
results by Haugen et al. (2003) are still open to alternative in-
terpretations. Schekochihin et al. (2004a) have argued that the
magnetic spectrum is still curved, and that there is therefore
actually no evidence for powerlaw behavior. So, the asymp-
totic spectral behavior of hydromagnetic turbulence is still
very much an open question.

A puzzling aspect of all the magnetic energy spectra is
the excess of spectral magnetic energy over spectral kinetic
energy. In order to get some insight into the possible asymp-
totic behavior, Haugen & Brandenburg (2004) have recently
considered simulations with subgrid scale modeling using ei-
ther hyperviscosity or Smagorinsky viscosity together with
magnetic hyper-resistivity.

Consider for comparison first the purely hydrodynamic
case (Fig. 4), where we can use the high resolution simula-
tions of Kaneda et al. (2003) on the EARTH SIMULATOR as
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Fig. 2. Steady progress in solving the small scale dynamo problem. Kinetic and magnetic energy spectra from the papers by Meneguzzi
et al. (1981), Kida et al. (1991), and Maron & Cowley (2001). The numerical resolution used in the three cases is 643, 1283, and 2563

meshpoints, respectively. All spectra agree in that at large scales (small wavenumbers k) the spectral magnetic energy is below the spectral
kinetic energy. In the spectra of Meneguzzi et al. (1981) and Maron & Cowley (2001) the spectral magnetic energy peaks at about k = 5.

Fig. 3. Magnetic, kinetic and total energy spectra. 10243 mesh-
points. The Reynolds number is urms/(νkf) ≈ 960. [Adapted from
Haugen et al. (2003).]

benchmark. This simulation corresponds to a resolution of
4096 collocation points. Note that there is not even a clear
confirmation of the famous Kolmogorov k−5/3 spectrum, but
there is a k−0.1 correction in what looks like the inertial
range. However, simulations with both hyperviscosity (Hau-
gen & Brandenburg 2004) and Smagorinsky subgrid scale
modeling (Haugen & Brandenburg, in preparation) confirm
this correction to the inertial range; see Fig. 4.

The uprise in the compensated power spectra just before
the dissipative subrange is due to the bottleneck effect in tur-
bulence (Falkovich 1994). This effect is much weaker in wind
tunnel turbulence (She & Jackson 1993), but this is because
these are one-dimensional spectra, E1D(k), which are related
to the fully three-dimensional spectra via a simple integral
transformation

E1D(k) =
∫ ∞

k

E3D(k′)
k′ dk′. (1)

Of course, for perfect power law spectra the two are the same,
but they can be quite different when there are departures from
power law behavior, such as due to the bottleneck effect itself
and due to the dissipative subrange (Dobler et al. 2003).

Fig. 4. Comparison of energy spectra of the 40963 mesh points run
of Kaneda et al. (solid line) and 5123 mesh points runs with hy-
perviscosity (dash-dotted line) and Smagorinsky viscosity (dashed
line).

In Fig. 5 we show the results for the hydromagnetic case
where we have used hyperresistivity and either hyperviscos-
ity or Smagorinsky subgrid scale modeling for the velocity
field. There are two important things to notice. First, the com-
pensated magnetic spectrum seems flat, but the kinetic energy
spectrum seems to rise, possibly approaching the magnetic
energy spectrum. A sketch of what we believe the asymptotic
magnetic and kinetic energy spectra could look like is shown
in Fig. 6.

In summary, there seems now some evidence suggesting
that there is indeed a magnetic energy cascade. We should
emphasize, however, that most of the simulations to date have
either unit magnetic Prandtl number, or at least magnetic
Prandtl numbers that are not very different from unity.

The question of the magnetic Prandtl number dependence
is potentially quite important for stars where this number is
very small (magnetic diffusivity much larger than the kine-
matic viscosity). Using a modified Kazantsev model, Ro-
gachevskii & Kleeorin (1997) pointed out that when the ve-

c©2005 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim



A. Brandenburg et al.: The problem of small and large scale fields in the solar dynamo 177

Fig. 5. Magnetic and kinetic energy spectra for runs with 5123

mesh points and hyperviscosity and hyper-resistivity (solid line) and
Smagorinsky viscosity and hyper-resistivity (dashed line). Note the
mutual approach of kinetic and magnetic energy spectra before en-
tering the dissipative subrange.

Fig. 6. Sketch of the anticipated kinetic and magnetic energy spectra
in the large Reynolds number limit for PrM = 1. Note the slight
super-equipartition just to the right of the peak of EM(k) and the
asymptotic equipartition for large wavenumbers.

Fig. 7. Dependence of the critical magnetic Reynolds numbers as a
function of the magnetic Prandtl number using for the direct sim-
ulations (Haugen et al. 2004), indicated by diamonds, compared
with results using hyperviscosity (asterisks) or Smagorinsky viscos-
ity (triangles).

locity field displays Kolmogorov scaling near the resistive
cutoff wave number, the dynamo becomes much harder to
excite than for a velocity field that shows significant power
only at large scales. They found that the critical magnetic
Reynolds number for dynamo action can exceed a value of
400, which is about 10 times larger than the critical value
of 35 for unit magnetic Prandtl number. A similar result has
been found more recently by Schekochihin et al. (2004b) and
Boldyrev & Cattaneo (2004). Direct simulations suggest that
the critical magnetic Reynolds number increases with de-
creasing magnetic Prandtl number, at least like Rm,crit ≈
35 Pr−1/2

M (Haugen et al. 2004); this result is not really con-
firmed by simulations with Smagorinsky viscosity and hy-
perviscosity which seem to suggest a sharper dependence
(Fig. 7); see Schekochihin et al. (2004c). One might have
thought that this could be connected with the artificially en-
hanced bottleneck effect in the hyperviscous simulations, but
the idea is not supported by the direct inspection of the kinetic
energy spectra that do not show a bottleneck effect.

In simulations with helicity, that will be discussed in a
later section, the value of the magnetic Prandtl number does
not seem to affect the onset of dynamo action. Indeed, simu-
lations with a magnetic Prandtl number of 0.1 (Brandenburg
2001) showed that the critical value of the magnetic Reynolds
number was the same as for unit magnetic Prandtl number.

3. Problem II: is first order smoothing OK?

Let us now turn to the question of how to generate large scale
fields. This question can be addressed in terms of mean field
dynamo theory where the α effect (and perhaps other effects)
play a central role. The value of α is traditionally calculated
using the first order smoothing approximation, where one ne-
glects triple correlations. This approach is in principle not
applicable when the magnetic Reynolds number is large, but
it seems to work anyway. Why this is so, and how one can do
better, can perhaps best be understood in the simpler case of
passive scalar diffusion.

3.1. Passive scalar diffusion

In this section we describe both the first order smoothing ap-
proximation and the minimal tau approximation. We follow
here the presentation of Blackman & Field (2003), who stud-
ied the passive scalar case as a simpler test case of the more
interesting magnetic case which they studied earlier (Black-
man & Field 2002). The minimal tau approximation was first
used by Vainshtein & Kitchatinov (1986) and Kleeorin et al.
(1990).

The evolution equation for the passive scalar concentra-
tion C is, in the absence of microscopic diffusion,

DC

Dt
= 0 (2)

where D/Dt = ∂/∂t + u · ∇ is the advective derivative.
We assume, for simplicity, that the flow is incompressible,
i.e. ∇ · u = 0, and that C shows some large scale variation
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so that a meaningful average can be defined (denoted by an
overbar). Thus, after averaging we have

∂C

∂t
= − ∂

∂xj
ujc. (3)

One is obviously interested in a closed equation for the mean
flux of passive scalar concentration,

F ≡ uc, (4)

in terms of the mean concentration, i.e. F = F(C). For the
reader who is more familiar with the magnetic case we note
that one should think of F being similar to the electromotive
force E = u × b where, in turn, one is interested in a closed
equation of the form E = E(B).

Subtracting (3) from (2) we obtain the equation for the
fluctuation c = C − C,
∂c

∂t
= −∂j(ujC) − ∂j(ujc) − ∂jujc. (5)

This is where we come to a turning point. In the first order
smoothing approximation (FOSA) one calculates

F(t) = u(t)
∫

ċ(t′) dt′ (FOSA), (6)

where ċ = ∂c/∂t, and we have omitted the common x de-
pendence on all quantities. In the minimal tau approximation
(MTA) one calculates instead

∂F
∂t

= uċ + u̇c (MTA). (7)

A principle difference between the two approaches is that the
momentum equation is naturally incorporated under MTA,
i.e.

u̇ = −uj∂jui − ∂ip, (8)

where p is the pressure. A more interesting situation would
arise if we allowed here for rotation and included the Coriolis
force, but we omit this here. Thus, we have

∂F
∂t

= −uiuj ∂C −uiuj∂jc − cuj∂jui − c ∂ip︸ ︷︷ ︸
triple correlations≡T

. (9)

This equation shows the important point that, at least in the
steady state, the triple correlations are never negligible. In-
stead, they are actually comparable to the quadratic correla-
tion term on the right hand side. (We remark that the first two
terms in T cancel if the volume averages are used to inte-
grate by parts, but the third term still remains.) The closure
hypothesis used in MTA states that

T = −F
τ

(MTA closure hypothesis). (10)

Inserting this expression and moving this F to the left hand
side, we have

F i = −τuiuj ∂C − τ
∂F
∂t

. (11)

The extra time derivative on the right hand side corresponds
to the Faraday displacement current in electrodynamics. In
the present case, this term can be neglected if the diffusion
speed is less than the turbulent rms velocity. In some sense
this is of course never the case, because with ordinary Fick-
ian diffusion (time derivative neglected) the diffusion process

is described by an elliptic equation which has infinite signal
propagation speed, and is hence violating causality.

In the following section we discuss recent work by Bran-
denburg et al. (2004) who showed that the presence of this
displacement term in a non-Fickian version of the diffusion
equation is indeed justified. Before turning to this aspect, let
us contrast the MTA closure with the FOSA closure assump-
tion. Here one is instead dealing with an integral equation,

F i = −
∫

ui(t)uj(t′) ∂C(t′) dt′ + triple correlations, (12)

where the triple correlations are neglected [unless higher or-
der terms are included; see Nicklaus & Stix (1988) or Car-
valho (1992)].

In this particular case the two approaches become equiv-
alent if one assumes that the two-times correlation function
ui(t)uj(t′) is proportional to uiuj exp[−(t− t′)/τ ]. This can
be shown by differentiating (12). Thus, the causality problem
in the Fickian diffusion approximation stems really only from
the commonly used approximation that the two-times corre-
lation function can be approximated by a delta function. If the
extra time derivative is not neglected, the diffusion equation
becomes a damped wave equation,

∂2C

∂t2
+

1
τ

∂C

∂t
= 1

3u2
rms∇2C, (13)

where the wave speed is urms/
√

3. Note also that, after mul-
tiplication with τ , the coefficient on the right hand side be-
comes 1

3τu2
rms ≡ κt, and the second time derivative on the

left hand side becomes unimportant in the limit τ → 0, or
when the physical time scales are long compared with τ . In
that case we have simply

∂C

∂t
= κt∇2C. (14)

In the following we discuss a case where (14) is clearly insuf-
ficient and where the full time dependence has to be retained.

3.2. Turbulent displacement flux and value of τ

A particularly obvious way of demonstrating the presence of
the second time derivative is by considering a numerical ex-
periment where C = 0 initially. Equation (14) would predict
that then C = 0 at all times. But, according to the alternative
formulation (13), this need not be true if initially ∂C/∂t �= 0.
In practice, this can be achieved by arranging the initial fluc-
tuations of c such that they correlate with uz . Of course, such
highly correlated arrangement will soon disappear and hence
there will be no turbulent flux in the long time limit. Never-

theless, at early times, 〈C2〉1/2 (an easily accessible measure
of the passive scalar amplitude) rises from zero to a finite
value; see Fig. 8.

Closer inspection of Fig. 8 reveals that, when the
wavenumber of the forcing is sufficiently small (i.e. the
size of the turbulent eddies is comparable to the box size),

〈C2〉1/2 approaches zero in an oscillatory fashion. This re-
markable result can only be explained by the presence of the
second time derivative term giving rise to wave-like behavior.
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Fig. 8. Passive scalar amplitude, 〈C2〉1/2, versus time (normalized
by urmskf ) for two different values of kf/k1. The simulations have
2563 meshpoints. The results are compared with solutions to the
non-Fickian diffusion model. [Adapted from Brandenburg et al.
(2004).]

Fig. 9. Strouhal number as a function of kf/k1 for different val-
ues of ReLS, i.e. the large scale Reynolds number. The resolution
varies between 643 meshpoints (ReLS = 100) and 5123 meshpoints
(ReLS = 1000).

This shows that the presence of the new term is actually justi-
fied. Comparison with model calculations shows that the non-
dimensional measure of τ , St ≡ τurmskf , must be around
3. (In mean-field theory this number is usually called the
Strouhal number.) This rules out the validity of the quasilin-
ear (first order smoothing) approximation which would only
be valid for St → 0.

Next, we consider an experiment to establish directly the
value of St. We do this by imposing a passive scalar gradi-
ent, which leads to a steady state, and measuring the result-
ing turbulent passive scalar flux. By comparing double and
triple moments we can measure St quite accurately without
invoking a fitting procedure as in the previous experiment.
The result is shown in Fig. 9 and it confirms that St ≈ 3 in
the limit of small forcing wavenumber, kf . The details can be
found in Brandenburg et al. (2004).

3.3. Significance for the magnetic case

In the hydromagnetic case one has E = u × ḃ+ u̇ × b. Here
the u̇ term is particularly important and usually not obtained
with FOSA. Focusing on the term Blbi,l on the right hand
side of the u̇i equation, we get

ρ0(u̇ × b)i = εijkbkbj,p Bp + ...
iso= 1

3j · b Bi + ..., (15)

where the symbol
iso= indicates isotropization (which is re-

ally only done for simplicity and should be avoided when it
becomes important), and dots indicate the presence of further
terms which here only lead to triple correlation terms. This
j · b term provides an important correction to the usual α ef-
fect that results from

(u × ḃ)i = −εijkukuj,p Bp + ...
iso= − 1

3ω · u Bi + ... (16)

It is the j · b current helicity term whose evolution, under the
assumption of scale separation, can be described in terms of
magnetic helicity conservation. Since the magnetic helicity
is conserved in the large magnetic Reynolds number limit,
the saturation time of a nonlinear dynamo can be very long.
This is now described in great detail in several recent reviews
(Brandenburg 2003, Brandenburg & Subramanian 2004). We
emphasize however that the j · b contribution is quite deci-
sive in describing correctly the slow saturation phase of any
nonlinear helical large scale dynamo in a periodic box (Bran-
denburg 2001, Mininni et al. 2003).

4. Problem III: α quenching

4.1. Non-universality of catastrophic quenching

As shown in Brandenburg (2001), the slow saturation be-
havior of closed box dynamos can be reasonably well be
described in a mean field model using catastrophic quench-
ing, i.e. α(B) = α0Q(B) and ηt(B) = ηt0Q(B), where

Q(B) = (1 + RmB
2
/B2

eq)−1. As discussed in detail by
Blackman & Brandenburg (2002), the reason for the agree-
ment with the simulations is due to the ‘force-free degener-
acy’ of the α2 dynamo in a periodic box, because then B and
J are then everywhere parallel to each other. This degeneracy
is lifted for αΩ dynamos, i.e. in the presence of shear.

Fig. 10. Evolution of Bx and By at x = −π and z = 0. Note that
Bx has been scaled by a factor −100. [Adapted from Brandenburg
et al. (2001).]
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Fig. 11. Evolution of α
1/2
B Bx and α

1/2
B By in the one-dimensional

mean-field model with a dynamo number D = 10, a kinematic
growth rate λ = 0.015 (which determines α) and a microscopic
magnetic diffusivity η = 5 × 10−4. Note that Bx has been scaled
by a factor 100. (In this case the shear S > 0, so we have plotted
+Bx, and not −Bx as we did in Fig. 10 where S < 0.) [Adapted
from Brandenburg et al. (2001).]

Fig. 12. Evolution of toroidal and poloidal fields, B and A, respec-
tively, from the paper by Stix (1972). Note the similarity in the evo-
lution of his model and that in the direct simulation shown in Fig. 10,
with a more spiky behavior of the poloidal field compared to the
toroidal field. [Adapted from Stix (1972).]

In Fig. 10 we show the evolution of poloidal and toroidal
fields, Bx and By , at one point in the simulation of Branden-
burg et al. (2001), which has shear. Note the systematic phase
shift and a well-defined amplitude ratio between Bx and By .
Note also that the dynamo wave is markedly non-harmonic.
These are clear properties that can be compared with mean-
field model calculations; see Fig. 11. A similar type of non-
harmonic temporal behavior has been found in the first-ever
nonlinear simulation of a mean field dynamo by Stix (1972);
see also Fig. 12. An important difference between the two
models is that for the results shown in Fig. 11 both α and ηt

where quenched, whereas in the model shown in Fig. 12 ηt

was kept constant and α was quenched in a step function-like
fashion. Since the results from these two very different mod-
els are similar, the temporal behavior alone cannot really be
used to discriminate one model over another.

4.2. Dynamical α quenching

The α effect formalism provides so far the only workable
mathematical framework for describing the large scale dy-
namo action seen in simulations of helically forced turbu-
lence. The governing equation for the mean magnetic field
is
∂B

∂t
= ∇ × (

U × B + E − ηµ0J
)
, (17)

where E = u × b is the electromotive force resulting from
the u × b nonlinearity in the averaged Ohm’s law. MTA can
be used to derive an expression for E in terms of the mean
field. For slow rotation one finds (Rädler et al. 2003, see also
review by Brandenburg & Subramanian 2004)

E i = αijBj − ηijJj + (γ × B + δ × J)i + κijkBj,k, (18)

Under isotropic conditions, or as a means of simplification,
one often just writes

E = αB − ηtJ (19)

In any case, and this comes as a rather recent realization
(Field & Blackman 2002, Blackman & Brandenburg 2002,
Subramanian 2002), there will be an extra magnetic contri-
bution to the α effect α → α = αK + αM. In the isotropic
case, αK = − 1

3τω · u and αM = 1
3τj · b/ρ. This leads to

(Kleeorin & Ruzmaikin 1982; see also Zeldovich et al. 1983;
and Kleeorin et al. 1995)

dαM

dt
= −2ηt0k

2
f

( 〈E · B〉
B2

eq

+
αM

R̃m

)
, (20)

where we have defined the magnetic Reynolds number as

R̃m = ηt0/η, (21)

where ηt0 = 1
3τ〈u2〉 is the kinematic value of the turbulent

magnetic diffusivity and B2
eq = µ0ρ0〈u2〉 is the equiparti-

tion field strength. Equation (20) agrees with the correspond-
ing equation in Kleeorin et al. (1995) if their characteris-
tic length scale of the turbulent motions at the surface, ls,
is identified with 2π/kf and if their parameter µ is identi-
fied with 8π2η2

t0/(〈u2〉l2s ). The definition of R̃m may not
be very practical if ηt0 is not known, but comparison with
simulations (Blackman & Brandenburg 2002) suggests that
R̃m ≈ 0.3Rm, where Rm = urms/(ηkf) is a more practical
definition suitable for simulations of forced turbulence.

The basic idea is that magnetic helicity conservation must
be obeyed, but the presence of an α effect leads to magnetic
helicity of the mean field which has to be balanced by mag-
netic helicity of the fluctuating field. This magnetic helicity
of the fluctuating (small scale) field must be of opposite sign
to that of the mean (large scale) field (e.g. Blackman & Bran-
denburg 2003). In the following we refer to eq. (20) as the
the dynamical α quenching equation (Blackman & Branden-
burg 2002). Assuming that the large scale magnetic field has
reached a steady state, and solving this equation for α, yields
(Kleeorin & Ruzmaikin 1982, Gruzinov & Diamond 1994)

α =
αK + ηtRm〈J · B〉/B2

eq

1 + Rm〈B2〉/B2
eq

(for dα/dt = 0). (22)

Note that for the numerical experiments with an imposed
large scale field over the scale of the box (Cattaneo & Hughes

c©2005 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim



A. Brandenburg et al.: The problem of small and large scale fields in the solar dynamo 181

1996), where B is spatially uniform and therefore J = 0, one
recovers the ‘catastrophic’ quenching formula,

α =
αK

1 + Rm〈B2〉/B2
eq

(for J = 0), (23)

which implies that α becomes quenched when 〈B2〉/B2
eq =

R−1
m ≈ 10−8 for the sun, and for even smaller fields in the

case of galaxies.
Obviously, the assumption of a steady state is generally

not permitted. Especially in the case of closed boxes that are
so popular for simulation purposes, there is no other way to
get rid of magnetic helicity than via microscopic resistivity.
There is now a significant body of literature (see Branden-
burg 2001 for a comprehensive coverage of the simulation
results and Brandenburg 2003 for a recent review). To allow
for faster time scales, and this was realized first by Black-
man & Field (2000a,b) and Kleeorin et al. (2000), there might
be hope to achieve this by allowing helicity flux to escape
through the boundaries of the domain. Two types of results
will be discussed in the next section.

5. Open boundaries and shear: the solution?

In a recent paper, Brandenburg & Sandin (2004) have carried
out a range of simulations for different values of the mag-
netic Reynolds number, Rm = urms/(ηkf), for both open
and closed boundary conditions using the geometry depicted
in Fig. 13. In the following we discuss first some results for α
quenching and an interpretation of the results in terms of the
current helicity flux. Next we turn to direct simulations of the
dynamo without an imposed field.

5.1. Results for α quenching

In order to measure α, a uniform magnetic field, B0 = const,
is imposed, and the magnetic field is now written as B =
B0 + ∇ × A. Brandenburg & Sandin (2004) determined α
by measuring the turbulent electromotive force, and hence
α = 〈E〉 · B0/B2

0 . Similar investigations have been done
before both for forced turbulence (Cattaneo & Hughes 1996,
Brandenburg 2001) and for convective turbulence (Branden-
burg et al. 1990, Ossendrijver et al. 2001).

As expected, α is negative when the helicity of the forc-
ing is positive, and α changes sign when the helicity of the
forcing changes sign. The magnitudes of α are however dif-
ferent in the two cases: |α| is larger when the helicity of the
forcing is negative. In the sun, this corresponds to the sign of
helicity in the northern hemisphere in the upper parts of the
convection zone. This is here the relevant case, because the
differential rotation pattern of the present model also corre-
sponds to the northern hemisphere.

There is a striking difference between the cases with
open and closed boundaries which becomes particularly clear
when comparing the averaged values of α for different mag-
netic Reynolds numbers; see Fig. 14. With closed bound-
aries α tends to zero like R−1

m , while with open boundaries
α shows no such decline. There is also a clear difference be-
tween the cases with and without shear together with open

Bx=By,x=Bz,x=0

Ax,x=Ay=Az=0

Bx,z=By,z=Bz=0

Ax=Ay=Az,z=0

Bx,x=By=Bz=0

Ax=Ay,x=Az,x=0

Bx=By=Bz,z=0

Ax,z=Ay,z=Az=0

x

z

Fig. 13. Differential rotation in our cartesian model, with the equa-
tor being at the bottom, the surface to the right, the bottom of the
convection zone to the left and mid-latitudes at the top. [Adapted
from Brandenburg & Sandin (2004).]
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α>0

α<0

∼Rm
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Fig. 14. Dependence of |〈α〉|/urms on Rm for open and closed
boundaries. The case with open boundaries and negative helicity
is shown as a dashed line. Note that for Rm ≈ 30 the α effect is
about 30 times smaller when the boundaries are closed. The dotted
line gives the result with open boundaries but no shear. The vertical
lines indicate the range obtained by calculating α using only the first
and second half of the time interval. [Adapted from Brandenburg &
Sandin (2004).]

boundaries in both cases. In the absence of shear (dotted line
in Fig. 14) α declines with increasing Rm, even though for
small values of Rm it is larger than with shear. The difference
between open and closed boundaries will now be discussed in
terms of a current helicity flux through the two open bound-
aries of the domain.

5.2. Interpretation in terms of current helicity flux

It is suggestive to interpret the above results in terms of
the dynamical α quenching model. However, the quenching
equation has to be generalized to take the divergence of the
flux into account. In order to avoid problems with the gauge,
it is advantageous to work directly with j · b instead of a · b.
Using the evolution equation, ∂b/∂t = −∇×e, for the fluc-
tuating magnetic field, where e = E − E is the small scale
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electric field and E = ηµ0J − E the mean electric field, one
can derive the equation

∂

∂t
j · b = −2 e · c − ∇ · FSS

C , (24)

where

FSS
C = 2e × j + (∇ × e) × b/µ0, (25)

is the current helicity flux from the small scale (SS) field,
and c = ∇ × j the curl of the small scale current density,
j = J −J . In the isotropic case, e · c ≈ k2

f e · b, where kf is
the typical wavenumber of the fluctuations, here assumed to
be the forcing wavenumber.

Making use of the adiabatic approximation one arrives at
the algebraic steady state quenching formula (∂α/∂t = 0)

α =
αK + Rm

(
ηtµ0J · B − 1

2k−2
f ∇ · µ0FSS

C

)
/B2

eq

1 + RmB
2
/B2

eq

. (26)

In the absence of a mean current, e.g. if the mean field is
defined as an average over the whole box, then B ≡ B0 =
const, and J = 0, so eq. (26) reduces to

α =
αK − 1

2k−2
f Rm∇ · µ0FSS

C /B2
eq

1 + RmB2
0/B2

eq

. (27)

This expression applies to the present case, because we con-
sider only the statistically steady state and we also define the
mean field as a volume average.

In the simulations, the current helicity flux is found to be
independent of the magnetic Reynolds number. This explains
why the α effect no longer shows the catastrophic R−1

m de-
pendence (see Fig. 14). In principle it is even conceivable
that with αK = 0 a current helicity flux can be generated, for
example by shear, and that this flux divergence could drive a
dynamo, as was suggested by Vishniac & Cho (2001). It is
clear, however, that for finite values of Rm this would be a
non-kinematic effect requiring the presence of an already fi-
nite field (at least of the order of Beq/R

1/2
m ). This is because

of the 1 + RmB2
0/B2

eq term in the denominator of eq. (27).
At the moment we cannot say whether this is perhaps the ef-
fect leading to the nonhelically forced turbulent dynamo dis-
cussed in Sect. 5.3, or whether it is perhaps the δ × J or
shear-current effect that was also mentioned in that section.

5.3. Dynamos with open surfaces and shear

The presence of an outer surface is in many respects simi-
lar to the presence of an equator. In both cases one expects
magnetic and current helicity fluxes via the divergence term.
A particularly instructive system is helical turbulence in an
infinitely extended horizontal slab with stress-free boundary
conditions and a vertical field condition, i.e.

ux,z = uy,z = uz = Bx = By = 0. (28)

Without shear, such simulations have been performed by
Brandenburg & Dobler (2001) who found that a mean mag-
netic field is generated, similar to the case with periodic
boundary conditions, but that the energy of the mean mag-

netic field, 〈B2〉, decreases with magnetic Reynolds num-
ber. Nevertheless, the energy of the total magnetic field,

Fig. 15. (online colour at www.an-journal.org) Visualization of the
toroidal magnetic field during three different times during the
growth and saturation for the run without kinetic helicity.

〈B2〉, does not decrease with increasing magnetic Reynolds

number. Although they found that 〈B2〉 decreases only like

R
−1/2
m , new simulations confirm that a proper scaling regime

has not yet been reached and that the current data may well
be compatible with an R−1

m dependence.

Clearly, an asymptotic decrease of the mean magnetic
field must mean that the small scale dynamo does not work
with such boundary conditions. Thus, the anticipated advan-
tages of open boundary conditions are not borne out by this
type of simulations. In the presence of shear the results are
very different. We now use the same setup as in Sect. 5.1.
The size of the computational domain is 1

2π × 2π × 1
2π and

the numerical resolution is 128× 512× 128 meshpoints. The
magnetic Reynolds number based on the forcing wavenumber
and the turbulent flow is around 80 and shear flow velocity
exceeds the rms turbulent velocity by a factor of about 5. We
have carried out experiments with no helicity in the forcing
(labeled as α = 0), as well as positive and negative helicity
in the forcing (labeled α < 0 and α > 0, respectively); see
Fig. 15 for a visualization of the run without kinetic helic-
ity. We emphasize that no explicit α effect has been invoked.
The labeling just reflects the fact that, in isotropic turbulence,
negative kinetic helicity (as in the northern hemisphere of a
star or the upper disc plane in galaxies) leads to a positive α
effect, and vice versa.

We characterize the relative strength of the mean field by

the ratio q = 〈B2〉/〈B2〉, where overbars denote an average
in the toroidal (y) direction; see Fig. 16. A strong mean field
is generated in all cases, unless a perfect conductor boundary
condition (“closed”) is adopted on the outer surface and on
the equator. The mean field appears to be statistically station-
ary in all cases, i.e. there is no indication of migration in the
meridional plane. A time average of the mean field is shown
in Fig. 17.

There are two surprising results emerging from this work.
First, in the presence of shear rather strong mean fields can
be generated, where up to 70% of the energy can be in the
mean field; see Fig. 16. Second, even without any kinetic he-
licity in the flow there is strong large scale field generation.
However, this cannot be an αΩ dynamo in the usual sense.
One possibility is the δ ×J effect, which emerged originally
in the presence of the Coriolis force; see Rädler (1969) and
Krause & Rädler (1980). In the present case with no Coriolis
force, however, a δ×J effect is possible even in the presence
of shear alone, because the vorticity associated with the shear
contributes directly to δ ∝ W = ∇ × U (Rogachevskii &
Kleeorin 2003, 2004).
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Fig. 16. Saturation behavior of the ratio q = 〈B2〉/〈B2〉 for runs
with different kinetic helicity of the flow. Solid line: zero helicity,
dotted line: positive helicity (opposite to the sun) dashed line: nega-
tive helicity (as in the sun). The line at denoted by “α = 0, closed”
refers to a case where the normal field condition on the equator and
the surface has been replaced by a perfect conductor condition.

Fig. 17. (online colour at www.an-journal.org) Gray/color scale rep-
resentation of the azimuthally and time averaged mean azimuthal
field B together with vectors in the meridional plane. In this run the
turbulence is nonhelically forced (α = 0).

A rather likely candidate for the current helicity flux is the
so-called Vishniac & Cho (2001) flux. A systematic deriva-
tion using MTA (Subramanian & Brandenburg 2004) gave

FSS

C i = φijkBjBk, (29)

Fig. 18. (online colour at www.an-journal.org) Same as Fig. 17, but
for α > 0, so the turbulence is forced with negative helicity. Note
the clockwise sense of the poloidal field. Together with the positive
toroidal field (indicated by light shades) this corresponds to positive
magnetic helicity, consistent with α > 0.

Fig. 19. (online colour at www.an-journal.org) Same as Fig. 17, but
for α < 0, so the turbulence is forced with positive helicity. Note the
anti-clockwise sense of the poloidal field, corresponding to negative
magnetic helicity, consistent with α < 0.

where φijk is a new turbulent transport tensor with

φijk = −4τωk∇jui. (30)

Obviously, only components of φijk that are symmetric in j
and k enter the flux FSS

C . Therefore we consider in the fol-
lowing φS

ijk = 1
2 (φijk + φikj). In the present case where the

toroidal field (y direction) is strongest, the φiyy components
(where i = x and z) are expected to be most important. The
time average of this component is shown in Fig. 20. Here we
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Fig. 20. Vectors of φiyy together with contours of Uy which also
coincide with the streamlines of the mean vorticity field W . Note
the close agreement between φiyy and W . The orientation of the
vectors indicates that negative current helicity leaves the system at
the outer surface (x = 0).

have only considered the nonhelical case, but the helical cases
are indistinguishable within error margins. All the 6 indepen-
dent components of φS

xij and φS
zjk are given by

φS
xjk =

⎛
⎝−0.03 +0.04 −0.12

+0.04 −0.23 −0.36
−0.12 −0.36 +0.25

⎞
⎠ , (31)

φS
zjk =

⎛
⎝ +0.24 +0.32 −0.13

+0.32 −0.19 −0.05
−0.13 −0.05 −0.04

⎞
⎠ . (32)

Note that the trace of both tensors is small. Thus there is
no hope that this tensor could possibly be isotropic. This is
because isotropization, i.e. 1

3δjkφijk , would then give some-
thing close to zero. Nevertheless, one may hope that some
useful parameterization of φS

ijk , that can be used in mean field
calculations, will soon be available.

In conclusion, there is evidence that the strong dynamo
action seen in the simulations is only possible due to the com-
bined presence of open boundaries and shear.

6. Conclusions

In the present work we have discussed three aspects that are
strongly connected with the applicability of mean field dy-
namo theory. The first concerns turbulent diffusion, i.e. the
ability of the flow to mix a large scale magnetic field such
that its energy can be converted into energy at smaller scales.
In order that microscopic diffusion can eventually be ther-
malized, unimpeded by the Lorentz force, the field has to
be weak enough at the scale where diffusion takes place.
Whether this is indeed the case can in principle be seen from
the simulations. Since in the simulations the magnetic and

fluid Reynolds numbers are much smaller than in reality, it
would be important to show that the spectra begin to con-
verge for large magnetic and fluid Reynolds numbers. At the
moment this is simply not yet the case, even at a resolution
of 10243 meshpoints. However, by a combination between
direct and large eddy simulations some preliminary insight
can be gained. The suggestions are that magnetic and kinetic
energy spectra approach spectral equipartition in the deep in-
ertial range, and that the slope would be comparable to the
Kolmogorov k−5/3 slope.

The other aspect discussed in this paper concerns the cal-
culation of turbulent transport coefficients such as the α ef-
fect. It has been particularly disturbing that much of the the-
ory in this field was based on the first order smoothing ap-
proximation which clearly should break down under physi-
cally interesting conditions. The reason for its apparent suc-
cess is now becoming clear and are connected with the close
similarity between the first order smoothing approximation
and the minimal tau approximation where the triple correla-
tions are no longer omitted. The reason for the close simi-
larity between the two approaches is mainly connected with
the fact that all the interesting physics enters via the quadratic
correlations which can be worked out correctly using linear
theory. The significance of the triple correlations is merely
that they determine the length of τ . In the framework of the
first order smoothing approximation the value of τ had to
be obtained by dimensional arguments and was therefore not
well determined.

Next we have briefly addressed the long standing issue
of α quenching and have pointed out the connection be-
tween dynamical quenching and catastrophic quenching. The
possibility of catastrophic α quenching is closely linked to
magnetic helicity conservation. The degree of quenching can
therefore be alleviated by allowing for magnetic or better cur-
rent helicity fluxes. Such fluxes do not just come on their own,
so simply allowing for the boundaries to be open is not suf-
ficient. One needs to drive a flux through the entire domain.
This seems to be accomplished by the Vishniac-Cho flux. As
already argued by Vishniac & Cho (2001), and confirmed by
Arlt & Brandenburg (2001), this flux can be driven in the
presence of shear. Indeed, there are strong indications that
the helicity flux can alleviate catastrophic quenching at least
by a factor of about 30, and that it allows for dynamo ac-
tion generating strong magnetic fields, even in the absence of
helicity in the forcing. The details of this process are not en-
tirely clear, but possible candidates include the shear-current
effect of Rogachevskii & Kleeorin (2003, 2004), and perhaps
the helicity flux itself (Vishniac & Cho 2001) which is a non-
linear effect.

In the near future it should be possible to investigate the
emergence of current helicity fluxes from a dynamo simu-
lation in more detail. This would be particularly interesting
in view of the many observations of coronal mass ejections
that are known to be associated with significant losses of
magnetic helicity and hence also of current helicity (Berger
& Ruzmaikin 2000, DeVore 2000, Chae 2000, Low 2001,
Démoulin et al. 2002, Gibson et al. 2002). In order to be able
to model coronal mass ejections it should be particularly im-
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portant to relax the restrictions imposed by the vertical field
conditions employed in the simulations of Brandenburg &
Sandin (2004). One possibility would be to include a sim-
plified version of a corona with enhanced temperature and
hence decreased density, giving rise to a low-beta plasma ex-
terior where nearly force-free fields can develop (Gudiksen
& Nordlund 2005). Such a setup might allow detailed com-
parison with observations.
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