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Self-similar scaling in decaying numerical turbulence
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Decaying turbulence is studied numerically using as initial condition a random flow whose shell-integrated
energy spectrum increases with wave numibéke k9. Alternatively, initial conditions are generated from a
driven turbulence simulation by simply stopping the driving. It is known that the dependence of the decaying
energy spectrum on wave number, time, and viscosity can be collapsed onto a unique scaling function that
depends only on two parameters. This is confirmed using three-dimensional simulations and the dependence of
the scaling function on its two arguments is determined.
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I. INTRODUCTION the energy spectrum has an inertial range withl/3, i.e.

According to the classical Kolmogorov theory of 1941 q=—5£31./4This spectrum cuts off at the wave numbgr
[1], hydrodynamical turbulence is an example of a systent (€/»°)™", wheree is the rate of energy input. This depen-
that is self-similar, i.e., the velocity pattern is supposed todence onv can be used to simplify the scaling function to a
look similar when viewed at different degrees of magnifica-function that has only one argument, i.e.,
tion [2]. Of course, real turbulence is not precisely self- _ _ 34 —1/4
similar because of intermittency effects that are responsible Pk, v) = f(kikg) = F(ko™"e 7). (2)
for anomalous scaling, but for the present purpose such cofyere f is a universal function that depends, in additiorkto
rections can be regarded as small. _only on the outer scale determined by the geometry of the

Two different self-similarity behaviors have been dis- system.
cussed in the literature: inertial range self-similarity and in- We now discuss the infrared asymptotic self-similarity,

frared asymptotic self-similarity that we shall be concerne : : ;
with here. The most famous one is probably the inertia(l*'e" in the follqwm_g the scaling exponerhs;ndq f”‘pp'y no
longer to the inertial range, but to the subiner(ialffrared

range self-similarity. Kolmogoroy1] showed that the veloc- : .
ity difference between two pointgp, increases with scalé range. In the case of c_Jecaylng trbulence, the scaling func-
such that(v) = ¢", whereh=1/3; seealso Ref.[3]. In other tion also depends on time, i.e/=y(k,t,v). Furthermorey

words, when looking at the velocity at a magnified scale S Nota priori universal in the sense that its form may de-
— ax, where « is the magnification factor, then velocities PENd on the initial spectrum. The spectrum also becomes

will only be similar if they are rescaled by a factef, i.e. time dependent,

v—a'v. . _ o E(kt,v) =kdy(kt,v) (decaying turbulenge (3)
However, at sufficiently small scales, viscous dissipation

always destroys the self-similarity. This implies that therewhereq depends on the initial condition. If the initial condi-

will be a modification to an otherwise perfect power law tion is restricted to be turbulent so that, prior to turning off

behavior of the shell integrated energy spectrétk). This  the forcing, the energy spectrum satisfies EL, q is ex-

modification can be described by a universal scaling functioected to be somewhere between 1 and 4; see ReH.

Yk, v), which depends on the kinematic viscosity Thus, In a recent papefi7], Ditlevsen, Jensen, and Olesen found
one can write that the scaling functiony(k,t,») reduces to a two-

E(k,v) =K%(k,v) (forced turbulence (1) parametric dependence,

_ b
where g=-(1+2h) follows from the normalization k.t = gkt 1), (4)
JE(k, v)dk=5(v?. For sufficiently large Reynolds numbers, whereg=g(x,y) is a new scaling function that has only two

arguments, an@ andb are exponents that depend only on
the slope of the infrared part of the initial spectrum.

*Electronic address: Tarek.Yousef@mtf.ntnu.no Using data from decaying wind tunnel turbulendd it
"Electronic address: Nils.Haugen@phys.ntnu.no was possible to shoy] that the energy spectra for different
*Electronic address: Brandenb@nordita.dk times can be collapsed onto a single graph by plotting
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TABLE |. Dependence of secondary scaling parameters on the The limit t— 0 is problematic. Fog>1, i.e.b>0, both

slopeq of the initial spectrum. The significance oh 2vill be ex-
plained in Sec. Il D.

q h a b 2n
1 -1.0 1/2 0 1.00
15 -1.25 4/9 1/9 111
2 -15 2/5 1/5 1.20
3 -2.0 1/3 1/3 1.33
4 -25 217 317 1.43

k™9E(k,t,v) versuskt®. The dependence on the viscosity
and hence on the second argumemdf the scaling function

arguments of(x,y) vanish. Assuming thag(0, 0) is finite,

we can conclude that fdr— 0 the dependence afkt?, vt?)

on v and k vanishes. This implies that the zero point tof
corresponds to a time where the energy spectrum would have
been a pure power law,

E(k,0,v) ~ k9. (10

Such a spectrum is obviously singular and would have infi-
nite energy. We therefore referts 0 as a virtual zero point.
Neart=0 the spectrum can therefore not be self-similar. On
the other hand, i§(x,y) is not necessarily finite in the limit
y— 0, the above conclusion cannot be made. We return to
this in Sec. Il D. In the following we consider the case
where time is sufficiently far away from zero.

g(x,y), has been discarded. This may be appropriate in the The validity of Egs.(3) and (4) has already been con-

large Reynolds number limit.

firmed using data from wind tunnel experimeii& where

The purpose of the present paper is to determine, usinghe viscosity is low enough so that the second argument in

numerical simulations, the dependenceg@f,y) on bothx
andy. In a first step we determine the dependencexday
keepingy constant. This is accomplished by lettingary in

such a way thatt?=y=const. This can obviously not easily

be done in wind tunnel turbulengalthoughv could in prin-
ciple be changed by varying the temperajuta a simula-

tion, changingv is of course quite straightforward. The de-

pendence ory is determined by integrating over and
considering the decay law of kinetic energy.

II. SCALING IN DECAYING TURBULENCE

We first recapitulate the derivation presented in Ré[.
The unforced incompressible Navier-Stokes equation

d 1
—v+v-Vv+—Vp:VV2v,
p

at ®

wherep is pressure, is invariant under the transformation

(6)
In order that Eq(4) can be satisfied, the exponert@andb

Xx—ax, v—dv, t—a™M vt

g(x,y), y=1t®, can be neglected. One goal of the present
paper is to demonstrate, using direct simulations, that{4g.
is also valid in the case where the second argumetf,
cannot be neglected. We do this by implementing in a nu-
merical simulation a time-dependent viscosity v(t), such
that 1t°=const for a given value of the initial power-law
exponenty.

As a first test of the scaling relationship we consider the
decay of fields with initial power law spectra; see ERQ).
We will then also test the scaling laws for initial energy
spectra that are not power laySec. Il B.

Ill. COMPARISON WITH SIMULATIONS

The Navier-Stokes equations for an isothermal and
weakly compressible fluid are solved in a box with periodic
boundary conditions. We always adopt initial velocity fields
such that their Mach number is around 1%, so compressibil-
ity effects can be neglected. We employ H®\CIL CODE[8]
which is a higher-order finite-difference code using the
2N-RK3 scheme of Williamsor9] for time stepping. The
low Re runs presented in this paper were done on relatively

have to take certain values. Th(gse exponents can be detparse gridg64% while the high Reruns had a resolution of
mined by requiring thakt* and »t” remain invariant under 256, For further details and recent turbulence simulations

the scaling transformatio(®), i.e.,

k2 — (" K)[at™™t]2=kt®, so a=

)

1
1-h’
1+h
ut® = (M) Mt]P= 1P, so b=- —n

(8

Translating this into a dependence gnwe have, using=
—-(1+2h) and henceh=—(gq+1)/2,

2 1-
a=—“ p=-—1 9)
3+(Q 3+Q

Note thatb=0 for q=1, i.e., for initial energy spectra that
increase linearly wittk. In Table | we have listed the scaling

parameters for several values apf

using thePENCIL code see Refl10]. We begin by studying
the evolution of initial velocity fields with power-law spec-
tra.

A. Initial power-law spectra

The initial power-law spectra with arbitrary values @f
are constructed by first generating in real space a random
velocity field that isé correlated in space. Such a velocity
field corresponds to & energy spectrum. In Fourier space,
the velocity field,v(k) is then multiplied by a factok¥2~2,

In the upper panel of Fig. 1 we show the results of a
numerical experiment where a power spectrum wgjthl
decays under the action of constant viscosity. In this case we
haveb=0, soy=const. This means that the spectra collapse
onto a single graph wheR(k,t,v) is divided byk" (=k in
this case, becausg= 1) andk is multiplied byt? (=t/2in this
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FIG. 1. Decay of the initial energy spectrutk,0,v)~ kd for F'?- 2. Same as Fig. 1, but fer=2 and constant viscosity;
q=1 (upper panél and the corresponding scaling functigy ~ =10 The times shown in the upper panel &k, 3, 9, 26, and

=E(k,t, »)/KI versusx=kt® (lower pane). Note the collapse of the 77. Note that the curves for different times do not collapse onto a
rescaled spectra for different tim@s0,1,2.5,612.5, and 29 For  single graph.
g=1 the parametea=1/2.
X—X=x(q+4)/5. (12

case. This is indeed the case, see the lower panel of Fig. 1. _ - .

For all other values of, the second argumegspto will  1Ote that forg=1 we havex=x. In Fig. 4 we showgy(X,y)
not be constant and must dependtoie therefore expect VErsusx for fixed value ofy and three different values of
that the spectrum will not collapse onto a single graph. Thidl(=1,2,and 3. Note that the collapse of the three curves
is shown in Fig. 2, where we show the spectra at differentS réasonably good.
times (upper pangland the attempt to collapse them onto a

single graph(lower pane). 102 @

Collapse of the spectra obtained at different times is in i R L h
general not possible unless one makesme dependent in ot e T T T
such a way as to keep=(t)t° constant in time. In the fol- 3w ]
lowing simulations the viscosity is therefore given by % 1074 Tl e

-6[ ., R
© Vret for t<t. 1D 10 oF N
v = . ~a | “x‘ -
el(tit,e) ™ otherwise, 10 .
. . . 1 10
wherew,.= v(t,e) iS @ constant reference viscosity. At early k
times, t<t,y, the initial fields were allowed to decay un-
der the action of a constant viscosity,s so as to avoid 160F .

having to use an excessively lar¢er even infinite vis- -2
cosity. The result is shown in Fig. 3 and the spectra for the 10
different times collapse reasonably well onto a singles 1074

graph. 8 1078F ]
S o8l .
B. Dependence ofy(x,y) on the first argument o100 ]
It turns out that for a fixed value gf and different values 10713] - - ]
of g the scaling functiory(x,y) does not quite collapse onto 1 10 100
a single graph and that, therefore, the curves for different ¥
values ofq are distinct. We indicate this by a subscripand FIG. 3. Same as Fig. 2, but with= »(t) given by Eq.(11) with

write gq(x,y). However, empirically, it turned out that to @ ,,,=3x 103 andt,,=0.1. Note that now the data points collapse
good approximation the dependence can be removed by reasonably well onto a single graph. In this figure the times are the
rescalingx by a g dependent factor, i.e., same as in Fig. 2.
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FIG. 4. Three sets of(X,y) curves from decay experiments 10 " q=gq,=2 7
with different values ofy but the same value of (=2X 1072). The 1078[
abscissa has been rescaled according tqE2).to make the curves 1 10 100
for q=1 (triangley, q=2 (squarey andq=3 (crossescollapse onto T
a single graph.
C. Modified time dependence of viscosity
-2
In order to verify the anticipated scaling behavior further, 5 10T
we determine effective values gfand check whether these :*,N 1074}k
values are consistent with each other. We begin by definin¢ = -6 i ]
an effective valuey, that determines the time dependence of _at g9=<,q,=4
v(t). Thus, »(t) is proportional tot® whereb,=-(1-q,)/(3 10
+q,), which is analogous to Eq9). The result is shown in 1 10 100

Fig. 5 and we see that the best collapse is indeed achievea o

wheng=q,. We have checked that this agreement holds also |G, 5. Scatter plots fog=2 and different values of,. Note

for different values of. that the best collapse is achieved tp=q.
D. Dependence ofjy(x,y) on the second argument _1+q (15
Next we consider the temporal decay law of the kinetic 3+q

energy. This allows us to constrain the dependenagafy) We can therefore write

ony. As usual, the kinetic energgper unit mass and unit

volume) can be found by integration, Eyin(t) ~ t‘z”gq(vtb), (16
x whereg=9(y) is a function that only depends on one argu-

Eyin(t,v) :J E(kt,v)dk (t>0). (13 ment and is obtained by integrating out thelependence of

0 alx,y), i.e.,

For a given value of/, wherey may still be a function of, = = fw q

Eqg. (13) can be rewritten as an integral over the first argu- %) 0 X1gg(x,y)dx. 1n

ment of the scaling functiorx=kt?. This gives
The resulting values ofrRare given in Table | for different
% values ofqg. Note that the basit?" decay law has also been

Eyin(t,y) = 7319 f x9gq(x,y)dx, (14)  obtained in Ref[7], but there it was assumed thais neg-

0 ligibly small and that for large values & one has a Kol-

) ) mogorov spectrum. The basic relation betweara@dh or q
whereE, still depends ory=y(t). Here we have ignored ¢an also be obtained by assuming that the rate of dissipation
the fact that in order fogy(x,y) to be independent afwe s proportional tov3/¢, where¢ is the integral scalg3].
should rescale the coordinate by a factofq+4)/5; see In Fig. 6 we check that the basic decay law is indeed
Eq. (12). However, this only corresponds to an overall mostly governed by the value gfand not by the value af,.
rescaling of the kinetic energy by a factof(q For g,=q=2 the decay has the expected slope=2.2

+4)/5]7@D and is therefore unimportant. (middle panel. For q,=1, the viscosity is constant and the
It is convenient to isolate the maindependencek;, decay is accelerated, while fqp=4, the viscosity decreases
~t2" where h=a(1+q), and faster than is necessary for keepygonstant, and the decay
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FIG. 7. Representation @,(y) obtained by patching together
the decay laws from different runs with different valuesoofAt
early times the decay is not yet self-similar, so the data for these
times have been ignored in the plthe remains of the initial tran-
sients can still be seen as little hooks in the beginning of each
piece. Each piece of the decay curve has been shifted along the
ordinate to connect the different pieces with each other. The nor-
malization ofg is therefore arbitrary.

viscosity correction to the basic?®" decay law even in the
limit of vanishing viscosity. Although the data do not neces-
sarily allow such an extrapolation, we are not aware of any
evidence against a finite viscosity correction in the large
Reynolds number limit.

Ekin(t’u)

FIG. 6. Energy decay law fog=2 and different values of, E. Turbulent initial conditions

(solid lineg. The different slopes arenz1.5, 1.2, and 0.9. The Th | h in th . . d
dashed lines indicate the slope expected if the decay law was gov- e results shown in the previous sections demonstrate

erned by the value of, (slopes 1, 1.2, and 1.43; see Tabje | that the scaling law3) successfully describes the decay of

Again, the best collapse is achieved fgy=q, corresponding to  Kinetic energy in the special case of a flow field with an
on=1.2. initial k9 spectrum. A more realistic initial condition is a

turbulent velocity field which has an energy spectrum that is

of Ey, is now slower than what is expected based on thejecreasing with increasirg Nevertheless, there is always a
value ofg. These results confirm that the best agreement igubinertial range where values gbetween 1 and 4 are not
achieved foig,=q. We have checked that the same is true foryncommon.
0,=9=3, for example. _ In the following we consider the decay of flow fields that

We now turn to thQ/Zdependence dy(y), which can be  gre initially statistically stationary. These initial fields are
determined by plotting™E,i, versusy; see Fig. 7. Within ~ roduced by applying a random force within a band of wave
plotting accuracy the results seem to be independent of thg, pers arounde until the work done by the forcing is

value ofg. We can therefore drop in the following the sub- balanced by dissipation. Relatively high resolutit266")

scriptg ongq(y). d
, . and large values ok; are needed in order to get a well-
The results confirm that for small values ofthe time defined subinertial range.

dependence of the decay law of kinetic energy is wedker: As explained in Sec. II, the scaling lajEq. (4)] is a

—0.85 7o —1.8
~y for y<<0.003 compared tg~y ° for larger values . . .
: : direct consequence of the scaling properties of the unforced
of y. However, there is as yet no evidence tgabecomes Navier-Stokes equations, Eg), and will not be valid for a

completely independent gf wheny—0. . , . o
The above results imply that the energy decay law is atflow driven by a general forcing function. The statistically

tenuated by a small correction factor fget 1. Consider, as stat_ionary state cons?dered here will n_ot necessarily be com-
an example, the casg=2. The basic decay law i€, patible with the Na!wer-St_okes equations. I_n the following
~t"12 see Eq(16). Forq=2 we haveb=1/5, so forsmall ~We assume that=0 is the time when the forcing is stopped,
values ofv (assumingy< 0.003 the exponent has to be cor- but we must expect some readjustment phase before self-
rected by —0.855=-0.17, so that the correct decay law is Similar scaling is possible.
Ewin~t1% This is indeed confirmed by direct inspection of ~ When viscosity can be considered negligible or when it is
the data. made time dependent according to Etfl), the parameteq

The fact thafj does not seem to go to a finite value in the can, in principle, be determined by two independent meth-
limit y— 0 is surprising, because it implies that there is aods. It can be found by determining the spectral slope in the
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FIG. 8. Upper panel: initial energy spectrysolid line) together FIG. 9. Same as Fig. 8, but fay=30. Note that the collapse is

with subsequent energy spectdotted lineg obtained from driven  much better—even at earlier times—than for the case Withl0
turbulence simulation forced at wave numiber 10. The spectral (middle panel.
slope for small wave numbers correspondsgdl.5. Middle panel:

attempt to collapse the spectra on a single graph which fails at earlé{n infinite domain the slope is expected todwe4 (or =2)
times. Lower panel: decay qf kinetic energy .corresponding 10 &y hich could be motivated if the Loitsyansker Saffman
slope 21=10/9~1.11, confirming the}=1.5 scaling. integral were independent of time. In that case one would

h Ah=10/7 (or 2n= .
subinertial range or by fitting the energy decay to @®), as ave 0/7 (or 2n=6/5)

done in Ref.[7]. In addition, of courseq could be found
completely empirically by trying different values until the
collapse is best. Unfortunately, the first approach is difficult The results presented above have shown that decaying
since one has to have large scale separation between the stgrodynamic turbulence can be characterized by a two-
of the box and the integrdbr forcing) scale in order to be parametric scaling function and that this function may well
able to resolve the infrared region. This requires very largde universal and independent of the initial slopef the
resolution. In addition, the infrared limit obtained from simu- spectrum in the infrared limit, i.e., in the subinertial range.
lations is not very accurate for sma&] because only a few Although the basic scaling behavior has already been con-
modes contribute to the shell-integrated spectrum. firmed earlier[7], using data from wind tunnel turbulence

In Fig. 8 we show the result for a turbulence simulation[6], it was not possible to determine the infrared scaling
that was driven ak;=10 and the forcing was turned off at properties of the energy spectrum. Indeed, for the smallest
t=0. Note that the collapse is relatively poor at early timeswave numbers available from the wind tunnel data the spec-
The collapse improves significantly when the turbulence igrum was still a decreasing function of wave numkeT his
driven atk;=30; see Fig. 9. is because wind tunnel measurements only allow access to

The reason for the collapse being much better in the casene-dimensional spectra which are always monotonically de-
of larger k; is probably related to the facts that the local caying. This property follows from the fact that for isotropic
turnover timer,~ (U,msf) "t is shorter. Thus, self-similarity turbulence the three-dimensional spectrh(k) is related to
can probably commence much earlier. the one-dimensional spectrulp(k) via E(k) =—kdE;p/dk,

Finally, we note that in our simulations the subinertial and sinceE(k) >0 it follows that the one-dimensional spec-
range slope igj=1.5 both for large and small values kf  trum can never increase with see Eq(7) of Ref.[10Q]. This
We are not aware of a theoretical explanation for this slopeis also true for the longitudinal and transversal power spectra
but it is probably related to finite size effects. By contrast, inseparately; see, for example, Fig. 6.11 of R&l]. Whether

F. Conclusion
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or not the proper subinertial range of the three-dimensionak allowed to be a function of time. Although the uncertainty
spectrum can be determined from wind tunnel experiments igegarding the zero point dfbecomes less influential at later
unclear. It is therefore important that simulations can nowtimes, it is not normally possible to revise the zero point of
demonstrate explicitly that the slope of the subinertial rangefterwards, unless one is prepared to run an entirely new
spectrum is linked to the scaling law derived in Réf]. simulation.

There are ObViOUS eXtenSionS Of th|S WOI‘k to the case Of Once the initial Startup phase is over and the decay has
decaying magnetohydrodynamics turbulence. Similar scalingecome self similar, one is however able to determine in full
properties also apply to the magnetic c4$&,13, but the  yeqil the exact form of the two-parametric scaling law. Our
detailed functional dependence of the corresponding tWog,rent work can only be preliminary, because it remains to
parametric scaling function has not yet been fully deter-be checked how general and perh’aps even universal the
mined, although partial results do already exist. In particular (x,y) function really is. If its generality is established, it
for the case of helical initial fields the combined dependence | |1 pocome a powerful analysis tool for making pre’dic-
on wave number and time has been studied in Rell, and ns a0t the decay of kinetic energy. This applies in par-
resistive corrections to the decay law have been mvestlgateT ular to the functiorg(y), which plays the role of a viscos-

n Ref. [15). This work gen_erahzes earlier findings that in the i'@/ dependent correction function for the decay law of the
helical case the magnetic energy can decay as slowly inetic energy

~t"Y2116], while in the nonhelical case the decay is gener-
ally faster and similar to the hydrodynamic c44&].

A generql difficulty_with the self—s_imilarity ap_proach is ACKNOWLEDGMENT
the uncertainty regarding the zero pointtofrhere is appar-
ently no unique way of determining this tingepriori. An a We acknowledge the use of the parallel computers in

priori choice of the zero point dfis however necessary if ~ Trondheim, Odense, and Bergen.
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