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Large scale dynamos produce small scale current helicity as a waste product that quenches the large
scale dynamo process (alpha effect). This quenching can be catastrophic (i.e., intensify with magnetic
Reynolds number) unless one has fluxes of small scale magnetic (or current) helicity out of the system.
We derive the form of helicity fluxes in turbulent dynamos, taking also into account the nonlinear
effects of Lorentz forces due to fluctuating fields. We confirm the form of an earlier derived magnetic
helicity flux term, and also show that it is not renormalized by the small scale magnetic field, just like
turbulent diffusion. Additional nonlinear fluxes are identified, which are driven by the anisotropic and
antisymmetric parts of the magnetic correlations. These could provide further ways for turbulent
dynamos to transport out small scale magnetic helicity, so as to avoid catastrophic quenching.
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Large scale magnetic fields in astrophysical bodies are
thought to be generated by dynamo action involving
helical turbulence and rotational shear [1,2]. A particu-
larly important driver of the mean-field dynamo (MFD)
is the � effect, which in the kinematic regime is propor-
tional to the kinetic helicity of the turbulence. A question
of considerable debate is how the � effect gets modified
due to the backreaction of the generated mean and fluc-
tuating fields? It is especially important to understand
whether � suffers catastrophic (i.e., Rm-dependent)
quenching, since Rm, the magnetic Reynolds number, is
expected to be typically very large in astrophysical sys-
tems. Recent progress has come from realizing the im-
portance of magnetic helicity conservation in con-
straining this nonlinear saturation [3,4].

In the MFD theory, one splits the magnetic field B into
a mean magnetic field B and a small scale field b � B�

B, and derives the mean-field dynamo equation [1]

@B
@t

� r� �U� B� E � �J�: (1)

Here E � u� b is the turbulent electromotive force
(emf), J � r�B=�0 the mean current density, �0 the
vacuum permeability (assumed unity throughout the rest
of the Letter), � the microscopic resistivity, and the
velocity U � U� u has also been split into mean U and
small scale turbulent u � U� U velocities. Finding an
expression for the correlator E in terms of the mean fields
is a standard closure problem that is at the heart of mean-
field theory. In the two-scale approach [2], one assumes
that E can be expanded in powers of the gradients of the
mean magnetic field. For isotropic helical turbulence, this
gives E 	 �B� �tJ, where in the kinematic limit, � �

�K � � 1
3 	! 
 u, proportional to the kinetic helicity

(! � r� u) and �t �
1
3 	u2 is the turbulent magnetic
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diffusivity proportional to the specific kinetic energy of
the turbulence, with 	 being the velocity correlation time.

The kinematic theory has to be modified to take ac-
count of the backreaction due to the Lorentz forces asso-
ciated with the generated large and small scale fields.
Treatments of the backreaction have used closure schemes
to derive corrections to the mean-field dynamo coeffi-
cients [3–5]. It is then found that � gets ‘‘renormalized’’
by the addition of a term proportional to the current
helicity, j 
 b, of the small scale fields; that is, � � �K �

�M, where �M � �	=3�0�j 
 b [5]. (Here �0 is the density
and j the small scale current density.) At the same time
there is no modification to �t at lowest order [4].

To constrain �M, in simulations in a periodic box or in
systems that involve no boundaries, it has proved useful to
follow the evolution equation for the small scale magnetic
helicity h�ha 
bi, where a is the vector potential and hi
denotes volume averaging. We have in such situations,
dh=dt��2hE 
Bi�2�hj 
bi. In the stationary limit,
this predicts hE 
Bi���hj 
bi, which tends to zero as
� ! 0, for any reasonable spectrum of current helicity.
This leads to a catastrophic quenching of the turbulent
emf parallel to B. Of course while evolving to this sta-
tionary state, some B will be generated. But its value, at
the end of the kinematic regime, still turns out to be
small, if the scale separation is large [6]. It has been
suggested that such quenching can be avoided if the
system has open boundaries and is inhomogeneous, since
one could then have a flux of small scale helicity out of
the system that helps maintain a nonzero hE 
Bi [7–9]. It
is therefore important to calculate such fluxes in a general
manner, taking into account also the effect of Lorentz
forces.

Vishniac and Cho [7] derived an interesting flux of
helicity even for nonhelical but anisotropic turbulence.
We derive a generalized form of the Vishniac-Cho flux
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(henceforth VC flux) in the evolution equation for j 
 b to
include also nonlinear effects of the Lorentz force and
helicity in the fluid turbulence. As we see, theVC flux can
also be thought of as a generalized anisotropic turbulent
diffusion. Further, due to nonlinear effects, other helicity
flux contributions arise generated by the anisotropic and
antisymmetric part of the magnetic correlations.

A problem with previous approaches was that in open
systems with boundaries, h is not gauge-invariant. One
has to consider instead the gauge-invariant relative mag-
netic helicity, say hR, defined by subtracting the helicity
of a reference vacuum field [10]. The flux of relative
helicity is cumbersome to work with for arbitrarily
shaped boundaries. Also the concept of a density of
relative helicity is not meaningful, since hR is defined
only as a volume integral. In order to avoid these prob-
lems, it is advantageous to consider instead the current
helicity j 
 b and its flux. The current helicity density and
its flux are directly gauge-invariant, locally well defined,
and are in fact the observationally measured quantities in,
say, the solar context. Furthermore, it is j 
 b that enters
the expression for the nonlinear � effect [4,5]. Also for
isotropic small scale fields, the spectra of small scale
current (Ck) and magnetic helicities (Hk) are related by
Hk � Ck=k2. For these reasons we consider here directly
the current helicity evolution and use the current helicity
flux as a ‘‘proxy’’ for the magnetic helicity flux.

Current helicity evolution.— Consider the evolution of
the small scale current helicity, j 
 b � �ijkbi@jbk, which
is explicitly gauge-invariant. We assume that the correla-
tion tensor of fluctuating quantities (u and b) vary slowly
on the system scale, say, R. Consider the equal time,
ensemble average of the product f�x1�g�x2�. The common
dependence of f and g on t is assumed and will not
explicitly be stated. Let f̂�k1� and ĝ�k2� be the Fourier
transforms of f and g, respectively. We can express this
correlation as f�x1�g�x2� �

R

�f̂; ĝ;k;R�eik
rd3k, with


�f̂; ĝ;k;R� �
Z

f̂
�
k�

1

2
K
�
ĝ
�
�k�

1

2
K
�
eiK
Rd3K:

(2)

Here we have defined the difference r � x1 � x2 and
the mean R� 1

2�x1�x2�, keeping in mind that all
two-point correlations will vary rapidly with r but slowly
with R [11]. Also k � 1

2 �k1 � k2� and K � k1 � k2. In
what follows, we require the correlation tensors,
vij�k;R� � 
�ûi; ûj;k;R�, of the u field, mij�k;R� �


�b̂i; b̂j;k;R� of the b field and the cross correlation
�jk�k;R� � 
�ûj; b̂k;k;R� between these two fields, in
Fourier space. The turbulent emf is given by Ei�R��
�ijk

R
�jk�k;R�d3k.

To compute the current helicity evolution we use the
induction equation for b in Fourier space,
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� �kpq�qlmikp

Z
ûl�k� k0�B̂m�k0�d3k0 � Ĝk�k�

� �k2b̂k�k�: (3)

Here, G � r� �u� b� u� b� is the nonlinear term.
(We also neglect the velocity shear due to U compared to
that due to u.) A tedious but straightforward calculation
gives [3]
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j 
 b � �ljk

Z
�2�lkkj�k 
B� � �lkrj�ik 
 B� � ikjB


 r�lk � 2ikj�pkrpBl�d
3k � TC: (4)

We have written out explicitly only that part of the
helicity evolution driven by the coupling of the turbulent
emf to the mean magnetic field. This is because we are
particularly interested in turbulent helicity fluxes driven
by an inhomogeneous E and B. The TC term represents
the triple correlations of the small scale u and b fields and
the microscopic diffusion terms that one gets on using
Eq. (3). The handling of the triple correlations needs a
closure approximation. But we will not need to explicitly
evaluate these terms to identify the helicity fluxes we are
interested in; i.e., those which couple E and B, and so
continue to write this term as TC.

In order to calculate the current helicity evolution,
using Eq. (4), we have to calculate also �lk. This has
been done in detail by [3,12]. [One adopts a closure
approximation whereby triple correlations, Tlk, which
arise now in the evolution equation for @�lk=@t, are
assumed to provide relaxation of the turbulent emf or
�lk and one takes Tlk � ��lk=	, where 	 is the relaxation
time (cf. also [13].)] We concentrate below on nonrotating
but helical turbulence. For such turbulence we have from
Refs. [3,12], �lk � 	Ilk, where Ilk is given by

Ilk��ik 
B�vlk�mlk��
1

2
B 
r�vlk�mlk��Bl;smsk

�Bk;svls�
1

2
kmBm;s

�
@vlk

@ks
�

@mlk

@ks

�
�2

klks

k2
Bs;pmpk:

(5)

We use this in what follows.
Let us denote the four terms under the integral in

Eq. (4) by A1, A2, A3, and A4, respectively. In A1, due to
the presence of �ljk, only the antisymmetric parts of the
tensors vlk and mlk survive, and these are denoted by vA

lk
and mA

lk, respectively. Also note that the last term above
vanishes because it involves the product �ljkklkj � 0. All
the other terms of Eq. (4) already have one R derivative,
and so one only needs to retain the term in �lk � 	Ilk that
does not contain R derivatives. In A3 one can then use the
fact that r 
 B � 0 to write it as a total divergence. We
now turn to specific cases.

Isotropic, helical, nonrotating turbulence.—Let us first
reconsider the simple case of isotropic, helical, nonrotat-
ing, and weakly inhomogeneous turbulence. For such
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turbulence, the form of the velocity and magnetic corre-
lation tensors is given by [11,12]. In evaluating the k
integrals, only terms that involve integration over an
even number of ki survive. Also, in terms that already
involve one Ri derivative, one needs to keep only the
homogeneous terms in vlk and mlk. Further in the pres-
ence of �ljk, all terms symmetric in any pair of the indices
vanish. Taking account of these considerations, it turns
out that only the homogeneous part of the velocity and
magnetic correlation tensors given in [11,12] survive. The
homogeneous part of these correlations is

vij �

�
'ij �

kikj

k2

�
E�k;R� �

�ijkikk

k2
F�k;R�; (6)

and a similar expression for mij with functions, say,
M�k;R� and N�k;R� replacing E and F, respectively.
Here 4,k2E and 4,k2M are the kinetic and magnetic
energy spectra, respectively, and 4,k2F and 4,k2N are
the corresponding helicity spectra. They obey the rela-
tions u2�2

R
Ed3k, u 
r�u�2

R
Fd3k, b2�2

R
Md3k,

and j 
 b � 2
R

Nd3k. With these simplifications we have,
after carrying out the angular integrals over the unit
vectors k̂i � ki=k,

A1�
4

3
B2

Z
k2�F�N�d3k�

2

3
B 
J

Z
k2�M�E�d3k: (7)

In the case of isotropic turbulence, the second and third
terms, A2 and A3, are zero because, to leading order in R
derivatives, the integrands determining A2 and A3 have an
odd number (3) of k̂i ’s. The fourth term is given by

A4 �
2

3
J 
B	

Z
k2�E � M�d3k: (8)

Adding all the contributions, A1�A2�A3�A4, we get

@
@t

j 
b�
4

3
B2	

Z
k2�F�N�d3k�

4

3
J 
B	

Z
k2Ed3k�TC:

(9)

We see that there is a nonlinear correction due to the small
scale current helicity to the term / B2. But the nonlinear
correction to the term / J 
B has canceled out, just as
there is no such correction to turbulent diffusion [4].

As pointed out above, in the isotropic case, the mag-
netic helicity spectrum is Hk � Ck=k2. So the first two
terms of the current helicity evolution equation Eq. (9)
can be interpreted as representing the effects of exactly
the source term �2E 
 B, which is obtained for the mag-
netic helicity evolution. Also for this isotropic, but
weakly inhomogeneous case, one sees that there is no
flux that explicitly depends on the mean magnetic field.

Anisotropic turbulence.—Let us now consider aniso-
tropic turbulence. For term A1 in Eq. (4), one cannot
now assume the isotropic form for the velocity and mag-
netic correlations. But due to the presence of �ljk, only the
antisymmetric parts of vlk and mlk survive. Also, the last
205001-3
term in Eq. (5) does not contribute to A1 because
�ljkklkj � 0. One can further simplify the term involving
k derivatives by integrating it by parts. Straightforward
algebra, and a judicious combination of the terms then
gives

A1 � 	�ljk

�
�2iBpBs

Z
kjkpks�vA

lk � mA
lk�d

3k

� 2Bp

Z
kjkp�Bl;smsk � Bk;svls�d

3k

� BpBm;j

Z
kmkp�v

A
lk � mA

lk�d
3k

�rs

�
BpBs

Z
kjkp�vA

lk � mA
lk�d

3k
��

: (10)

A2 � �	�ljkBpBs;j

Z
kskp�vA

lk � mA
lk�d

3k; (11)

A3 � �rs

�
	�ljkBpBs

Z
kjkp�vA

lk � mA
lk�

�
d3k; (12)

A4 � 2	�ljkBpBl;s

Z
kjkp�vsk � msk�d3k: (13)

Adding all the contributions, A1 � A2 � A3 � A4, we get

@
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b�2�jlk	

�
BpBs

Z
ikjkpks�vA

lk�mA
lk�d

3k

�2BpBk;s

Z
kjkpvS

lsd
3k�BpBs;j

Z
kskpmA

lkd
3k

�rs

�
BpBs

Z
kjkpmA

lk

�
d3k

�
�TC; (14)

where vS
ls �

1
2 �vls � vsl�.

Let us discuss the various effects contained in Eq. (14).
The first term in Eq. (14) represents the anisotropic
version of helicity generation due to the full nonlinear
� effect. In fact, for isotropic turbulence, it matches the
first term in Eq. (9). The second term in Eq. (14) gives the
effects on helicity evolution due to a generalized aniso-
tropic turbulent diffusion. This is the term that contains
the VC flux. To see this, rewrite this term as

@j 
 b
@t

								V
� 4	�jlkBpBk;s

Z
kjkpvS

lsd
3k

� �r 
F V � 4	Bk�kljBp;s

Z
kjkpvS

lsd
3k:

(15)

Here the first term is theVC flux, F V
s � .spkBpBk, where

.spk is a new turbulent transport tensor with

.spk � �4	�jlk

Z
kjkpvS

lsd
3k � �4	!krpus: (16)

Obviously, only components of .spk symmetric in p and k
enter in the flux F V

s . The second term in Eq. (15) is the
effect on helicity due to ‘‘anisotropic turbulent diffu-
sion.’’ (We have not included the large scale derivative
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of vls to the leading order.) Strictly speaking, F V is a
current helicity flux, but if we define the spectrum of the
magnetic helicity flux by dividing the spectrum of the
current helicity flux by a k2 factor, Eq. (16) for F V leads
exactly to the magnetic helicity flux given in Eqs. (18) and
(20) of Vishniac and Cho [7].

This split into helicity flux and anisotropic diffusion
may seem arbitrary; some support for its usefulness
comes from the fact that, for isotropic turbulence, F V

vanishes, while the second term exactly matches with the
corresponding helicity generation due to turbulent diffu-
sion, i.e., the J 
 B term in Eq. (9). Of course, we could
have just retained the nonsplit expression in Eq. (15),
which can then be looked at as an effect of anisotropic
turbulent diffusion on helicity evolution. Also, interest-
ingly, there is no nonlinear correction to theVC flux from
the small scale magnetic field in the form of, say, a term
proportional to mS

ls; just as previously, there was no non-
linear correction to turbulent diffusion in lowest order.

Finally, Eq. (14) also contains terms (the last two)
involving only the antisymmetric parts of the magnetic
correlations. These terms vanish for isotropic turbulence,
but contribute to helicity evolution for nonisotropic tur-
bulence. The last term gives a purely magnetic contribu-
tion to the helicity flux, but one that depends only on the
antisymmetric part of mlk. Note that such magnetic cor-
relations, even if initially small, may spontaneously de-
velop due to the kinematic � effect or anisotropic
turbulent diffusion and may again provide a helicity
flux. More work is needed to understand this last flux
term better [14,15]. Preliminary simulations of helical
turbulence with shear and open boundaries suggest that
the sign of the VC flux agrees with that of the small scale
current helicity flux, but that its magnitude may only
account for about 25% of the actual flux [16]. The exis-
tence of the VC flux has also been verified in simulations
of nonhelically driven shear flow turbulence [17], but its
magnitude was too small to produce dynamo action.

In conclusion, we have derived helicity fluxes in turbu-
lent dynamos, taking also into account the nonlinear
effects of Lorentz forces due to the fluctuating field. To
avoid gauge ambiguities, we have followed the current
helicity evolution.We confirm the form of the helicity flux
found by Vishniac and Cho, who used the first order
smoothing approximation. We note, however, that it is
more correctly interpreted as a current helicity flux and
not as a flux of relative magnetic helicity. In addition, we
have found that the corresponding turbulent coefficient
does not get renormalized due to nonlinear effects, just as
is the case of turbulent diffusion. Additional nonlinear
fluxes have been identified as being driven by the aniso-
tropic and antisymmetric parts of the magnetic correla-
tions. These could provide further ways for turbulent
dynamos to transport out small scale magnetic helicity
so as to avoid catastrophic Rm-dependent quenching. It
205001-4
remains to calculate these fluxes in specific circumstan-
ces and also verify their presence in direct numerical
simulations of turbulent dynamos.
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