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Decaying turbulence is studied numerically using as initial condition a random flow whose shell-integrated
energy spectrum increases with wave numberk like kq. Alternatively, initial conditions are generated from a
driven turbulence simulation by simply stopping the driving. It is known that the dependence of the decaying
energy spectrum on wave number, time, and viscosity can be collapsed onto a unique scaling function that
depends only on two parameters. This is confirmed using three-dimensional simulations and the dependence of
the scaling function on its two arguments is determined.
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I. INTRODUCTION

According to the classical Kolmogorov theory of 1941
[1], hydrodynamical turbulence is an example of a system
that is self-similar, i.e., the velocity pattern is supposed to
look similar when viewed at different degrees of magnifica-
tion [2]. Of course, real turbulence is not precisely self-
similar because of intermittency effects that are responsible
for anomalous scaling, but for the present purpose such cor-
rections can be regarded as small.

Two different self-similarity behaviors have been dis-
cussed in the literature: inertial range self-similarity and in-
frared asymptotic self-similarity that we shall be concerned
with here. The most famous one is probably the inertial
range self-similarity. Kolmogorov[1] showed that the veloc-
ity difference between two points,dv, increases with scale,
such thatkdvl~,h, whereh=1/3; seealso Ref.[3]. In other
words, when looking at the velocity at a magnified scalex
→ax, where a is the magnification factor, then velocities
will only be similar if they are rescaled by a factorah, i.e.
v→ahv.

However, at sufficiently small scales, viscous dissipation
always destroys the self-similarity. This implies that there
will be a modification to an otherwise perfect power law
behavior of the shell integrated energy spectrum,Eskd. This
modification can be described by a universal scaling function
csk,nd, which depends on the kinematic viscosityn. Thus,
one can write

Esk,nd = kqcsk,nd sforced turbulenced, s1d

where q=−s1+2hd follows from the normalization
eEsk,nddk= 1

2kv2l. For sufficiently large Reynolds numbers,

the energy spectrum has an inertial range withh=1/3, i.e.
q=−5/3. This spectrum cuts off at the wave numberkd
=se /n3d1/4, wheree is the rate of energy input. This depen-
dence onn can be used to simplify the scaling function to a
function that has only one argument, i.e.,

csk,nd = fsk/kdd = fskn3/4e−1/4d. s2d

Here, f is a universal function that depends, in addition tok,
only on the outer scale determined by the geometry of the
system.

We now discuss the infrared asymptotic self-similarity,
i.e., in the following the scaling exponentsh andq apply no
longer to the inertial range, but to the subinertial(infrared)
range. In the case of decaying turbulence, the scaling func-
tion also depends on time, i.e.,c=csk,t ,nd. Furthermore,c
is not a priori universal in the sense that its form may de-
pend on the initial spectrum. The spectrum also becomes
time dependent,

Esk,t,nd = kqcsk,t,nd sdecaying turbulenced, s3d

whereq depends on the initial condition. If the initial condi-
tion is restricted to be turbulent so that, prior to turning off
the forcing, the energy spectrum satisfies Eq.s1d, q is ex-
pected to be somewhere between 1 and 4; see Refs.f4,5g.

In a recent paper[7], Ditlevsen, Jensen, and Olesen found
that the scaling functioncsk,t ,nd reduces to a two-
parametric dependence,

csk,t,nd = gskta,ntbd, s4d

whereg=gsx,yd is a new scaling function that has only two
arguments, anda and b are exponents that depend only on
the slope of the infrared part of the initial spectrum.

Using data from decaying wind tunnel turbulence[6] it
was possible to show[7] that the energy spectra for different
times can be collapsed onto a single graph by plotting
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k−qEsk,t ,nd versuskta. The dependence on the viscosityn,
and hence on the second argumenty of the scaling function
gsx,yd, has been discarded. This may be appropriate in the
large Reynolds number limit.

The purpose of the present paper is to determine, using
numerical simulations, the dependence ofgsx,yd on bothx
and y. In a first step we determine the dependence onx by
keepingy constant. This is accomplished by lettingn vary in
such a way thatntb;y=const. This can obviously not easily
be done in wind tunnel turbulence(althoughn could in prin-
ciple be changed by varying the temperature). In a simula-
tion, changingn is of course quite straightforward. The de-
pendence ony is determined by integrating overx and
considering the decay law of kinetic energy.

II. SCALING IN DECAYING TURBULENCE

We first recapitulate the derivation presented in Ref.[7].
The unforced incompressible Navier-Stokes equation

] v
] t

+ v · = v +
1

r
= p = n¹2v, s5d

wherep is pressure, is invariant under the transformation

x → ax, v → ahv, t → a1−ht, n → a1+hn. s6d

In order that Eq.s4d can be satisfied, the exponentsa andb
have to take certain values. These exponents can be deter-
mined by requiring thatkta and ntb remain invariant under
the scaling transformations6d, i.e.,

kta → sa−1kdfas1−hdtga = kta, so a =
1

1 − h
, s7d

ntb → sa1+hndfas1−hdtgb = ntb, so b = −
1 + h

1 − h
. s8d

Translating this into a dependence onq we have, usingq=
−s1+2hd and henceh=−sq+1d /2,

a =
2

3 + q
, b = −

1 − q

3 + q
. s9d

Note thatb=0 for q=1, i.e., for initial energy spectra that
increase linearly withk. In Table I we have listed the scaling
parameters for several values ofq.

The limit t→0 is problematic. Forq.1, i.e. b.0, both
arguments ofgsx,yd vanish. Assuming thatgs0,0d is finite,
we can conclude that fort→0 the dependence ofgskta,ntbd
on n and k vanishes. This implies that the zero point oft
corresponds to a time where the energy spectrum would have
been a pure power law,

Esk,0,nd , kq. s10d

Such a spectrum is obviously singular and would have infi-
nite energy. We therefore refer tot=0 as a virtual zero point.
Near t=0 the spectrum can therefore not be self-similar. On
the other hand, ifgsx,yd is not necessarily finite in the limit
y→0, the above conclusion cannot be made. We return to
this in Sec. III D. In the following we consider the case
where time is sufficiently far away from zero.

The validity of Eqs.(3) and (4) has already been con-
firmed using data from wind tunnel experiments[6] where
the viscosity is low enough so that the second argument in
gsx,yd, y=ntb, can be neglected. One goal of the present
paper is to demonstrate, using direct simulations, that Eq.(4)
is also valid in the case where the second argument,ntb,
cannot be neglected. We do this by implementing in a nu-
merical simulation a time-dependent viscosity,n=nstd, such
that ntb=const for a given value of the initial power-law
exponentq.

As a first test of the scaling relationship we consider the
decay of fields with initial power law spectra; see Eq.(10).
We will then also test the scaling laws for initial energy
spectra that are not power laws(Sec. III E).

III. COMPARISON WITH SIMULATIONS

The Navier-Stokes equations for an isothermal and
weakly compressible fluid are solved in a box with periodic
boundary conditions. We always adopt initial velocity fields
such that their Mach number is around 1%, so compressibil-
ity effects can be neglected. We employ thePENCIL CODE[8]
which is a higher-order finite-difference code using the
2N-RK3 scheme of Williamson[9] for time stepping. The
low Re runs presented in this paper were done on relatively
coarse gridss643d while the high Reruns had a resolution of
2563. For further details and recent turbulence simulations
using thePENCIL code see Ref.[10]. We begin by studying
the evolution of initial velocity fields with power-law spec-
tra.

A. Initial power-law spectra

The initial power-law spectra with arbitrary values ofq
are constructed by first generating in real space a random
velocity field that isd correlated in space. Such a velocity
field corresponds to ak2 energy spectrum. In Fourier space,
the velocity field,vskd is then multiplied by a factorkq/2−1.

In the upper panel of Fig. 1 we show the results of a
numerical experiment where a power spectrum withq=1
decays under the action of constant viscosity. In this case we
haveb=0, soy=const. This means that the spectra collapse
onto a single graph whenEsk,t ,nd is divided bykq (=k in
this case, becauseq=1) andk is multiplied byta (=t1/2 in this

TABLE I. Dependence of secondary scaling parameters on the
slopeq of the initial spectrum. The significance of 2n will be ex-
plained in Sec. III D.

q h a b 2n

1 −1.0 1/2 0 1.00

1.5 −1.25 4/9 1/9 1.11

2 −1.5 2/5 1/5 1.20

3 −2.0 1/3 1/3 1.33

4 −2.5 2/7 3/7 1.43
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case). This is indeed the case, see the lower panel of Fig. 1.
For all other values ofq, the second argumenty=ntb will

not be constant and must depend ont. We therefore expect
that the spectrum will not collapse onto a single graph. This
is shown in Fig. 2, where we show the spectra at different
times (upper panel) and the attempt to collapse them onto a
single graph(lower panel).

Collapse of the spectra obtained at different times is in
general not possible unless one makesn time dependent in
such a way as to keepy=nstdtb constant in time. In the fol-
lowing simulations the viscosity is therefore given by

nstd = Hnref for t ø tref

nrefst/trefd−b otherwise,
s11d

wherenref=nstrefd is a constant reference viscosity. At early
times, t, tref, the initial fields were allowed to decay un-
der the action of a constant viscositynref so as to avoid
having to use an excessively largesor even infinited vis-
cosity. The result is shown in Fig. 3 and the spectra for the
different times collapse reasonably well onto a single
graph.

B. Dependence ofg„x ,y… on the first argument

It turns out that for a fixed value ofy and different values
of q the scaling functiongsx,yd does not quite collapse onto
a single graph and that, therefore, the curves for different
values ofq are distinct. We indicate this by a subscriptq and
write gqsx,yd. However, empirically, it turned out that to a
good approximation theq dependence can be removed by
rescalingx by a q dependent factor, i.e.,

x → x̃ = xsq + 4d/5. s12d

Note that forq=1 we havex̃=x. In Fig. 4 we showgqsx̃,yd
versusx̃ for fixed value of y and three different values of
qs=1,2,and 3d. Note that the collapse of the three curves
is reasonably good.

FIG. 1. Decay of the initial energy spectrumEsk,0 ,nd,kq for
q=1 (upper panel) and the corresponding scaling functiongq

=Esk,t ,nd /kq versusx=kta (lower panel). Note the collapse of the
rescaled spectra for different times(t=0,1,2.5,6,12.5, and 29). For
q=1 the parametera=1/2.

FIG. 2. Same as Fig. 1, but forq=2 and constant viscosity,n
=10−3. The times shown in the upper panel aret=0, 3, 9, 26, and
77. Note that the curves for different times do not collapse onto a
single graph.

FIG. 3. Same as Fig. 2, but withn=nstd given by Eq.(11) with
nref=3310−3 and tref=0.1. Note that now the data points collapse
reasonably well onto a single graph. In this figure the times are the
same as in Fig. 2.
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C. Modified time dependence of viscosity

In order to verify the anticipated scaling behavior further,
we determine effective values ofq and check whether these
values are consistent with each other. We begin by defining
an effective valueqn that determines the time dependence of
nstd. Thus,nstd is proportional totbn wherebn=−s1−qnd / s3
+qnd, which is analogous to Eq.(9). The result is shown in
Fig. 5 and we see that the best collapse is indeed achieved
whenq=qn. We have checked that this agreement holds also
for different values ofq.

D. Dependence ofgq„x ,y… on the second argument

Next we consider the temporal decay law of the kinetic
energy. This allows us to constrain the dependence ofgsx,yd
on y. As usual, the kinetic energy(per unit mass and unit
volume) can be found by integration,

Ekinst,nd =E
0

`

Esk,t,nddk st . 0d. s13d

For a given value ofy, wherey may still be a function oft,
Eq. s13d can be rewritten as an integral over the first argu-
ment of the scaling function,x=kta. This gives

Ekinst,yd = t−as1+qdE
0

`

xqgqsx,yddx, s14d

whereEkin still depends ony=ystd. Here we have ignored
the fact that in order forgqsx,yd to be independent ofq we
should rescale thex coordinate by a factorsq+4d /5; see
Eq. s12d. However, this only corresponds to an overall
rescaling of the kinetic energy by a factorfsq
+4d /5g−sq+1d and is therefore unimportant.

It is convenient to isolate the maint dependence,Ekin
, t−2n, where 2n=as1+qd, and

n =
1 + q

3 + q
. s15d

We can therefore write

Ekinstd , t−2ng̃qsntbd, s16d

whereg̃= g̃syd is a function that only depends on one argu-
ment and is obtained by integrating out thex dependence of
gsx,yd, i.e.,

g̃qsyd =E
0

`

xqgqsx,yddx. s17d

The resulting values of 2n are given in Table I for different
values ofq. Note that the basict−2n decay law has also been
obtained in Ref.f7g, but there it was assumed thatn is neg-
ligibly small and that for large values ofk one has a Kol-
mogorov spectrum. The basic relation between 2n andh or q
can also be obtained by assuming that the rate of dissipation
is proportional tov,

3/,, where, is the integral scalef3g.
In Fig. 6 we check that the basic decay law is indeed

mostly governed by the value ofq and not by the value ofqn.
For qn=q=2 the decay has the expected slope 2n=1.2
(middle panel). For qn=1, the viscosity is constant and the
decay is accelerated, while forqn=4, the viscosity decreases
faster than is necessary for keepingy constant, and the decay

FIG. 4. Three sets ofgsx̃,yd curves from decay experiments
with different values ofq but the same value ofy s=2310−2d. The
abscissa has been rescaled according to Eq.(12) to make the curves
for q=1 (triangles), q=2 (squares), andq=3 (crosses) collapse onto
a single graph.

FIG. 5. Scatter plots forq=2 and different values ofqn. Note
that the best collapse is achieved forqn=q.
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of Ekin is now slower than what is expected based on the
value ofq. These results confirm that the best agreement is
achieved forqn=q. We have checked that the same is true for
qn=q=3, for example.

We now turn to they dependence ofg̃qsyd, which can be
determined by plottingt2nEkin versusy; see Fig. 7. Within
plotting accuracy the results seem to be independent of the
value ofq. We can therefore drop in the following the sub-
script q on g̃qsyd.

The results confirm that for small values ofn the time
dependence of the decay law of kinetic energy is weaker:g̃
,y−0.85 for y,0.003 compared tog̃,y−1.8 for larger values
of y. However, there is as yet no evidence thatg̃ becomes
completely independent ofy wheny→0.

The above results imply that the energy decay law is at-
tenuated by a small correction factor forqÞ1. Consider, as
an example, the caseq=2. The basic decay law isEkin
, t−1.2, see Eq.(16). For q=2 we haveb=1/5, so forsmall
values ofn (assumingy,0.003) the exponent has to be cor-
rected by −0.85/5=−0.17, so that the correct decay law is
Ekin, t−1.37. This is indeed confirmed by direct inspection of
the data.

The fact thatg̃ does not seem to go to a finite value in the
limit y→0 is surprising, because it implies that there is a

viscosity correction to the basict−2n decay law even in the
limit of vanishing viscosity. Although the data do not neces-
sarily allow such an extrapolation, we are not aware of any
evidence against a finite viscosity correction in the large
Reynolds number limit.

E. Turbulent initial conditions

The results shown in the previous sections demonstrate
that the scaling law(3) successfully describes the decay of
kinetic energy in the special case of a flow field with an
initial kq spectrum. A more realistic initial condition is a
turbulent velocity field which has an energy spectrum that is
decreasing with increasingk. Nevertheless, there is always a
subinertial range where values ofq between 1 and 4 are not
uncommon.

In the following we consider the decay of flow fields that
are initially statistically stationary. These initial fields are
produced by applying a random force within a band of wave
numbers aroundkf until the work done by the forcing is
balanced by dissipation. Relatively high resolutions2563d
and large values ofkf are needed in order to get a well-
defined subinertial range.

As explained in Sec. II, the scaling law[Eq. (4)] is a
direct consequence of the scaling properties of the unforced
Navier-Stokes equations, Eq.(5), and will not be valid for a
flow driven by a general forcing function. The statistically
stationary state considered here will not necessarily be com-
patible with the Navier-Stokes equations. In the following
we assume thatt=0 is the time when the forcing is stopped,
but we must expect some readjustment phase before self-
similar scaling is possible.

When viscosity can be considered negligible or when it is
made time dependent according to Eq.(11), the parameterq
can, in principle, be determined by two independent meth-
ods. It can be found by determining the spectral slope in the

FIG. 6. Energy decay law forq=2 and different values ofqn

(solid lines). The different slopes are 2n=1.5, 1.2, and 0.9. The
dashed lines indicate the slope expected if the decay law was gov-
erned by the value ofqn (slopes 1, 1.2, and 1.43; see Table I).
Again, the best collapse is achieved forqn=q, corresponding to
2n=1.2.

FIG. 7. Representation ofg̃qsyd obtained by patching together
the decay laws from different runs with different values ofq. At
early times the decay is not yet self-similar, so the data for these
times have been ignored in the plot(the remains of the initial tran-
sients can still be seen as little hooks in the beginning of each
piece). Each piece of the decay curve has been shifted along the
ordinate to connect the different pieces with each other. The nor-
malization ofg̃ is therefore arbitrary.
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subinertial range or by fitting the energy decay to Eq.(16), as
done in Ref.[7]. In addition, of course,q could be found
completely empirically by trying different values until the
collapse is best. Unfortunately, the first approach is difficult
since one has to have large scale separation between the size
of the box and the integral(or forcing) scale in order to be
able to resolve the infrared region. This requires very large
resolution. In addition, the infrared limit obtained from simu-
lations is not very accurate for smallk, because only a few
modes contribute to the shell-integrated spectrum.

In Fig. 8 we show the result for a turbulence simulation
that was driven atkf =10 and the forcing was turned off at
t=0. Note that the collapse is relatively poor at early times.
The collapse improves significantly when the turbulence is
driven atkf =30; see Fig. 9.

The reason for the collapse being much better in the case
of larger kf is probably related to the facts that the local
turnover timetk,surms,d−1 is shorter. Thus, self-similarity
can probably commence much earlier.

Finally, we note that in our simulations the subinertial
range slope isq=1.5 both for large and small values ofkf.
We are not aware of a theoretical explanation for this slope,
but it is probably related to finite size effects. By contrast, in

an infinite domain the slope is expected to beq=4 (or =2),
which could be motivated if the Loitsyansky(or Saffman)
integral were independent of time. In that case one would
have 2n=10/7 (or 2n=6/5).

F. Conclusion

The results presented above have shown that decaying
hydrodynamic turbulence can be characterized by a two-
parametric scaling function and that this function may well
be universal and independent of the initial slopeq of the
spectrum in the infrared limit, i.e., in the subinertial range.
Although the basic scaling behavior has already been con-
firmed earlier[7], using data from wind tunnel turbulence
[6], it was not possible to determine the infrared scaling
properties of the energy spectrum. Indeed, for the smallest
wave numbers available from the wind tunnel data the spec-
trum was still a decreasing function of wave numberk. This
is because wind tunnel measurements only allow access to
one-dimensional spectra which are always monotonically de-
caying. This property follows from the fact that for isotropic
turbulence the three-dimensional spectrumEskd is related to
the one-dimensional spectrumE1Dskd via Eskd=−kdE1D/dk,
and sinceEskd.0 it follows that the one-dimensional spec-
trum can never increase withk; see Eq.(7) of Ref. [10]. This
is also true for the longitudinal and transversal power spectra
separately; see, for example, Fig. 6.11 of Ref.[11]. Whether

FIG. 8. Upper panel: initial energy spectrum(solid line) together
with subsequent energy spectra(dotted lines) obtained from driven
turbulence simulation forced at wave numberkf =10. The spectral
slope for small wave numbers corresponds toq=1.5. Middle panel:
attempt to collapse the spectra on a single graph which fails at early
times. Lower panel: decay of kinetic energy corresponding to a
slope 2n=10/9<1.11, confirming theq=1.5 scaling.

FIG. 9. Same as Fig. 8, but forkf =30. Note that the collapse is
much better—even at earlier times—than for the case withkf =10
(middle panel).
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or not the proper subinertial range of the three-dimensional
spectrum can be determined from wind tunnel experiments is
unclear. It is therefore important that simulations can now
demonstrate explicitly that the slope of the subinertial range
spectrum is linked to the scaling law derived in Ref.[7].

There are obvious extensions of this work to the case of
decaying magnetohydrodynamics turbulence. Similar scaling
properties also apply to the magnetic case[12,13], but the
detailed functional dependence of the corresponding two-
parametric scaling function has not yet been fully deter-
mined, although partial results do already exist. In particular,
for the case of helical initial fields the combined dependence
on wave number and time has been studied in Ref.[14], and
resistive corrections to the decay law have been investigated
in Ref. [15]. This work generalizes earlier findings that in the
helical case the magnetic energy can decay as slowly as
,t−1/2 [16], while in the nonhelical case the decay is gener-
ally faster and similar to the hydrodynamic case[17].

A general difficulty with the self-similarity approach is
the uncertainty regarding the zero point oft. There is appar-
ently no unique way of determining this timea priori. An a
priori choice of the zero point oft is however necessary ifn

is allowed to be a function of time. Although the uncertainty
regarding the zero point oft becomes less influential at later
times, it is not normally possible to revise the zero point oft
afterwards, unless one is prepared to run an entirely new
simulation.

Once the initial startup phase is over and the decay has
become self similar, one is however able to determine in full
detail the exact form of the two-parametric scaling law. Our
current work can only be preliminary, because it remains to
be checked how general and perhaps even universal the
gsx,yd function really is. If its generality is established, it
could become a powerful analysis tool for making predic-
tions about the decay of kinetic energy. This applies in par-
ticular to the functiong̃syd, which plays the role of a viscos-
ity dependent correction function for the decay law of the
kinetic energy.

ACKNOWLEDGMENT

We acknowledge the use of the parallel computers in
Trondheim, Odense, and Bergen.

[1] A. N. Kolmogorov, C. R. Acad. Sci. URSS30, 301 (1941).
[2] B. B. Mandelbrot, J. Fluid Mech.62, 331 (1974).
[3] U. Frisch,Turbulence. The Legacy of A. N. Kolmogorov(Cam-

bridge University Press, Cambridge, 1995).
[4] J. O. Hinze,Turbulence(McGraw-Hill, New York, 1975).
[5] M. Lesieur, Turbulence in Fluids(Martinius Nijhoff, Dor-

drecht, 1990).
[6] G. Comte-Bellot and S. Corrsin, Phys. Fluids48, 273 (1971).
[7] P. D. Ditlevsen, M. H. Jensen, and P. Olesen, e-print org/abs/

nlin.CD/0205055.
[8] See www.nordita.dk/data/brandenb/pencil-code
[9] J. H. Williamson, J. Comput. Phys.35, 48 (1980).

[10] W. Dobler, N. E. L. Haugen, T. A. Yousef, and A. Branden-
burg, Phys. Rev. E68, 026304(2003).

[11] S. B. Pope,Turbulent Flows(Cambridge University Press,
Cambridge, 2000).

[12] P. Olesen, Phys. Lett. B398, 321 (1997).
[13] C. Kalelkar and R. Pandit, Phys. Rev. E(to be published),

e-print cond-mat/0307243.
[14] M. Christensson, M. Hindmarsh, and A. Brandenburg, Phys.

Rev. E 64, 056405(2001).
[15] M. Christensson, M. Hindmarsh, and A. Brandenburg, e-print

astro-ph/0209119.
[16] D. Biskamp and W.-C. Müller, Phys. Rev. Lett.83, 2195

(1999).
[17] M.-M. Mac Low, R. S. Klessen, and A. Burkert, Phys. Rev.

Lett. 80, 2754(1998).

SELF-SIMILAR SCALING IN DECAYING NUMERICAL… PHYSICAL REVIEW E 69, 056303(2004)

056303-7


