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Abstract. A fully self-contained model of homochirality is presented that contains the effects of both
polymerization and dissociation. The dissociation fragments are assumed to replenish the substrate
from which new monomers can grow and undergo new polymerization. The mean length of isotactic
polymers is found to grow slowly with the normalized total number of corresponding building blocks.
Alternatively, if one assumes that the dissociation fragments themselves can polymerize further, then
this corresponds to a strong source of short polymers, and an unrealistically short average length of
only 3. By contrast, without dissociation, isotactic polymers becomes infinitely long.
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1. Introduction

Central to the question of the origin of life is the polymerization of the first com-
plex molecules that can have catalytic properties and that would eventually carry
genetic information. It is widely accepted that our current life form involving DNA
carrying the genetic code and RNA producing the proteins that, in turn, catalyze the
production of nucleotides, must have been preceded by a simpler life form called
the RNA world (Gilbert, 1986; Joyce, 1991; see also Woese, 1967; Crick, 1968;
Orgel, 1968; Wattis and Coveney 1999). Here, the RNA has multiple functionality, it
carries genetic code and it is also able to catalyze the production of new nucleotides.

The RNA of all terrestrial life forms involves a backbone of dextrorotatory
(right-handed) ribose sugars. Theoretically, life could have been equally well based
on levorotatory (left-handed) sugars. Unless this selection was somehow exter-
nally imposed, e.g. via circularly polarized light (Bailey, 2001), magnetic fields
(Thiemann, 1984), or via effects involving the parity-breaking electroweak force
(e.g., Hegstrom, 1984), this must have been the result of some bifurcation process.
Indeed, the homochirality of left-handed amino acids and of right-handed sugars
in living cells can be explained as the result of two combined effects, auto-catalytic
production of similar nucleotides during their first polymerization events and a
competition between left- and right-handed nucleotides. The general idea goes back
to early work of Frank (1953), and has been developed further by Kondepudi and
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Nelson (1984), Goldanskii and Kuzmin (1989), Avetisov and Goldanskii (1993) and
more recently by Saito and Hyuga (2004a). Of particular interest here is the recently
proposed detailed polymerization model of Sandars (2003); see also Brandenburg et
al. (2005, hereafter referred to as BAHN) and Wattis and Coveney (2005). The main
point of Sandars’ model is the assumption that the polymerization of monomers
of opposite handedness terminates further growth on the corresponding end of the
polymer. This is referred to as enantiomeric cross-inhibition. Such inhibition makes
it generally quite hard for any polymer to grow successfully. However, once a poly-
mer has become successful in reaching an appreciable length, it will have catalytic
properties promoting the production of monomers of the same chirality as that of
the catalyzing polymer.

All the polymerization models presented so far ignore the possibility of polymers
breaking at an arbitrary location. Without this process polymers would, in the
homochiral case, grow to infinite length which is clearly unrealistic. We begin by
discussing a model for the dissociation of isotactic polymers, where all the building
blocks have the same chirality. Next, we consider the dissociation of polymers
whose one end has already been spoiled with a monomer of the opposite chirality.
We then incorporate the dissociation model into the full polymerization model of
Sandars (2003) and discuss an important modification that is necessary to prevent
the average polymer length from being too short.

2. Outline of the Model

The model that we are proposing has arisen through the realization that the obvious
generalization of the polymerization model of Sandars (2003), to include dissocia-
tion, leads to two important difficulties. It was our desire to resolve these problems
in a way that seemed most natural to us, and that involves the least amount of
assumptions and new parameters. What we came up with is a closed model that is
fully self-contained. As in the original model of Sandars, new monomers of either
chirality are being produced from an achiral substrate. However, unlike the original
model, no external source of the substrate is required. Instead, the substrate can be
replenished by the “waste” generated by fragmented polymers.

Before we can discuss the dissociation model, let us explain in a few words
the polymerization model of Sandars. Here, polymers can grow by the addition of
monomers that can have either the same or the opposite chirality, and the corre-
sponding reaction coefficients are kS and kI , respectively. The subscript S indicates
that the chirality of both reaction partners is the same. The addition of a monomer
of opposite chirality leads to the inhibition of further growth at that end of the
polymer, which is indicated by the subscript I . The process of such an inhibition,
also referred to as “enantiomeric cross-inhibition”, is the single most important
aspect of the model without which there would be no bifurcation from a racemic
(i.e. equally many right- and left-handed building blocks) to a homochiral state.



DISSOCIATION IN A POLYMERIZATION MODEL OF HOMOCHIRALITY 509

The fragmentation involves a new parameter: the decay rate γS , at which a
polymer can break up anywhere in the chain. Again, the subscript S refers to the
situation where the partners involved in the bond have the same chirality. If the
chirality is different, we call the decay rate γI , in analogy to the corresponding
reaction coefficient kI in the original polymerization model of Sandars (2003).

The perhaps most obvious assumption for dissociation would be to let the frag-
ments continue to polymerize with new monomers. This leads to two undesired
features of the model. In the previous case with only polymerization the homochi-
ral equilibrium had the property that polymers of different lengths are all equally
abundant. This goes on all the way to infinity. If we now allow these polymers to
break, there is potentially a catastrophe in that arbitrarily many short polymers can
form. This is also supported by the numerical simulations discussed below. Further-
more, the numerical solutions show that, even in the best possible case, the average
polymer length never exceeds 3, which is clearly unrealistically short. We propose
two alternative ways to allow for the formation of longer chains. One possibility is
to include an additional degradation of polymers leading to a loss term in the poly-
merization equations and a corresponding source term for the substrate. Another
possibility is to recycle the dissociation products into the substrate without invoking
an additional degradation of polymers. In both cases the total number of building
blocks in the system is constant, so the substrate plays now an integral part of the
model. As a mechanical analogue, we can think of the mass of the substrate as being
similar to potential energy, and the mass of all polymers as being similar to kinetic
energy, such that the total number (corresponding to the total energy) is conserved.
Thus, not only goes the production of new left- and right-handed building blocks
at the expense of the substrate, but now the substrate is being replenished by the
dissociation fragments such that the total number of building blocks (regardless of
their chirality) remains constant.

In the following we develop the model step by step. We first need to show that
the mean polymer length is never more than 3 if the fragments are reused for further
polymerization.

3. Developing the Dissociation Procedure

Following the basic idea behind Sandars’ polymerization model we assume the
presence of left- and right-handed polymers of length n, denoted by Ln and Rn ,
respectively. We also assume the presence of polymers whose one end has been
spoiled by a reaction with a monomer of opposite chirality. The resulting polymers
of this form are denoted by Ln R1 and Rn L1.

3.1. ISOTACTIC DISSOCIATION

We begin with the description of a dissociation model by discussing isotactic poly-
mers of length n, which are assumed to break (dissociate) at a mean rate γS (assumed
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independent of n), at position m, according to

Ln
γS−→ Lm + Ln−m . (1)

Here, L refers to left-handed building blocks, but a corresponding equation is also
valid for right-handed polymers, denoted by R. In the present case, the fragments
Lm and Ln−m will be reused for further polymerization. As an example, L4 can
break up into two L2, or into one L1 and one L3, but for the latter there are two
possibilities to do this. Thus, for n = 4 there are altogether n−1 = 3 different ways
of destroying L4. This then leads to an evolution equation for the concentration of
polymers, [Ln],

d

dt
[Ln] = · · · + 2γS

N∑

m=n+1

[Lm] − (n − 1)γS[Ln], (2)

where n ≥ 2, and the last term represents the decrease of the concentration [Ln] due
to the n −1 different ways of breaking up the polymer. The first term represents the
corresponding gain from breaking up polymers with m = n − 1 or more building
blocks. The evolution equation for [L1] has only a gain term from breaking up
polymers of length n ≥ 2, so

d

dt
[L1] = · · · + 2γS

N∑

n=2

[Ln]. (3)

The absence of any negative terms (sinks) on the right-hand side implies that, if
there is only dissociation, [L1] can only grow. The dots in Eqs. (2) and (3) denote
the possible presence of extra terms (discussed in the next subsection) that would
be needed to model the primary polymerization process.

The same set of Eqs. (2) and (3) applies also to Rn . The mean rate of dissociation
is again γS , so the model is completely symmetric with respect to exchanging L � R.
Using the identity

N∑

n=1

n
N∑

m=n+1

[Ln] =
N∑

n=1

1

2
(n − 1)n[Ln], (4)

one can easily see that these reaction equations (2) and (3), in the absence of extra
terms, conserve the total number of left- and right-handed building blocks, i.e.

EL =
N∑

n=1

n[Ln] = const, ER =
N∑

n=1

n[Rn] = const. (5)
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Figure 1. Evolution of [Ln], using as initial condition [L100] = 1 and [Ln] = 0 for n �= 0.

As an illustration we show in Figure 1 a numerical integration of the evolution of
[Ln], using as initial condition [L100] = 1 and [Ln] = 0 for n �= 100. Thus, we
have EL = 100 initially, and this value is preserved by the model for all times.

As can be seen from Figure 1, both monomers and short polymers are immedi-
ately being produced. For n ≥ 2 the concentration reaches a maximum at a time
that is of the order γ −1

S , and decays then exponentially to zero.

3.2. SEMI-SPOILED POLYMERS

For polymers whose one end has been spoiled by a monomer of opposite chirality,
we have two types of reactions: those where the spoiling enantiomer breaks off
(rate γI ) and those where the polymer breaks up somewhere else in the isotactic
part (rate γS). Thus, we assume

Ln R1
γI−→ Ln + R1, (6)

and

Ln R1
γS−→ Lm + Ln−m R1 (7)

for 1 ≤ m ≤ n − 1. Ignoring a particular complication that will be discussed in
a moment, our preliminary set of equations for these additional reactions is then
given by

d

dt
[Ln R1] = · · · + γS

N∑

m=n+1

[Lm R1] − {γI + (n − 1)γS}[Ln R1], (8)

d

dt
[Ln] = · · · + γS

N∑

m=n+1

[Lm R1] + γI [Ln R1], (9)
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d

dt
[L1] = · · · + γS

N∑

n=2

[Ln R1] + γI [L1 R1], (10)

d

dt
[R1] = · · · + γI

N∑

n=1

[Ln R1]. (11)

These equations ignore the dissociation of isotactic polymers discussed in the pre-
vious section, but they can simply be added to the present set of equations. Again,
the system of equations has to be completely symmetric with respect to exchanging
L � R. However, the reaction (7) for m = n − 1 produces L1 R1 at a rate that
is proportional to [Ln R1]. In general, since [Ln R1] �= [Rn L1], this would lead to
[L1 R1] �= [R1L1], which is not permitted. We therefore have to discard the reaction
(7) for m = n − 1, i.e. we have to discard the reactions

Ln R1
γS−→ Ln−1 + L1 R1 (discarded), (12)

and likewise for the dissociation of Rn L1. Since we have therefore one reaction
less, this means that in Eq. (8), which now applies only for n ≥ 2, the n − 1 factor
changes effectively into a n − 2 factor. Furthermore, in Eqs. (9) and (10) the sums
start only with m = n + 2 and n = 3, respectively.

When writing down the full set of equations we have to treat the evolution of
[L1 R1] separately, so

d

dt
[L1 R1] = · · · − γI [Ln R1], (13)

while for n ≥ 2 we have a pair of equations

d

dt
[Ln R1] = · · · + w(L R)

n − {γI + (n − 2)γS}[Ln R1], (14)

d

dt
[Rn L1] = · · · + w(RL)

n − {γI + (n − 2)γS}[Rn L1]. (15)

Here,

w(L R)
n = γS

N∑

m=n+1

[Lm R1], w(RL)
n = γS

N∑

m=n+1

[Rm L1], (16)

are all the terms that have resulted from dissociation. The corresponding pair of
equations for [Ln] and [Rn] is automatically valid also for n = 1, so we have

d

dt
[Ln] = · · · + w(L)

n − (n − 1)γS[Ln], (17)

d

dt
[Rn] = · · · + w(R)

n − (n − 1)γS[Rn], (18)
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where

w(L)
n = 2γS

N∑

m=n+1

[Lm] + γS

N∑

m=n+2

[Lm R1] + γI [Ln R1] + δn1

N∑

m=1

[Rm L1], (19)

w(R)
n = 2γS

N∑

m=n+1

[Rm] + γS

N∑

m=n+2

[Rm L1] + γI [Rn L1] + δn1

N∑

m=1

[Lm R1]. (20)

Here, δn1 = 1 for n = 1, and δn1 = 0 for n ≥ 2.
We have calculated solutions using as initial condition [Ln R] = 1 for different

values of n and found that the evolution of [Ln] is very similar to that shown in
Figure 1, so we do not need to reproduce this result here.

3.3. POLYMERIZATION AND DISSOCIATION

We now add the polymerization equations of Sandars (2003) to Eqs. (13)–(18).
Again, we begin by discussing first the homochiral case. In that case we have only
two reactions,

Ln−1 + L1
2kS−→ Ln, (21)

Ln
γS−→ Lm + Ln−m, (22)

where kS is the reaction coefficient for attaching a monomer with the same hand-
edness. The factor 2 on kS indicates that polymerization can proceed on both ends
of the polymer. This agrees with earlier approaches, and may be realistic for PNA
polymerization, but not for RNA or DNA polymerization which usually proceeds
only on one end. Since the monomer can be attached to any one of the two ends of
the polymer, the overall reaction proceeds with the coefficient 2kS . The full reaction
equations for the homochiral case can then be written as (for n ≥ 3)

d[Ln]

dt
= 2kS[L1]([Ln−1] − [Ln]) + 2γS

N∑

m=n+1

[Lm] − (n − 1)γS[Ln], (23)

while for n = 2 we have

d[L2]

dt
= kS[L1]([L1] − 2[L2]) + 2γS

N∑

m=3

[Lm] − γS[L2], (24)

where an extra 1/2 factor has occurred in front of the [L1]2 term. (For n = 2, two
pieces of the same species react with each other, whereas for n > 2 there are always
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two different species, i.e. monomers and polymers; see BAHN for a more detailed
discussion). For n = 1 we have

d

dt
[L1] = −2kS[L1]

N−1∑

n=1

[Ln] + 2γS

N∑

n=2

[Ln]. (25)

Note that this problem is governed by three parameters, kS , γS , and the conserved
quantity EL , which only depends on the initial condition. These three parameters
can be combined into a single non-dimensional parameter,

M = ELkS/γS (homochiral case), (26)

that characterizes all possible solutions. Moreover, these equations possess a unique
equilibrium state which is in general different for different values of M; see Fig-
ure 2. Here we have normalized [Ln] in terms of γS/kS to make it dimensionless.

Given that there is a non-dimensional parameter (M) in the problem, there
is no unique choice for a non-dimensional representation of time. Possible non-
dimensional combinations are γSt (as used in Figure 1) and ELkSt . In Figure 3 we
show the time dependence of [L4] (normalized by EL ) as a function of γSt toward
the equilibrium solution shown in Figure 2. Note that the approximate position of
the maximum is always at around the same value of γSt for values of M changing
over six orders of magnitude. This shows that the typical relaxation time scale is
governed by γ −1

S .
It is somewhat surprising that with dissociation, [Ln] always peaks at small

values of n (at n = 2 for M ≥ 10 or at n = 1 for smaller values of M). This
can be quantified in terms of the mean polymer length NL that can be defined as
NL = ∑

n[Ln]/
∑

[Ln] (see BAHN). The resulting values of NL approach 3 for
large values of M, but are otherwise always less than 3.

Figure 2. Isotactic equilibrium states with polymerization and dissociation, for different values of
the universal parameter M changing over a range of six orders of magnitude.
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TABLE I

Mean polymer length NL for different values of M, for isotactic
polymers (here left-handed)

M 0.1 1 10 102 103 104

NL 1.09 1.55 2.45 2.92 2.99 3.00

Figure 3. Relaxation phase toward the isotactic equilibrium states in the presence of polymerization
and dissociation, for the same six different values of the parameter M as in Figure 2.

3.4. COUPLING TO A SUBSTRATE

It is natural to proceed as in the model of Sandars (2003) and couple the polymer-
ization equation to a substrate from which new monomers can be produced in a
catalytic fashion. It is sufficient to discuss first the isotactic case, so we add a source
QL to the right-hand side of Eq. (25),

d

dt
[L1] = QL − 2kS[L1]

N−1∑

n=1

[Ln] + 2γS

N∑

n=2

[Ln], (27)

where QL quantifies the source of new left-handed monomers. Since this term
provides of source of left-handed building blocks, EL is no longer conserved.
Instead, as discussed by BAHN, EL obeys the evolution equation

dEL

dt
= QL − 2kS[L1][L N ]. (28)

In the absence of dissociation, a homochiral steady state is possible, where [Ln] is
constant for all n ≥ 2, so [L N ] is finite and QL is balanced by 2kS[L1][L N ].

Obviously, QL should depend on the concentration of the substrate, [S], so
it is natural to write QL = kC [S]CL , where CL determines the efficiency of the
production of left-handed monomers from the substrate. (For imperfect fidelity,
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f < 1, of the catalyst the source QL can also have a fractional contribution from
CR; see Eqs. (11) and (12) of BAHN.) Since this generation is supposed to be a
catalytic process, CL should depend in some way on [Ln] itself; here we assume
CL = EL , but different proposals have been made in the past (see BAHN for a
discussion). The substrate itself obeys an evolution equation of the form

d[S]

dt
= Q − (QL + Q R), (29)

where Q is a source for the substrate. For the moment, this source can be thought
of as being externally given, as in the model of Sandars (2003), but we will assume
that this comes actually from the dissociation fragments.

Regardless of the particular choice, we face a general problem in that dissociation
causes the polymers to have finite length, so [L N ] → 0 and hence no equilibrium
state is possible any more. This causes a secular (linear) growth, so at some point the
numerical integration develops an arithmetic overflow. An obvious way to balance
this secular growth is to add a simple loss term, d[Ln]/dt = · · · − γ [Ln], where
γ is the degradation rate and the dots denote all the other terms that are already
present. The result is shown in Figure 4.

3.5. FEEDING THE FRAGMENTS BACK INTO THE SUBSTRATE

Clearly, the dissociation model developed so far requires some modifications that
are necessary to prevent the model from displaying secular growth when combined
with the polymerization model of Sandars (2003) and to allow for an average
polymers length of more than 3. One possibility would be to make the decay rate γS

dependent on n, for example in such a way that γS = 0 for small values of n. One
could also think of adding an overall loss term. Yet another possibility, that is close
to our final proposal, is to recycle the monomers resulting from dissociation back
into the substrate. In the end, however, we found it most plausible to assume that all
fragments resulting from dissociation are recycled back into the achiral substrate.

Figure 4. Isotactic equilibrium states with polymerization, dissociation, and uniform degradation, for
different values of M/104 (left), and the mean polymer length NL (right), for γ /γS = 20.



DISSOCIATION IN A POLYMERIZATION MODEL OF HOMOCHIRALITY 517

Thus, the source term would then be

Q = WL + WR + WL R + WRL + WRL R + WL RL , (30)

where

WL =
N∑

n=1

nw(L)
n , WR =

N∑

n=1

nw(R)
n , (31)

is the total number of recycled building blocks (both left-handed and right-handed),

WL R =
N∑

n=1

(n + 1)w(L R)
n , WRL =

N∑

n=1

(n + 1)w(RL)
n (32)

are the corresponding contributions from fragmented semi-spoiled polymers, and

WRL R =
N∑

n=2

(n + 2)[R1][Ln R], WL RL =
N∑

n=2

(n + 2)[L1][Rn L] (33)

are the contributions from terminally spoiled chains. The new system of equations
is then

d

dt
[Ln] = p(L)

n − (n − 1)γS[Ln], (34)

d

dt
[Rn] = p(R)

n − (n − 1)γS[Rn], (35)

d

dt
[Ln R1] = p(L R)

n − {γI + (n − 2)γS}[Ln R1], (36)

d

dt
[Rn L1] = p(RL)

n − {γI + (n − 2)γS}[Rn L1], (37)

where p(L)
n , p(R)

n , p(RL)
n , and p(L R)

n indicate the terms due to polymerization (see
Sandars, 2003, BAHN, Wattis and Coveney, 2005); see the appendix. Equations (34)
and (35) are valid for all n ≥ 1, but Eqs. (36) and (37) are only valid for n ≥ 2. For
n = 1 these equations reduce to

d

dt
[L1 R1] = p(L R)

1 − γI [L1 R1]. (38)

We note that [R1L1] = [L1 R1]. These equations are constructed in such a way that
the total number (or mass) of right- and left-handed building blocks is conserved,
i.e.

M ≡ [S] + ER + EL + E+
R + E+

L = const. (39)
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Here, E±
R = ∑

(n ± 1)[Rn] and E±
L = ∑

(n ± 1)[Ln] have been introduced. We
recall that due to recycling of the right- and left-handed building blocks through an
achiral substrate, the total chirality, which involves E−

R and E−
L , is not conserved;

see Section 5 of BAHN. The quantity M can be expressed in non-dimensional
form,

M = MkS/γS (general case), (40)

which is conserved for all times. This is therefore the main control parameter of
our model. It generalizes our earlier definition for the fully homochiral cases; see
Eq. (26).

In Figure 5 we show that increasing the value of M leads to an increased
range over which the racemic solution is unstable and a near-homochiral state
emerges. Likewise, increasing the rate at which the spoiling monomers break off
also broadens the range of permissible values of the fidelity for which the racemic
solution is unstable.

When f exceeds a critical value, the enantiomeric excess

η = EL − ER

EL + ER
(41)

increases exponentially with time like eλt , where λ is the growth rate. For f = 1, the
growth rate is (see Figure 6) λ = 1.2M1/2γS ≡ (MkSγS)1/2, so it is the geometrical
mean between the polymerization rate MkS on the one hand and the dissociation
rate γS on the other.

Contrary to the model without recycling, the present model does allow for
polymer lengths that can easily exceed the previous bound of 3. This requires large
values of M; see Figure 6, where we plot the resulting values of NL as a function

Figure 5. The effects of M and γI on the bifurcation diagram. Increasing the values of M and γI

allow near-homochiral states with decreased fidelity.
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Figure 6. Dependence of normalized growth rate λ/γS for the racemic solution and mean polymer
length NL for the homochiral solution on the total normalized mass parameter M for f = 1,
kI /kS = 1 and γI /γS = 1. The dotted line corresponds to the data of Table I, where the fragments
are not recycled back to the substrate.

of M. In fact, we find that to a good approximation,

NL or NR ≈ 1.12M1/4 (for M ≥ 10); (42)

see Figure 6. We regard the possibility of long chains as a crucial property of
any reasonable polymerization model. Furthermore, the fact that the model is now
fully self-contained (M is conserved) makes it an appealing alternative to previous
models.

4. Conclusions

Dissociation of polymers appears to be an important component of any polymeriza-
tion model. The present work has shown, however, that the straightforward usage
of dissociation fragments for further polymerization does not yield realistic model
behavior, because the maximum polymer length would not be more than 3. Various
other modifications that could allow for longer polymers have been discussed, and
it is likely that there are more possibilities. The main problem is that the fragments
from dissociation tend to produce excessive amounts of short polymers that cause
the average polymer length to be very short. Consequently, we have postulated
that the fragments resulting from polymerization are instead recycled into the sub-
strate. The average polymer length then depends on the normalized dissociation
time. In this model, no external source of the substrate is required, so the model is
now fully self-contained.

The model is governed by the total number of left- and right-handed homochiral
building blocks, the reaction rates for polymerization with the same and the opposite
chirality, and the corresponding dissociation rates. These numbers can be combined
into a single non-dimensional number that characterizes the behavior of the system.
At the moment we have no clear idea about its value, but laboratory experiments
should be able to determine not only this coefficient, but they should also allow us
to test various aspects and predictions of the model.
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We recall that in order to draw conclusions about the time scale on which
homochirality can be achieved, it is important to discuss the spatial extent of the
system (Saito and Hyuga 2004b). Homochirality may develop rapidly at one point
in space, but the handedness may be different at different locations. The relevant
time scale for achieving global homochirality is therefore much longer and is given
either by the diffusion time scale, which is very long, or by a turbulent turnover
time which can be much shorter if turbulent flows are present (Brandenburg and
Multamäki, 2004). Obviously, the generalizations given in the present paper can
directly be applied to their model provided the local growth remains still large
enough.

Appendix A. Polymerization Terms

In this appendix we state the terms describing the polymerization process. These
terms enter in Eqs. (34)–(38) in Section 3.5 and are equivalent to those given and
discussed in BAHN, Equs. (20)–(27). For n ≥ 2 we have

p(L)
n = 2kS[L1]

(
σ (1/2)

n [Ln−1] − [Ln]
) − 2kI [Ln][R1], (43)

p(R)
n = 2kS[R1]

(
σ (1/2)

n [Rn−1] − [Rn]
) − 2kI [Rn][L1], (44)

p(RL)
n = kS[R1]

(
σ (0)

n [Rn−1L] − [Rn L]
) + kI [L1]

(
2[Rn] − [Rn L]

)
, (45)

p(L R)
n = kS[L1]

(
σ (0)

n [Ln−1 R] − [Ln R]
) + kI [R1]

(
2[Ln] − [Ln R]

)
, (46)

whereas for n = 1 we have p(L)
1 = −λL [L1] and p(R)

1 = −λR[R1], where

λL = 2kS

N−1∑

n=1

[Ln] + 2kI

N∑

n=1

[Rn] + kS

N−1∑

n=2

[Ln R] + kI

N∑

n=2

[Rn L], (47)

λR = 2kS

N−1∑

n=1

[Rn] + 2kI

N∑

n=1

[Ln] + kS

N−1∑

n=2

[Rn L] + kI

N∑

n=2

[Ln R], (48)

and p(RL)
1 = p(L R)

1 = 0.
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