PHYSICAL REVIEW E 70, 056301(2004)

Delayed correlation between turbulent energy injection and dissipation

Bruce R. Pearsdn
School of Mechanical, Materials, Manufacturing Engineering & Management, University of Nottingham,
Nottingham NG7 2RD, United Kingdom

Tarek A. Yousef
Department of Energy and Process Engineering, The Norwegian University of Science and Technology, Kolbjgrn Hejes vei 2B,
N-7491 Trondheim, Norway

Nils Erland L. Haugeﬁ
Department of Physics, The Norwegian University of Science and Technology, Hgyskoleringen 5, N-7034 Trondheim, Norway

Axel Brandenburg
NORDITA, Blegdamsvej 17, DK-2100 Copenhagen &, Denmark

Per-Age Krogstdd
Department of Energy and Process Engineering, The Norwegian University of Science and Technology, Kolbjgrn Hejes vei 2B,
N-7491 Trondheim, Norway
(Received 23 April 2004; published 5 November 2p04

The dimensionless kinetic energy dissipation @tes estimated from numerical simulations of statistically
stationary isotropic box turbulence that is slightly compressible. The Taylor microscale Reynolds figsyber
range is 26s Rg, =220 and the statistical stationarity is achieved with a random phase forcing method. The
strong Re dependence df, abates when Re=100 after whichC, slowly approaches=0.5, a value slightly
different from previously reported simulations but in good agreement with experimental resu@is.idf
estimated at a specific time step from the time series of the quantities involved it is necessary to account for the
time lag between energy injection and energy dissipation. Also, the resulting value can differ from the en-
semble averaged value by up to +30%. This may explain the spread in results from previously published
estimates ofC,.
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[. INTRODUCTION the level of turbulent dissipation in flows that are unsteady is
a difficult, if not intractable, aspect of turbulence modeling.

The notion that the mean turbulent kinetic energy dissipa- The rate of turbulent kinetic energy dissipation is deter-
tion ratee is finite and independent of viscositywas origi-  mined by the rate of energy passed from the large scale ed-
nally proposed by Taylof1]. Its existence was assumed by dies to the next smaller scale eddies via a forward cascade
von Karman and Howarth, Loitsianskii, and also, signifi- until the energy is eventually dissipated by viscosity. Thus,
cantly, Kolmogorov[2] in establishing his celebrated simi- C_ defined as
larity hypotheses for the structure of the inertial range of
turbulence. Kolmogorov assumed the small scale structure of C,=eLiu’® (1)

turbulence to be locally isotropic in space and locally station—(here,g is the mean energy dissipation rate per unit mass,
ary in time—uwhich implies the equality of turbulent kinetic 5nq ' are characteristic large length and velocity scales,
energy injection at the large scales with the rate of turbUIenFespectively should be independent of the Reynolds number
kinetic energy dissipation at the small scal8 Although 514 of order unity. An increase in Reynolds number should
this view should be strictly applied only to steady turbulence,omy result in an increase in the typical wave number where
the mechanism of the dissipation of turbulent kinetic energyyissipation takes plackt]. In the past few years there have
can be considered the most fundamental aspect of turbulen¢gan a number of numericébee Ref.[5] and references
not only from a theoretical viewpoint but also from a turbu- therein) and experimentaisee Refs[6—8| for recent results
lence modeling viewpoint. Indeed, the mechanism that setg¢orts to determine the value &, and its dependence on
the Reynolds number. Perhaps the most convincing of these
are the numerical attempts since there is no recourse to one-
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Ref. [5] indicates that “high enough” Reynolds number ap- f(x,t) = foe cogik(t) - x +i¢(t)], (5)
pears to be Re~0(100). This is the same Reange where

an inertial subrange, with statistics showing non-Gaussiati/nerek(t) is a wave number with magnitude between 1 and
tails and nontrivial conditional statistics, start to appgggr 2+ While ¢(t) is a phase betweenmand 7. Both ¢(t) and

Here, Re(=u'2[15/ve]%?) is the Taylor microscale Reynolds K(t) are chosen randomly at each time step giving a forcing
number. At higher Rg slow Rg dependencies fo€,, such that is 5. correlated in time. The random unit vecteris
as that proposed by Lohg@0], cannot be ruled out. Mea- perpendicular tdk and the forcing amplitudé, is chosen _
suring such Redependencies, either numerically or experi- such that the root mean square Mach numl:')er'fo.r all runs is
mentally, will be close to impossible. betwegn 0.13 _and 0.15 Whlch_ is not too d|5_5|m|lar to_ that
One unresolved issue is that raised by Sreeniviisin found in 'ghe wind-tunnel experiments to t_)e dls_cusse_d in the
After assembling all the then known experimental decaying[‘eXt ;ecuon. For these weakly compressmle simulations, the
grid turbulence datl2] and numerical data for both decay- €nergies of solenoidal and potential components of the flow
ing and stationary isotropic turbulence he concludes that “th@aVe a ratioEyq/ Esq~107*~10"2 for most scales; only to-
asymptotic valugof C,) might depend on the nature of large ward the Nyquist frequencghenceforthky,,) does the ratio
scale forcing, or, perhaps, on the structure of the large scaleiPcrease to about 0.1. It is thus reasonable to assume that
He also demonstratgd3] in homogeneously sheared flows compressmmty is |_rrelevant for the results presented _here
that the large structure does influer@e However, it might while at the same time the present result.s can be _conS|dered
be argued that these results were obtained at low Reynold§0r€ comparable and relgvant to experlmgntal vymd-tunnel
numbers and the issue of a universal asymptotic valu€for flows than the perfectly incompressible simulations pub-
could still be considered open. Alternatively it could be ar-lished so far. The code has been validated in previous turbu-
gued that homogeneous shear flows and the like are stricthgnce studies and the reader is referred to Réfs-17 and
unsteady turbulent flows ar@, in its simplest guise, should fhe code websitgl8] for more information. _
not be expected to apply to such flows. The possibility of The'S|mL_|Iat|ons are carried out in perlpdlc boxes with
some characteristics of large scale turbulence being universigsolutions in the range of 37'_25123_gr|d points. The box
should not be ruled out. The recent observation that inpu$iz€ iSLx=L,=L,=2m, which discretizes the wave numbers
power fluctuations, when properly rescaled, appear universdl Units of 1. The viscosity is chosen such that the maxi-
[14] may be construed to suggest the possibility of univernum resolved wave 1?4u_mbd(max is always greater than
sality for C,. The aim of the present work is to estimae  1-5/7 wheres=(»*/¢)* is the Kolmogorov length scale.
from direct numerical simulation$DNS's) of statistically To be consistent with previously published DNS studies,
stationary isotropic turbulence and compare with previouslyhe total kinetic energ§ is defined as
reported DNS resultssummarized in Fig. 3 of Ref5]) and 1 3 K,
experiments carried out in regions of lowdU/dy Eiot= —(U?) = -u’2=f
~dU/dy|na/2) or zero mean shear. The present DNS 2 2 0
scheme differs from methods already reported in that a highfhe integral length scale is defined as
order finite difference method is used. To our knowledge,

"R dk, ©6)

these are the first finite difference results € Hence, it is [ Kmax
; nite : _ L=—s KE(k)dk 7
worthwhile to test if different numerics and forcing at the 2u'2 '
large scales result in vastly different values @rfrom those 0
already reported. and the average turbulent energy dissipation rate is defined
as
Il. NUMERICAL METHODS Kmax
e=2v K2E(k)dK. (8
0

The data used for estimating, are obtained by solving
the Navier-Stokes equations for an isothermal fluid with an
constant kinematic viscosityand a constant sound spegd
The governing equations are given by

ngular brackets denote averaging over the box volume. Af-
ter each run has become statistically statior{grgically 1-2

eddy turnoverd =L/u’) the average statistics are estimated
for the remaining total run time. Table | summarizes the av-

__ 2 )
(G+u- Vju=-cgV Inp+fyse+f, 2 erage statistics for each run. Comparing runs C and D in
Table | indicates that there is little difference in the average
(G+u-V)np=-V -u. (3) C, for simulations resolved up tgky.,=1.5 from 7kq.,=3.
The viscous force is ll. RESULTS
flice= V(Vzu +%V V. u+2:S-ViIn p), (4) A. Numerical results

In this section results for the higher-order finite difference
where §;;= 1/2(ui‘j+ujyi)— 1/35,J-V -u is the traceless rate numerical simulations are presented. The simulations began
of strain tensor. In the numerical simulations the system isvith N=32° and each subsequent larger box size began with
forced (stirred using random transversal waves given by  a velocity field interpolated from the previous box size. Fig-
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TABLE |. Examples of DNS parameters and average turbulence charactefisicshe number of grid points in each of the Cartesian
directions, Rg is the Taylor microscale Reynolds numben’\/v, Ty is the total run time after the run became statistically statiorniry,
is the eddy turnover time=L/u’, At is the run time increment,. is the Kolmogorov time scalesv'2s71/2, \ is the Taylor microscale
=Uu'V15v/e, Tma S the average time for the energy cascade from large to small scales, iaritle Kolmogorov length scake 1%/%~%/4,

Run N Re T/ T #(X10Y e(X10°) At/t (X107 L N U(X1®) mad T Co (X110 Kpa

A 32 20 31 40 24 1.9 19 1.2 7.1 0.15 1.2 128 2.1
B 64 42 30 15 22 15 16 0.1 7.8 0.37 0.75 63 2.0
C 128 90 11 4.0 24 15 1.3 043 8.4 0.62 0.54 23 15
D 256 92 19 4.0 21 0.71 14 045 8.1 0.69 0.53 24 3.0
E 256 152 20 1.6 21 11 1.4 0.29 8.4 0.74 0.49 12 15
F 512 219 7 0.80 25 0.86 1.3 0.20 8.9 0.67 0.47 7 1.7

ures la)-1(d) show example time series from run @ published DNS results. This may explain the scatter in pre-

=256°) for the fluctuating velocity, the fluctuating integral viously published DNS results i€, is calculated from a

length scald., the fluctuating kinetic energy dissipation rate subjective choice ok, L, andu’ at a single time step, e.g.,

e, and the fluctuating Reynolds number,Reespectively. ~as in Ref.[5]. The reason for the incorrect Reependence

Initially, the turbulence takes a short amount of time to reactor C, can be gleaned from Figs(é) and Xb). Figure 1a)

a statistically stationary state—a consequence of stabilizinghows that an intense burst in turbulent kinetic energgan

the new run from the previously converged run. The fluctu-example is noted by the arrgwan be observed some maxi-

ating quantities shown in Figs(d—1(d) are not unlike those mum time lagry,y later in the turbulent kinetic energy dis-

encountered in a wind tunnel. Indeed, Figa)lcould easily  sipation rate[Fig. 1(b), again noted by an arrgw More

be mistaken for a hot-wire trace of a turbulent flow. This is inabout the significance of,,., will be discussed later in Sec.

stark contrast to some pseudospectral methods that use nedB. By noting that there is a strong correlation between

tive viscosity to maintain a constant energy level. For exintense events af” andL on the one hand andon the other

ample, it is worth comparing Figs.()-1(d) with those hand itis possible to estimatg,,, from the maximum in the

shown in Ref[19] (i.e., their Figs. 2-¥ The pseudospectral correlation between'3/L ande by

results shpw that the same quantities only fluctuate with a [0 3OO+ ]

comparatively long period. ] (9)
Given that the statistics are fluctuating, although they are uS(t)/L() e(t+7)

statistically sfcationary, it_is tempting to plot the instqntaneouq;igure 3 shows an example for run E. The maximum time

C, as a function of Re Figure 2 show€, calc;ulated in such lag 7., corresponding to the maximum i3, , is indi-

a way. The Rg dependent trends are obviously not as €X-cated by the up arro. '

pected. However, it is worth noting the apparent rangeCfor

! D , With this done for all runs it is possible to shift the time
when Rg =50 is=~0.3-0.7 which is the range of previously g e ofe(t) for each run by its respective,,and correctly

calculate the instantaneous magnitud€opfsee Fig. 4. Fig-

pu’3/L,s(T) =

Errror L LRI BN I
g'(l)gg N ure 5 shows the newly calculated ,Rdependence of,
= oo0sk ] E using the correct time lag,,,, for each of the runs. A number
0.07E E of comments can be made. First, the dimensionless dissipa-
0.06 Fot—+— tion rate C, appears to asymptote when ,Rel00. The
0'00035 ] asymptotic magnitud€, =~ 0.5 is in good agreement with the
w : consensus DNS results published so far, g5=0.4 to 0.5
0.0002F (see Ref[5] and references therginHaving said this and
0.0001 -+
1.60E 25 pr
N 140f 2'05_ 7
1.20F ] 1
1.00f-+++ 61'55 :
200F 10F .
g 150§ 3 M ;
100§ : 0.5E MMAAE
] P I AP W BN E Y1 W P SR ST N S
0 4 8 12 16 20 0 50 100 150 200 250 300
uT Re,,
FIG. 1. Example time series from run B=256, average FIG. 2. Incorrectly estimate@, as a function of Rg +, run A;
Re =~ 152.(a) u’; (b) ¢; (c) L; (d) Re,. Here, the eddy turnover time V, run B; X, run C; [, run D; ¢, run E; A, run F. Ensemble
T=L/u’. The up arrows indicate correlated bursts of ande. averages can be found in Table I.
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FIG. 3. An example of the correlatiqn s ., EQ.(9), for run E, FIG. 5. Correctly estimate€, as a function of Rg +, run A;
N=256. The up arrow| indicates the location 0f.,,,/ T~0.74. V. run B: X, run C:, run D: &, run E: A, run F. Ensemble

averages can be found in Table I.
given the present demonstration that it is incorrect to esti-

mateC, from a single time snapshot it would be interesting ergy unaffected by viscosity. The asymptotic assumption of
to recalculate previously published results based on subje@q. (10) is two eddy turnovers. Figure 6 shows the, Rie-
tive choices of the quantities involved for estimati@g by pendence of* compared with Eq(10). The present results
using the entire time series. Last, the present results verifye much lower than the prediction of E@.0) and this is
the use of a high-order finite difference scheme and als@robably indicative of the fact that the energy cascade is not
prove thatC, is independent of Re in slightly compressible 3 simple full transfer of energy between neighboring wave
turbulence. o _ numbers, for low Reat least. It is more likely that, while
Having estimatedry, and assuming it approximates the most of the energy is passed to neighboring wave numbers, a
average timer for the energy to cascade from the large en-giminishing amount of the energy is passed to all higher
ergetic scales to the small dissipative scales it is worth compaye numbers. What is noticeable from the present results is
paring the present results with a simple cascade model sugRat +*~ 1 will not occur until Re ~ 300 which is an Reat
as that discussed by Lumlgy]. Using a forward cascade \yhjch the Rg dependence o, will become, either numeri-
model, whereby the spectrum is divided logarithmically intoca|ly or experimentally, unmeasurable. There is no reason
eddies which have the same width in wave number space gt to expect that at high enough ,R&ill energy transfer
their center wave number, the total time taken for energy t3nay occur between neighboring wave numbers. Using Eq.

cross the spectrum, assuming that all energy is passed dit), Fig. 6 indicates that not until Re- O(10%) will 7*~2.
rectly to the next wave number, is

B. Experimental results reconsidered

L "—
= =2 —J{1-1.29/15/Re C,.]).
77 Tmax (u’ )( 915(R¢{ C) Resullts for the present experiment, originally published in

Ref. [6], are updated here with more data within the range
170=Re =1210. Detailed experimental conditions can be
found in Refs[6,8] and need not be repeated here. The main
group of measurements are from a geometry called a Nor-
e 2(1 _ 1.29«'@). (10) man_grid which generates a decaying wake fI_ow. The geom-
etry is composed of a perforated plate superimposed over a
As noted by Lumley, little attention should be paid to the biplane grid of square rods. The flow cannot be classed as
numerical values of the coefficients, although attentionfreely decaying as the extent of the wind-tunnel cross section
should be paid to the exponent for R&or small values of (1.8x 2.7 n?) is approximately(7 X 11)L2. For all the flows
7, e.g.,7 <1, the large scale energy is directly affected bypresented in Ref|6], signals of the fluctuating longitudinal
viscosity and has little chance of transferring energy in avelocity u are acquired, for the most part, on the mean shear
classical cascade manner, while for large values*of.g.,  profile centerline. For the Norman grid, some data are also
7 >1, the large scales have the time for grinding down en-obtained slightly off the center line at a transverse distance of

Here, we have substituteti5/[Rée C,])2 for Lumley’s
large scale Reynolds number dependenc@”ﬁdn nondi-
mensional form,

8x10° —4x10* Y] I S—————t
6x10* [ ~3x10* L5F L
§ @ t [ ]
4 " ] 4 1.0 7 ]
x10 2x10 - °
] N o8 ° 1
] 05F o 4
g o o0 E
2x10-4 1 1 L1 PENENY (T L 1x10-4 o o
2 16 20 24 28 32 36 0oL MRS | L0
oT 10 100 1000
Re;

FIG. 4. Example of the offset time series for run (&,
~0.74,N=256, average Rg~150. Note that the peak events are  FIG. 6. Rg dependence of inertial range quantiti€s, the non-
now well correlated. —y'3/L(t/T); - - -, e([t=Tmad/ T). dimensional time lag, .= Tmax T;—, Eq. (10).
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L T ' ' ' R the cryogenic decaying grid data are based on the transverse
[ o ] equivalents of the quantities that constitute Eg. The ma-
Lo < ] jority of the scatter for the cryogenic data is due to the un-
! ] certainty ofL which is extremely difficult to estimate from
PIV data. Figure 7 confirms th&t,, albeit a one-dimensional
surrogate, measured in a number of different flows is inde-
pendent of Rg It could be argued that the rate of approach
0 200 400 600 800 1000 1200 to an asymptotic value depends on the flow, e.g., proximity
Re, to initial and boundary conditions. The asymptotic value
) S . . C.=0.5 is in excellent agreement with the present DNS re-
FIG. 7. Normalized dissipation ra, for different experimen- gy jts. These experimental results are encouraging consider-
tjl floivs. 0, ciroular disk, 1<545 Re =188, O, golf ball, 70 ing that wind-tunnel turbulence is always relatively young
;ReA7146' V. pipe, 70= R%~178'<O’ normal plate, 7&Re,  compared to DNS turbulence, e.g., the Norman grid turbu-
=335, A, Norman gridN1,152< Re =506, X, Norman gridN2 106 has only of the order of six eddy turnover times in

(slight mean sheadU/dy=~dU/dy|a/2), 607<Re <1215; >, oo .
Norman gridN2 (zero mean shepr3g8= Re, = 1120: <, decaying development by the time it reaches the measurement station.

cryogenic grid turbulence, 127Re <376 [7].

one mesh height wherU/dy~duU/d /2. ) . .
All data areg acquired usi};lg the cﬂngant temperature an- | "€ Present work has confirmed the notion that the dissi-
emometry hot-wire technique with a single-wire probe madeP@tion rate of mean turbulent kinetic energy is independent
of 1.27 um diameter WollastoriPt-10% Rh wire. The in-  Of viscosity for both numerical simulations of statistically
stantaneous bridge voltage is buck-and-gained and the arftationary isotropic turbulence and experiments. The numeri-
plified signals are low-pass filtereg with the sampling fre- cal simulations are slightly compressible isotropic turbulence
quencyf, always at least twicd,,. The resulting signal is and the statistical stationarity is achieved with a random
recorded with 12-bit resolution. Time lagsand frequencies Phase forcing applied at low wave numbers. The main result
dimensional longitudinal wave numbdg (=2 f/U), re- Should be estimated only with ensemble averaged quantities
spectively, using Taylor's hypothesis. The mean dissipatioﬁrom the entire time series for which the statistics are station-
rate¢ is estimated assuming isotropy of the velocity deriva-2- If C. is to be estimated at each time snapshot it is nec-
tives, i.e., s =e.e,= 15w((u/x)?). We estimate((au/ox)?) essary to correctly account for the time lag that occurs from
y 1.y, ©=— Cjg0o . .. . . .
from the average value &;p(k;) [the one-dimensional(D) the Iqrge scale energy injection to th.e fine scale energy .d's'
energy spectrum ofi such thatu?= [ZE, (k,)dk, and from sipation. Even afte.r c_orre_ctly corrglatlng the energy injection
finite differences((au/&x)2>=<u+l—u->02/(1LDJf$2] 1 with the energy dlss(;patllcj)gé the mstantaneo#s value§:£0Ic
) ! VoA ) ) .can vary quite considerablie.g., +30% over the extent o
No corrections for the decrease in wire resolution assoCig, e simylation. Such a variation may account for the scatter
E;e?/vr\ﬁwtth an rlnlcrer;senln Reanr]e dmglidfrislrt]ici ?"r ?\etﬁﬁgs in magnitude ofC, in previously published results. Both the
dirgensic?nglser?e{g?/ sSec?riSr:lj Feor mzst ol; tﬁe d(;ta t?]e w%?- resent numerical and experimental results suggest that the
. S Y L A symptotic value folC, is =0.5. In light of this, the previ-
wire resolution is=27% where 7 is the dissipative length ; ;
scale=13"% Y4 The 7ﬁesent in?/esti ation is I?imited to gne— ously held view that the asymptotic _va_llue_ oL may be
- iso - P g dependent on the large scale energy injection could be sus-

dimensional measurements and suitable surrogates for Efgct | agt, the results presented are strictly applicable only to
(1). Although caution should be exercised when higher-ordefg,qnic turbulence that is stationary in time. However, it
moments of a on_e—dlmens_lonal surrogate are substituted fQfq 14 be interesting to estima@, for simulations of turbu-

the three-dimensional equivalent, the use of the mean quaflsnce ynsteady in space and/or time, e.g., anisotropic turbu-
tity eiso for & should not be too problematic here. The char-gnce or anisotropic homogeneous turbulence with a mean

acteristic length scale of the large scale motitris Ly and  gpear pecause there s little known for these flows about how
is estimated from the wave numbler, at which a peak in ot rbulent kinetic energy is dissipated.

the compensated spectrkyE; p(k;) occurs, i.e.L,=1/k;,
[4,20]. As well as the Norman grid data, the recent cryogenic
decaying grid turbulence of Whitg/] measured using the
particle image velocimetryPIV) technique are included. We gratefully acknowledge the Norwegian Research

Figure 7 show<C, for the present data and those of Ref. Council for granting time on the parallel computer in Trond-
[7]. For all of the data, a value @&@,~ 0.5 appears to be the heim(Gridur/Emblg and the NTNU technical staff for assis-
average value. It should be noted that estimate€,ofrom  tance with the experiments.

0.0'.|.|.|.|.|.|'

IV. FINAL REMARKS AND CONCLUSIONS
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