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Abstract. Local three-dimensional shearing box simulations of the compressible coupled dust-gas equations are used in the
fluid approximation to study the evolution of different initial vortex configurations in a protoplanetary disc and their dust-
trapping capabilities. The initial conditions for the gas are derived from an analytic solution to the compressible Euler equation
and the continuity equation. The solution is valid if there is a vacuum outside the vortex. In the simulations the vortex is either
embedded in a hot corona, or it is extended in a cylindrical fashion in the vertical direction. Both configurations are found
to survive for at least one orbit and lead to accumulation of dust inside the vortex. This confirms earlier findings that dust
accumulates in anticyclonic vortices, indicating that this is a viable mechanism for planetesimal formation.
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1. Introduction

The expected scenario for planet formation within a protoplan-
etary disc around a newly formed star is that planets grow from
kilometre-sized planetesimals to protoplanets by gravitation-
ally attracting each other. The planetesimals are expected to
form within the protoplanetary disc while gas is still present in
the disc. The coupling of gas and solids is therefore an impor-
tant issue in the formation of planets.

Planetesimals can only grow from sub-micron solids if their
relative velocities are less than about 1 ms−1, since larger veloc-
ities will result in disruption of the aggregate (Blum & Wurm
2000). Relative velocities considerably higher than 1 ms−1

arise from chaotic motions in a turbulent disc or from dif-
ferential orbital drift in a laminar disc (Weidenschilling &
Cuzzi 1993). Another problem facing planetesimal growth is
the rapid inward orbital drift associated with gas drag that car-
ries small bodies into the star on a time scale of 100−1000 years
(Weidenschilling 1977).

One attractive scenario which may be able to overcome
the two above problems is the presence of dust-trapping an-
ticyclonic vortices within the protoplanetary disc (Barge &
Sommeria 1995; Tanga et al. 1996; Bracco et al. 1999; Godon
& Livio 2000). If dust is trapped within vortices, the rela-
tive velocities between solid particles would be small since
all the solids rotate in the same direction within the vor-
tex. Trapping would also prevent solid bodies from spiralling
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inwards towards the star. Self-gravity between sufficiently large
amounts of trapped solid material inside vortices could even
trigger a local gravitational instability and subsequent growth
of centimetre-sized solid bodies into planetesimals.

The formation and stability of vortices has been an area
of much research since the dust-trapping mechanism was pro-
posed by Barge & Sommeria (1995). Using a two-dimensional
incompressible model, Bracco et al. (1998, 1999) show that
anticyclonic vortices can form as a relic from the originally
strongly turbulent disc. The existence of a baroclinic insta-
bility in a protoplanetary disc is investigated by Klahr &
Bodenheimer (2003). This instability works as a source of vor-
ticity and forms vortices similar to how vortices form around
high and low pressures on Earth. The stability of vortices is
simulated by Godon & Livio (1999). They show that two-
dimensional anticyclonic vortices can survive for hundreds of
orbits, and that isolated vortices can merge to form larger
vortices.

The dust-trapping mechanism was investigated by
Hodgson & Brandenburg (1998) in three dimensional simu-
lations of disc turbulence driven by the magneto-rotational
instability (Balbus & Hawley 1998). In these simulations the
vortices are highly time dependent, but when gas velocity is
frozen in time, they find concentration of dust inside vortices.
However, when considering a freely evolving gas flow, they no
longer see any significant dust concentration inside vortices.
This is associated both with the finite life time of turbulent
vortices and with the stirring up of dust by turbulence in the
vertical direction. The dust-trapping efficiency of vortices
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was explored analytically by Chavanis (2000) for vortices
of arbitrary aspect ratio. Recently, de la Fuente Marcos &
Barge (2001) have considered a single frozen vortex velocity
field in two dimensions and a distribution of particle sizes.
Using realistic expressions for the drag force on dust they
find efficient particle trapping inside vortices, preventing the
inwards orbital drift associated with gas drag.

In the present paper we explore the dust-trapping efficiency
of three-dimensional vortices. We start out from the analytic
vortex solution by Goodman et al. (1987, hereafter referred
to as GNG). This solution takes density and pressure gradi-
ents across the vortex explicitly into account. We let the gas
flow evolve freely and examine the coherence of the three-
dimensional vortices and their ability to trap dust.

The paper is structured as follows. In Sect. 2 we give the
basic hydrodynamic equations used. In Sect. 3 we discuss in
detail the vortex solution that we use as initial condition. The
dust-trapping mechanism is described in Sect. 4. In Sect. 5 we
discuss the two models that we use. In Sect. 6 we describe the
numerical scheme and the boundary conditions implemented.
Our results are presented in Sect. 7.

2. Basic hydrodynamic equations

We perform simulations in the shearing sheet approximation
(Wisdom & Tremaine 1988; Hawley et al. 1995), where a local
coordinate frame corotating with the Kepler flow at a distance
r0 from the central star is considered. In this local approxima-
tion the curvilinearity of the coordinates is neglected, so the
validity is limited to the case when the size of the vortex is
much smaller than r0. The x-axis points away from the star,
and the y-axis points along the flow direction. The angular ve-
locity profile of a Keplerian disc goes as Ω(r) ∝ r−q, where
q = 1.5 when considering only the gravitational attraction to
the central star.

In the coordinate frame both inertial and fictitious forces
exist. Radial gravity and centrifugal force terms only cancel
at the radius r0, giving rise to a tidal force away from r0.
However, when measuring velocities relative to the main shear
flow, u(0) ≡ (0,−qΩx, 0), this tidal force vanishes. We then have
u = u(0)+ ũ and use ũ as the velocity variable. The vertical part
of the gravity still gives rise to a restoring force proportional
to −Ω2z in the z-direction. Gas particles also experience a pres-
sure gradient force, viscous forces and the fictitious Coriolis
force.

We treat gas and dust as two separate fluids and let the
two interact through a drag force. We use the term dust for
solid bodies of all sizes. The drag force from gas upon the dust
attempts to accelerate dust to match the velocity of the gas,
and vice versa. We assume that dust is not pressure supported
(due to a low number density and low particle velocities). Since
the solid density of dust particles is many orders of magnitude
higher than the gas density and the pressure gradient acts as a
volume force, it is reasonable to assume that dust is not affected
by gas pressure (see e.g. Seinfeld 1986).

2.1. The shearing sheet approximation

In the shearing sheet approximation the equations for the de-
parture from the main shear flow (Brandenburg et al. 1995) can
be written in the form

ρ

[Dũ
Dt
+ ũ · ∇ũ − f (ũ)

]
= −∇P + Fvisc − β(ũ − ũd), (1)

ρd

[Dũd

Dt
+ ũd · ∇ũd − f (ũd)

]
=Fvisc,d − β(ũd − ũ), (2)

Dρ
Dt
+ ∇ · (ρũ) = 0, (3)

Dρd

Dt
+ ∇ · (ρdũd) = 0, (4)

ρT

(Ds
Dt
+ ũ · ∇s

)
= 2ρνS2 + ρζ(∇ · ũ)2 + ∇ · (K∇T ), (5)

where ũ, P, ρ, T and s are the velocity, pressure, density, tem-
perature and specific entropy of gas, respectively, and ũd and ρd

are the velocity and density of dust. The density of dust is de-
fined as ρd = ndmd, where nd is the number density of dust
particles and md is their mass (all particles are assumed to have
the same mass). The parameter ζ describes some bulk viscosity,
see Sect. 2.2. Dust density is not to be confused with the solid
density ρs of individual dust particles (defined in Sect. 2.3). The
advective derivative, D/Dt = ∂/∂t + u(0)

y ∂/∂y, is with respect
to the mean shear flow only,

f (ũ) =


2Ωũy
− 1

2Ωũx

−Ω2z

 (6)

is the Coriolis force combined with the tidal force and the verti-
cal gravity force, Fvisc and Fvisc,d are viscosity forces (see next
section) and β is the coupling coefficient between gas and dust.
This coupling coefficient can be expressed in terms of the stop-
ping time τs, which in turn is defined through the relation

FD = −ρd

τs
(ũd − ũ), (7)

where FD is the drag force per unit volume, so β = ρd/τs.
The stopping time is a parameter that describes the interac-
tion between a single dust particle and the surrounding gas
and does not depend on the number density of dust particles,
whereas β does.

Temperature, pressure and density are related to each other
by the relation P = (cp−cv)Tρ, where cp and cv are the specific
heats at constant pressure and constant volume. The adiabatic
sound speed cs is given by

c2
s = c2

s0 exp
[
γs/cp + (γ − 1) ln(ρ/ρ0)

]
, (8)

where ρ0 and cs0 are arbitrarily chosen integration constants
from the integration of the first law of thermodynamics and
γ ≡ cp/cv is the ratio of specific heats at constant pressure
and volume, respectively. We have chosen integration constants
such that s = 0 when cs = cs0 and ρ = ρ0. The thermal conduc-
tivity K is related to the kinematic (shear) viscosity ν through
the non-dimensional Prandtl number, Pr = ν/(ρcpK).
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2.2. Viscosity

The viscosity force on the gas can be expressed as

Fvisc

ρ
= ν

(
∇2ũ +

1
3
∇∇ · ũ + 2S · ∇ ln ρ

)
+ ζ∇∇ · ũ, (9)

where ν is the kinematic viscosity of the gas (assumed
constant),

Si j =
1
2

(
∂ũi

∂x j
+
∂ũ j

∂xi
− 2

3
δi j∇ · ũ

)
(10)

is the traceless rate-of-strain tensor and ζ is the bulk viscos-
ity, which is invoked solely to smear out sharp gradients (or
shocks) over a few mesh points near strongly converging re-
gions. The shock viscosity, ζ = ζshock, as it is used here, is
proportional to the smoothed maximum of the positive flow
convergence,

ζshock = cshock

〈
max

5
[(−∇ · ũ)+]

〉
, (11)

where cshock is a non-dimensional coefficient defining the
strength of the shock viscosity. The smoothing is accurate to
second order, and the maximum is taken over the second-
nearest points.

The viscous force on the dust would normally be negligibly
small, but when treating dust as a fluid one always has to add
a small viscosity to damp out unphysical wiggles on the mesh
scale. It proved sufficient to use

ρ−1
d Fvisc,d = νd∇2ũd, (12)

where we have ignored any dependence on dust density, be-
cause Fvisc,d is small anyway.

2.3. The stopping time

Due to Newton’s third law the value of β must be the same for
dust and gas, which leads to

ρd

τs
=
ρ

τs,g
· (13)

Specifying the stopping time of dust automatically sets the
stopping time of gas, τs,g, according to Eq. (13). The stopping
time of gas decreases with increasing dust density. This means
that the back-reaction of dust upon gas should become more
and more important as dust density approaches gas density in-
side a vortex.

A non-dimensional measure of the stopping time in terms
of the angular velocity is the parameter Ωτs. If Ωτs is small,
then dust is strongly coupled to gas, whereas whenΩτs is large,
dust is relatively unaffected by gas drag.

Analytic expressions for the stopping time of dust due to
gas drag exist in various regimes, depending on the mean free
path of the particle and the Reynolds number of the flow (e.g.
Weidenschilling 1977; see also Chavanis 2000; de la Fuente
Marcos & Barge 2001). The dust particles are assumed spher-
ical with radius as, solid density ρs and mean free path λ.
If λ < 4

9 as, the Stokes drag law is valid. Here the stop-
ping time depends on Reynolds number Re. When λ > 4

9 as,

one must use the Epstein drag law. The linear drag law used
here, where τs is constant in Eq. (7), is only valid when the
stopping time is independent of relative velocity. This is the
case in two regions: in the Stokes drag regime with Re < 1
and in the Epstein drag regime (see Weidenschilling 1977).
The transition between Epstein and Stokes regime in the Solar
nebula depends on dust particle radius (Chavanis 2000). In the
outer Solar System particles will typically be in the Epstein
regime, so the drag law used here is valid for the outer Solar
System, i.e. from the location of Jupiter and outwards. We ig-
nore the dependence of τs on local gas density.

In the Epstein drag regime there is a simple expression for
the stopping time,

τs =
ρs

ρ

as

cs
· (14)

To calculate the radius of a particle whose stopping time is
known, we consider a typical protoplanetary disc with a scale
height H = 1012 cm and a mass ratio ρs/ρ = 1010 in the mid-
plane. The scale height of the disc can be expressed in terms
of the speed of sound and the Kepler frequency under the as-
sumption of vertical hydrostatic equilibrium and an isothermal
density profile,

H = cs/Ω, (15)

so

as =
ρ

ρs
HΩτs = 102 Ωτs cm. (16)

2.4. Settling of dust

Dust is subjected to a gravity force in the vertical direction
without a balancing pressure gradient force, which makes it
fall towards the mid-plane. The terminal velocity (the velocity
where gravity and drag force balance) at height z is determined
by the stopping time as

0 = −Ω2z − 1
τs

u(ter)
dz , (17)

so u(ter)
dz = −τsΩ

2z. At z = H the terminal speed reaches the
fraction τsΩ of the sound speed, in which case the linear drag
law Eq. (7) breaks down for bodies with large stopping times.

For long stopping times, τs > Ω
−1, dust will essentially

free-fall towards the mid-plane. The solid particles then per-
form damped oscillations around the mid-plane and eventually
settle to form a thin sheet around z = 0. This was long consid-
ered the seed of planetesimals: the thin sheet will become grav-
itationally unstable and then planetesimals will condense out
(Safronov 1969; Goldreich & Ward 1973). However, today it is
believed that turbulence caused by the shear between the thin
dust layer and the gas leads to a continuous stirring up of the
dust (Weidenschilling 1980; Cuzzi et al. 1993). In our present
model the first arrival of the solid particles at the mid-plane
(forming essentially a delta-function) leads to the dust density
being under-resolved for given resolution. We avoid this prob-
lem by ignoring the vertical gravity on the dust thereby main-
taining the initial scale height.
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3. Initial conditions

3.1. The vortex solution

GNG showed that there exists an elliptic vortex flow solution
to the Euler and continuity equations in the shearing sheet ap-
proximation. In this section we briefly describe their solution.
In Appendix A we go into more detail about how to arrive at
this solution.

For a better distinction of the different forces involved we
look at the equations with the main shear flow included again.
The Euler and continuity equations for the motion of gas then
take the explicit form (when ignoring drag force and viscosity)

∂u
∂t
+ (u · ∇)u = Ω2(3x − z) − 2Ω × u − 1

ρ
∇P, (18)

∂ρ

∂t
= −∇ · (ρu), (19)

where x = (x, 0, 0) and z = (0, 0, z). The 3Ω2x term is the
tidal force approximated along the x-direction to first order,
and the −Ω2 z term is the vertical gravity force. The last two
terms on the right hand side of Eq. (18) are the Coriolis force
and the pressure gradient force. We stress that the equations
in this form are completely similar to the Euler and continu-
ity equations of Sect. 2.1. We introduce the specific enthalpy h
and write −ρ−1∇P = −∇h in the isentropic case. Then the GNG
solution for the elliptical velocity field and the corresponding
enthalpy is

ux = εΩ
′y, (20)

uy = −1
ε
Ω′x, (21)

uz = 0, (22)

h =
1
2
δ2Ω2(b2 − x2 − ε2y2) − 1

2
Ω2z2, (23)

where ε = a/b is the aspect ratio of the ellipse and Ω′ is the
angular velocity of the vortex. The ellipse has a semi-major
axis a in the y-direction (along the Kepler flow) and a semi-
minor axis b in the x-direction (radially outward). The aspect
ratio must be in the interval 0 � ε � 0.5. The velocity field
is incompressible and has no z component. The parameters Ω′
and δ are connected to the aspect ratio of the ellipse and the
background Keplerian angular velocity through

Ω′ = αΩ =
√

3ε√
1 − ε2

Ω (24)

(see Fig. 1), and

δ2 = − 3
1 − ε2 +

2
√

3√
1 − ε2

· (25)

These two bindings are necessary for fulfilling the continuity
equation (see Appendix A). The solution is valid where h � 0,
giving the vortex an ellipsoidal shape with axes a = b/ε, b and
c = δb.

The anticyclonic vortex feels a compressive Coriolis force,
which is balanced by pressure and tidal forces. The anisotropy
of the latter gives rise to the elliptical shape. In the pressure-
less limit, the streamlines reduce to Keplerian epicycles. We
explain the vortex dynamics and the dust-trapping mechanism
in Sect. 4.

Fig. 1. The angular velocity of a vortex Ω′ as a function of aspect
ratio ε. The dash-dotted line connecting the end-points is present to
illustrate the curvature.

3.2. Units

The model is scale-invariant. This means that the basic units
can be chosen arbitrarily. We take

[t] = Ω−1, [x] = b, [ρ] = ρ0, [s] = cp, (26)

where b is the semi-minor axis of the vortex in the horizontal
plane, i.e. in the cross-stream direction, and ρ0 is the average
density of gas in the whole box. The latter is a conserved quan-
tity, since there is no flow through the boundaries. The unit of
velocity is derived from the basic units as [u] = [x]/[t] = bΩ,
and the unit of acceleration is [a] = [x]/[t]2 = bΩ2. For clarity
we will often write the units out explicitly.

3.3. Global solutions

The velocity field given by Eqs. (20)–(22) is not a global solu-
tion, since the velocity field is discontinuous when crossing the
vortex boundary to the surrounding Kepler flow, where the only
velocity component is uy = −qΩx. By looking at the y-velocity
of the flow,

uy = −1
ε
αΩx = −

√
3√

1 − ε2
Ωx, (27)

it is apparent that, regardless of the choice of ε, the tangential
part of the vortex flow will always be faster than the Kepler flow
at any position in x. It seems that for the vortices considered
here there is no way of producing a linear velocity field that can
make a gradual transition from the vortex to the surrounding
Kepler flow. Our initial conditions do therefore not satisfy our
equations at the interface between vortex and exterior. For this
reason we must expect to see an evolution away from our initial
state.
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4. Dust-trapping mechanism

4.1. Forces driving the vortex

The fact that anticyclonic vortices suck in dust particles can be
explained by looking at the forces involved in the rotation. The
rotation of gas is maintained because the Coriolis force FCor,
the tidal force Fg+c and the pressure gradient force Fp add up
to a resulting force Fcen directed towards the centre of the co-
ordinate system. The symbol F is here used for the force per
unit mass.

The pressure gradient force is calculated from Eq. (23) (we
consider z = 0 since the pressure gradient in the z-direction is
completely balanced by the vertical gravity component),

Fp = −∇h =


δ2Ω2 x
δ2Ω2ε2y

0

 = δ2Ω2


x
ε2y
0



=

− 3
1 − ε2 +

2
√

3√
1 − ε2

Ω2


x
ε2y
0

 , (28)

and the Coriolis force is

FCor = −2Ωk̂ × u = −2Ω


0
0
1

 ×

εαΩy
−αΩx/ε

0



= −2Ω


αΩx/ε
εαΩy

0

 = −2α
ε
Ω2


x
ε2y
0



= − 2
√

3√
1 − ε2

Ω2


x
ε2y
0

 . (29)

Note that both forces point perpendicular to the vortex flow.
The resulting force,

Fres = Fp + FCor + Fg+c

= − 3
1 − ε2Ω

2


x
ε2y
0

 +


3Ω2x
0
0



= − 3
1 − ε2Ω

2


x
ε2y
0

 − 3
1 − ε2Ω

2


(ε2 − 1)x

0
0



= − 3
1 − ε2Ω

2


ε2x
ε2y
0

 = − 3ε2

1 − ε2Ω
2


x
y
0

 , (30)

points always towards the centre and thus produces the rotat-
ing motion. Figure 2 is a plot of the average values over the
vortex boundary of the pressure gradient force, Coriolis force
plus tidal force and resulting centre-directed force as a func-
tion of ε. The force magnitudes have the unit of bΩ2. As the
aspect ratio decreases, the pressure gradient force becomes rel-
atively more important. At ε = 0.5 the vortex is in equilibrium
without any need for a pressure gradients in the x-y plane. This
pressure-less vortex is exactly the epicyclic vortex considered
by Barge & Sommeria (1995).

4.2. Forces on the dust

Dust, initially at rest, is accelerated by drag to follow gas
around the vortex, but in the beginning with a much smaller

Fig. 2. Forces affecting the gas. Average magnitudes of pressure gra-
dient force Fp, Coriolis force FCor plus tidal force Fg+c and resulting
centre-directed force Fcen as functions of aspect ratio ε. Averages are
taken over the vortex boundary. The force unit is bΩ2.

velocity. Moving at a fraction f of the gas speed relative to the
main shear flow, ũd = f ũ, we find for ud = ũd+u(0) the expres-
sion ud = f u + (1 − f )u(0), so dust is subjected to the Coriolis
force

FCor = − 2
√

3√
1 − ε2

fΩ2


x
ε2y
0

 − (1 − f )


3Ω2x

0
0

 . (31)

The centre-directed force needed to keep dust spinning around
the vortex is proportional to velocity squared, and is therefore
reduced by a factor of f 2 compared to the force needed to keep
the gas rotating,

Fcen = − 3 f 2ε2

1 − ε2Ω
2


x
y
0

 . (32)

The excess force on the dust is then Fexc = FCor + Fg+c − Fcen.
In Fig. 3 Coriolis force plus tidal force, centre-directed force
needed to maintain the same radius of rotation as the gas and
excess force working on the dust are shown as a function of f
and for different values of the aspect ratio ε. For all value of ε
the Coriolis force grows much faster with f than the required
centre-directed force. This leads to an excess force directed
inwards, which causes dust to spiral inwards. Similar expla-
nations for the dust-trapping mechanism of vortices are given
in Tanga et al. (1996) and Chavanis (2000). Already at a few
percent of the gas speed, the excess force on the dust is sig-
nificant. Cyclonic vortices have an outwards directed Coriolis
force. They will therefore not be able to concentrate solid par-
ticles, but will rather expel them.

The centre-directed force catches up with the Coriolis force
at f = 1.0 for ε = 0.5, but for higher ε there is still an excess
force on the dust at f = 1.0 of the same magnitude (but oppo-
site direction) as the pressure gradient force affecting the gas.
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Fig. 3. Forces affecting dust as a function of f (dust speed as a fraction of gas speed). Average values of Coriolis force FCor plus tidal force Fg+c,
necessary centre-directed force to maintain rotation Fcen and excess force Fexc for different values of aspect ratio ε. The force unit is bΩ2.
Averages are taken over the vortex boundary. The forces do not have the same direction, so the two vectors have been added to get the
magnitude of the excess force. The excess force converges to the missing pressure gradient force for f = 1 in all cases.

The reason for this is that dust particles are not subjected to the
pressure gradient force of gas, so even if dust particles were
light enough to quickly become accelerated to match gas ve-
locity, they will feel an extra force inward and thus begin to
spiral inwards. The terminal velocity that dust obtains perpen-
dicular to the gas flow, u(ter)

d⊥ , is a result of a balance between
excess inwards force and drag force,

0 = −δ2Ω2


x
ε2y
0

 − 1
τs

u(ter)
d⊥ , (33)

which means that

u(ter)
d⊥ = −τsδ

2Ω2


x
ε2y
0

 , (34)

in analogy to the vertical settling of dust towards the mid-plane
due to gravity. The time scale for this is quite long,

t ∼ 1
τsΩ2

, (35)

considering that the stopping time must be short for the dust to
match the velocity of the gas, but if vortices are indeed long-
lived, it could prove an important mechanism for trapping dust
particles of short stopping time inside vortices of low aspect
ratio.

The aspect ratio also has an influence on dust-trapping at
low f . It is evident from Fig. 3 that the excess force grows
faster with f and reaches a higher maximum for high ε.

5. Three-dimensional models

The vortex solution of GNG has zero enthalpy outside the vor-
tex, corresponding to zero density through the relation

ρ = ρ0

(γ − 1)
h

c2
s0

eγs/cp


1/(γ−1)

. (36)

This gives rise to a potential problem in three dimensions: hy-
drostatic equilibrium in the z-direction requires

−∂Φ
∂z
− 1
ρ

∂P
∂z
= 0, (37)
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where

Φ =
1
2
Ω2z2 (38)

is the vertical gravitational potential. This means that the pres-
sure must fall off in the vertical direction, but it must never
become negative, so embedding the vortex in a disc of finite
density and constant entropy is not possible in the vertical
direction.

We use two different ways of modelling the vortices in three
dimensions: hot corona and cylindrical vortex.

5.1. Hot corona

Hydrostatic equilibrium in the z-direction can be obtained by
embedding the vortex in a tenuous gas of high temperature,
i.e. a hot corona. In terms of specific enthalpy, Eq. (37) can be
written as
∂Φ

∂z
=

h
cp

∂s
∂z
− ∂h
∂z
· (39)

For a given entropy distribution it is then possible to construct a
continuous enthalpy so that hydrostatic equilibrium is obtained.
This method is also used by von Rekowski et al. (2003).

The hot corona simulations are done in a box of size
(Lx, Ly, Lz)/b = (4, 32, 4).

5.2. Cylindrical vortex

Here we extend the vortex to the entire z-length of the box.
The vortex is then no longer ellipsoidal, but rather cylindrical
with an ellipse-shaped cross section. Hydrostatic equilibrium is
obtained without use of entropy through

∂h
∂z
= −∂Φ
∂z
= −Ω2z, (40)

so h(z) = − 1
2Ω

2z2+h0, where h0 must be greater than 1
2Ω

2z2
top to

avoid negative enthalpy anywhere. The cylindrical vortex sim-
ulations are done in a box of size (Lx, Ly, Lz)/b = (4, 32, 0.4).
The reason for using a shallower box for the cylindrical vor-
tex is to allow for a smaller h0 and thus to have a large density
ratio between the vortex and its surroundings (see Sect. 7.3).
The minimum enthalpy in the mid-plane is 1

2Ω
2z2

top, so lower-
ing ztop and adopting the minimal enthalpy possible thus leads
to a larger density ratio.

In both cases we let dust start with zero initial velocity. Dust
density at height z is initialised to be a fraction r = 0.01 of gas
density (see Natta et al. 2000) far away from the vortex at the
same height. Although the actual value of r does not directly
influence dust dynamics, it does influence the amount of back-
reaction from dust upon gas.

6. Numerical method and boundary conditions

We simulate the motion of gas and dust in a coordinate frame
corotating at the local Keplerian speed. We use the Pencil-
Code1 (Brandenburg & Dobler 2002) which uses third order

1 The code is available at
http://www.nordita.dk/data/brandenb/pencil-code

Runge-Kutta time stepping and a sixth order finite-difference
scheme in space and employs central finite differences, so the
extra cost of recentering a large number of variables between
staggered meshes each time step is avoided. The code solves
the non-conservative form of the equations (see Brandenburg
2003 for details).

Periodic boundary conditions for velocities, density and
specific entropy are used in the x- and y-directions. The pe-
riodic boundary condition in x is appropriately sheared in the
shearing sheet approximation. In the z-direction we use stress-
free boundary conditions, i.e.

ux,z = uy,z = uz = s = udx,z = udy,z = udz = 0, (41)

where commas denote partial differentiation. Dust and gas den-
sities on the boundaries are fully determined by the equations,
but in practice we need to specify values in the ghost zones
which is accomplished by extrapolation. We use a resolution of
(nx, ny, nz) = (128, 256, 128) grid points.

7. Results

7.1. Initial conditions and choice of stopping times

The initial condition for gas and dust in the hot corona model
is plotted in Fig. 4 (mid-plane, only one fourth of the y-length
of the box is shown) and Fig. 5 (x–z plane). We choose an as-
pect ratio of ε = 0.4 since we expect dust-trapping to be most
efficient for vortices of high aspect ratio. The transition from
vortex to surroundings has been smeared out both in density
and velocity field. We have experienced that the simulations
run better when abrupt transitions are smoothed out. The dust is
initially at rest. In all plots of velocity fields we use the Kepler-
subtracted velocities ũ and ũd.

We have run hot corona simulations for three different val-
ues of the stopping time: Ωτs = 0.1 (dust completely coupled
to gas), Ωτs = 1.0 (dust semi-coupled to gas) and Ωτs = 10.0
(dust almost not coupled to gas). This corresponds to rocks of
sizes respectively as = 10 cm, as = 100 cm and as = 1000 cm,
respectively. For the minimum-mass nebula of Cuzzi et al.
(1993) the mean free path is λ = (r/AU)11/4 cm. This means
that we must, strictly speaking, go beyond r = 10 AU for the
largest particles to be in the Epstein regime. For as = 10 cm
and as = 100 cm the Epstein drag law is valid already be-
fore r = 5 AU. The range of dust radii considered is expected
for the largest agglomorations of sticking dust particles after
having reached the mid-plane, according to Weidenschilling &
Cuzzi (1993) who model how dust particles falling towards the
mid-plane stick to each other in a turbulent protoplanetary disc.
Larger sizes are prohibited by the turbulence in the disc.

The cylindrical vortex was only run forΩτs = 1.0, since we
are mostly interested in whether it is a valid 3D vortex solution.
We follow the evolution of gas and dust for a full Kepler orbit
tmax = 2π/Ω (which is not quite a full rotation of the vortex,
see Fig. 1).
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Fig. 4. The initial condition in the mid-plane for the hot corona vortex:
gas density and gas velocity (left) and the corresponding dust density
and velocity (right). The velocity field does not seem to follow the
contours of the vortex, but this is because the Kepler velocity has been
subtracted.

7.2. Viscosity parameters

For the hot corona model we are able to run for a whole orbit
with a viscosity of ν = νd = 2 × 10−4 and a shock viscosity of
cshock = 2. This corresponds to a mesh Reynolds number of

Remesh = max(|ũ|) max(δx, δy, δz)/ν ≈ 625. (42)

Thus, since Remesh is rather large, the viscosity ν is almost ev-
erywhere unimportant, and most dissipations occurs through
the shock viscosity (not included in the expression for Remesh),
but this affects only convergent flow regions and not the vor-
tical parts of the flow. This can be seen from the following
consideration.

The Laplacian of ũ can be written∇2ũ = −∇×∇×ũ+∇∇·ũ.
Using this we can rewrite the expression for the viscous force
as

Fvisc

ρ
= ν (−∇ × ω̃ + 2S · ∇ ln ρ) +

(
4
3
ν + ζ

)
∇∇ · ũ, (43)

where ω̃ = ∇ × ũ is the vorticity of the flow. This shows that
the kinematic shear viscosity works as a drain for vorticity in
regions where the vorticity changes, whereas shock viscosity
only affects regions of convergence in the velocity field.

At the boundary between vortex and surroundings the
vorticity changes abruptly, and we have experienced vortices

Fig. 5. The initial condition in the vertical for the hot corona vor-
tex: gas density (left) and the corresponding dust density (right). Dust
density as a function of z is initially 0.01 times gas density in the same
height. The density colour scale is the same as in Fig. 4.

dissolving rapidly when using too high a viscosity. We stress
that this is a purely numerical issue, and that real physical vis-
cosity is many orders of magnitude lower than the viscosity we
use here.

For the cylindrical vortex we had to use a viscosity of ν =
νd = 10−2 and a shock viscosity of cshock = 4. The reason for
these higher viscosities is that the cylindrical vortex does not
have as large a density ratio as the hot corona vortex, so it takes
more viscosity to keep the vortex intact on the boundary.

7.3. Lifetime of vortices

When using a realistic disc background density we have expe-
rienced the vortices breaking up at the local sound speed at
the vortex boundary. This we believe is caused by the term
∇ · ũ in the continuity Eq. (3). Although the initial condition
has ∇ · ũ = 0 analytically, this is not necessarily valid numeri-
cally. Calculating the spatial derivatives of the velocity field on
a Cartesian coordinate grid yields ∇ · ũ � 0 over a few mesh-
points (due to the order of the numerical derivatives) around
the vortex boundary. The result is the depletion of density at
the NW and SE corners of the vortex, and increase of density
at the NE and SW corners. We find that we can alleviate this
problem by having a large density contrast between the vortex
and its exterior (as also suggested by the GNG vortex solution,
cf. Eq. (23)). We also find that shock viscosity helps to reduce
this problem.

For the hot corona, we plot in Fig. 6 gas density, gas ve-
locity, dust density and dust velocity in the mid-plane after one
orbit. The gas configuration is indistinguishable between dif-
ferent values of Ωτs, indicating that there is very little back-
reaction on the gas, so gas density and velocity field are only
shown for Ωτs = 1.0.

The vortex is evidently still in place, although the outer
parts have been sheared away to form long tails in the direc-
tion of the shear. In Fig. 7 gas density and dust density in the
x–z plane are plotted. Again we see that the vortex is still in
place after one orbit. We conclude from this that the hot corona
vortex solution is valid even in the presence of shear.
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Fig. 6. Gas and dust in the mid-plane for the hot corona after one orbit. Gas density and velocity field for the three values of Ωτs are indistin-
guishable, so only Ωτs = 1.0 is shown. The other three plots show dust density and dust velocity field after one orbit for Ωτs = 0.1, Ωτs = 1.0
and Ωτs = 10.0 respectively. The dust velocity field of Ωτs = 0.1 is very similar to that of the gas, due to the short stopping time. For Ωτs = 1.0
there is a strong convergence towards the interior of the vortex, whereas for Ωτs = 10.0 only a slight density increase in a narrow region that
extends from the vortex along the shear is seen. The density colour scales are the same as in Fig. 4.

The status of the cylindrical vortex after one orbit is shown
in Fig. 8. In the mid-plane it seems to be more disrupted than
the hot corona vortex, possibly due to the smaller density ratio
between the vortex and its surroundings. A vertical cut (not
shown) reveals that the original stratification of the vortex is
almost intact, which implies that the cylindrical vortex model
is also a valid one.

To test the lifetimes of vortices beyond one orbit we have
run low-resolution simulations (64 × 128 × 64) for different

values of the viscosity ν. Since the major effect of viscosity
takes place at the vortex boundary where the velocity (and
thus the mass flux) is highest, we plot the maximum mass flux
(ρu)max in the box as a function of time measured in orbits in
Fig. 9. The lifetime is obviously very dependent on the viscos-
ity, with lower viscosities leading to longer-living vortices. A
low viscosity, on the other hand, also leads to more chaotic de-
velopment in maximum mass flux, probably due to too high a
mesh Reynolds number.
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Fig. 7. Gas and dust in the x–z plane for the hot corona case after one orbit. Gas density and velocity field for the three values of Ωτs are
indistinguishable, so only Ωτs = 1.0 is shown. The other three plots show dust density and dust velocity field after one orbit for Ωτs = 0.1,
Ωτs = 1.0 and Ωτs = 10.0 respectively. For Ωτs = 0.1 dust is so strongly coupled to gas that the velocity fields are very similar, whereas
Ωτs = 1.0 shows strong convergence of dust in the interior of the vortex. For Ωτs = 10.0 dust is not as affected by gas motion, although strong
motions move dust around the vortex and upwards. Velocities are exaggerated about 10 times compared to Fig. 6. The density colour scales are
the same as in Fig. 4.

Fig. 8. Gas and dust in the mid-plane for the cylindrical vortex after
one orbit, Ωτs = 1.0. The vortex is close to breaking up: two arcs
of matter are being expelled at the NE and SW corners. Note that
the density contrast between the vortex and its surroundings is much
smaller than for the hot corona vortex, and that the gas density colour
scale is different from the hot corona’s.

7.4. Evolution of dust density

Also shown in Figs. 6 and 7 is the evolution of dust den-
sity. As expected, the most efficient dust-trapping occurs when

Fig. 9. Maximum mass flux in the box as a function of time (mea-
sured in orbits) for different values of the viscosity ν. A low viscosity
obviously increases the lifetime of a vortex. On the other hand a low
viscosity also leads to more chaotic development in (ρu)max, indicating
that the mesh Reynolds number may become too high.

dust and gas are semi-coupled with Ωτs = 1.0, where the
increase in dust density inside the vortex is from an initial
ln ρd/ρ0 = −4.18 to a maximum of ln ρd/ρ0 = −1.34 after one
orbit, a 17 times increase in density. A depletion of dust in the
outer parts of the vortex is also seen. We believe this is where
the trapped dust has been taken from. There is a strong conver-
gence in the dust velocity field both in the mid-plane and in the
x–z plane.

For Ωτs = 0.1 dust is accelerated to match the gas veloc-
ity very quickly (compared to an orbit) and only a very modest
increase in dust density is seen inside the vortex. This could
be the slow settling of dust that was discussed in Sect. 4, which
should here happen on a time scale of about 10/Ω. The velocity
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Fig. 10. Gas and dust density and velocity fields after 1.5 orbits for
Ωτs = 0.1. Comparing with Fig. 6 (plot number two from left) there is
no apparent widening of the dust-depleted region on the vortex bound-
ary, nor has the dust density increased inside the vortex. The colour
scale is the same is in Fig. 4.

field of Fig. 7 does however not show any convergence inside
the vortex. But according to Eq. (34) the inwards drift could
happen with a velocity of only u(ter)/(bΩ) ≈ τsΩδ

2 ≈ 0.02 for
Ωτs = 0.1 and ε = 0.4, a contribution in peril of drowning com-
pletely in the erratic motions present after one orbit, although
it could still be present underneath it. A narrow region of dust
depletion is apparent around the edge of the vortex. This may
be caused by the slow inwards drift of dust (its radius of ∼0.1 is
comparable to the expected 0.02 · 2π = 0.13), although it is not
clear why the Ωτs = 10.0 vortex should have a region of simi-
lar depletion. In Fig. 10 we show gas and dust configurations of
the Ωτs = 0.1 vortex after 1.5 orbits. The dust-depleted region
on the vortex boundary has obviously not become wider, nor
has the dust density inside the vortex increased. Gas density
has changed a lot. The vortex now has a pronounced tilt in the
NW-SE direction, and the shear tails have grown more massive
in density. The reason why we do not see any dust-trapping may
then very well be that vortex dynamics completely dominates
over the slow inwards drift of dust, rendering the mechanism
for trapping short stopping time dust particles useless.

For a stopping time parameter of Ωτs = 10.0 dust is so un-
affected by gas that only a slight density increase is seen. The
increase has occurred in a narrow region that extends from the

vortex along the shear. This may be the dust-trapping mecha-
nism that here takes place so slowly that dust is sheared away
faster than the vortex can trap it.

7.5. Back-reaction on gas

One very important issue regarding vortices is how they are
affected by the dust they trap. Vertical dust-settling at the same
time increases dust density in the mid-plane, and at one point
dust density in the vortex is expected to become comparable to
gas density. Then the back-reaction on gas becomes important
in the dynamics of the gas, Eq. (13).

As mentioned in Sect. 7.3 the reason why gas develops
similarly in our simulations for all values of stopping time
is that the back-reaction on the gas from dust is negligible.
This is caused by two things: a dust-to-gas ratio of 0.01 is not
very high, and furthermore this ratio only applies in the disc,
whereas we know that gas density in the vortex is very much
higher, giving an even lower dust-to-gas ratio there. The back-
reaction would eventually become much bigger if we allowed
for vertical settling of dust.

To test when the back-reaction from dust becomes impor-
tant we have run the Ωτs = 1.0 and Ωτs = 10.0 vortices with
higher values of the dust-to-gas ratio. In Fig. 11 we plot the
gas configuration of the Ωτs = 1.0 vortex when the dust-to-gas
ratio is 100. At this point dust density becomes comparable to
gas density inside the vortex. We see that the vortex is not only
affected by dust drag, but that it is even almost completely de-
stroyed after one orbit. When dust converges inside the vortex,
it will drag gas along with it, in this way destroying the vortex.

The maximum mass flux in the box after one orbit as a func-
tion of dust-to-gas ratio in the disc is shown in Fig. 12. Already
when the dust-to-gas ratio in the disc is 10 (corresponding to
around 0.1 in the vortex), the back-reaction becomes impor-
tant. The Ωτs = 1.0 vortex is best at destroying the vortex at all
dust-to-gas ratios.

8. Conclusions

In this paper we have explored the suggestion of Barge &
Sommeria (1995) of trapping dust particles in anticyclonic vor-
tices. In recent years the vortex theory has gained increasing
popularity as a site for planetesimal formation.

To our knowledge this is the first time the dust-trapping
mechanism has been explored in three dimensions and with a
freely developing gas velocity field and density. We use two
ways to model the vortices in three dimensions, and we have
shown that both models survive well for at least one orbit. It
is conceivable that long life times are possible at yet higher
resolution when the viscosity can be smaller. We have also
shown the dust-trapping capabilities of vortices. For both vor-
tex models dust-trapping is very efficient when dust and gas are
semi-coupled, whereas too little or too much coupling gives no
significant dust-trapping. The most efficiently trapped solid
particles have a radius of 100 centimetres. This may be in some
conflict with meteoritic evidence, where chondrules (the build-
ing blocks of the most pristine meteorites) are typically up to
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Fig. 11. Gas configuration after half an orbit (left) and after a whole
orbit (right) for a dust-to-gas ratio of the order of 1 inside the vortex
(100 in the disc). Velocities are reduced by around a factor of 5 com-
pared to the initial condition. Gas is forced to follow the converging
dust, and that leads to the destruction of the vortex. The colour scale
is the same is in Fig. 4.

a few millimetres in radius. But meteorites on Earth are found
to originate in the asteroid belt and should therefore not nec-
essarily say anything about the make up of pristine material in
the outer Solar System.

Our two three-dimensional models both have a large den-
sity contrast between the vortex and the surrounding disc. A
model with a realistic disc density profile could be obtained
by using coordinates more natural to the vortex flow, such
as elliptical coordinates. This would also require a version
of the shearing sheet approximation adapted to new coordi-
nates (for spherical coordinates there exists the shearing disc
approximation of Klahr & Bodenheimer 2003). Alternatively,

Fig. 12. The maximum mass flux in the box after one orbit when vary-
ing the dust-to-gas ratio from 0.01 to 100, the latter corresponding to a
dust-to-gas ratio of unity inside the vortex. Points are shown for both
Ωτs = 1.0 and Ωτs = 100.0. The best dust-trapper, Ωτs = 1, is also
the best at destroying the vortex, due to the trapped dust dragging gas
along with it.

and probably better, a global solution to the Euler and continu-
ity equations with a gradual transition from vortex to surround-
ing Kepler flow could be used. Such global solutions have been
found to the Euler equation alone (Chavanis 2000; de la Fuente
Marcos & Barge 2001), but none to our knowledge satisfy the
continuity equation.

The role of vortices as high pressure regions seems hitherto
unexplored. Short stopping time solid particles forced to match
gas speed around the vortex will feel an additional pull inwards.
The drift is similar to the vertical settling of dust towards the
mid-plane. Although this happens on quite a long time scale
compared to the conventional dust-trapping time, it seems a vi-
able mechanism for catching short stopping time dust particles,
provided vortices live long enough. Unfortunately our simula-
tions do not show this mechanism at work, but rather that vortex
and gas dynamics completely dominates over this effect, even
if it is present.

It will be necessary to address the questions as to what
causes such vortices in the first place. It seems plausible that
anticyclonic vortices form as a relic after the disc turbulence in
the disc has died out (Bracco et al. 1998, 1999). This idea is
particularly attractive, because the absence of turbulence may
be an important prerequisite for allowing dust to settle to the
mid-plane. Other suggestions include baroclinic instabilities
(Klahr & Bodenheimer 2003), the anisotropic kinetic alpha-
effect (von Rekowski et al. 1999), and perhaps even the possi-
bility of brown dwarf encounter (Willerding 2002). The orig-
inal work by GNG was inspired by numerical results of the
Papaloizou-Pringle instability, but this instability is not avail-
able in a thin Kepler disc with q = 3/2. Stability analysis in
GNG suggested that the vortices suffer from numerous linear
instabilities, so the survival of the vortices in 3D for at least one
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orbit seems surprising. In any case, it will be important to re-
lax the need for implementing vortices as initial conditions and
rather try to get them automatically under realistic conditions.

The photometric observations of the protostar KH15D has
been interpreted by Barge & Viton (2003) as a giant dusty vor-
tex rotating at a distance of 0.2 AU from the star and covering
120◦ of the orbit. Such a large vortex is beyond the validity
of the shearing sheet approximation (where the curvilinearity
of the disc is neglected) and requires a global hydrodynami-
cal disc simulation to examine its stability and creation. If the
vortex interpretation is correct, it could be the opening of a
new era of observational vortex research. The next generation
of telescopes such as ALMA (see Wolf & Klahr 2002) will be
able to probe protoplanetary discs all over the sky for evidence
of vortex activity. This will be the ultimate test of whether the
research done so far in the field has been just an intellectual
exercise, or if planets do indeed form partially as a result of
long-lived vortices. This would make the vortex dust-trapping
theory an important step in planet formation. Perhaps we owe
the existence of our own planet to vortices that were present in
the solar nebular 4.6 billion years ago.

Acknowledgements. We would like to thank Pierre Barge, Hubert
Klahr and Pierre-Henri Chavanis for inspiring discussions during the
workshop “Planetary formation: toward a new scenario?” held in
Marseille in June 2003. We would also like to thank the anonymous
referee for constructive comments.

Appendix A: Derivation of vortex solution

In this Appendix we show how to construct an elliptical ve-
locity field and an appropriate corresponding enthalpy that sat-
isfies Eqs. (18) and (19). We start out by proposing that the
velocity field Eqs. (20)–(22) is indeed a solution, provided that
the aspect ratio and the angular velocity fulfil certain criteria.
This velocity field is divergence-free and has no z-component.
It can then be written as the curl of a stream function Ψ with
only a z-component, u = ∇ ×Ψ .

Given the velocity field u one can attempt to construct an
enthalpy such that the flow is steady with ∂u/∂t = 0. This im-
plies that

∇h = Ω2(3x − z) − 2Ω × u − (u · ∇) · u. (A.1)

The tidal force term and the vertical gravity term on the right
hand side are obviously gradient terms. The same is true for the
Coriolis term since

k̂ × u =


0
0
1

 ×

∂Ψ/∂y
−∂Ψ/∂x

0

 =

∂Ψ/∂x
∂Ψ/∂y

0

 = ∇Ψ. (A.2)

We are now left with (ignoring the integration constants for
now)

∇h = ∇
(

3
2
Ω2 x2 − 1

2
Ω2z2 − 2ΩΨ

)
− (u · ∇) · u. (A.3)

The advective term (u·∇)u is a bit more tricky to put in gradient
form. It can be done by applying the vector identity

(u · ∇)u = ∇
(
1
2

u2

)
− u × (∇ × u). (A.4)

The first term on the right hand side comes out on gradient
form. The second can be calculated by noting that

∇ × u ≡ ω =


0
0

−∂2Ψ/∂x2 − ∂2Ψ/∂y2

 , (A.5)

where the vorticity ω of the flow is introduced. The second
term on the right hand side of Eq. (A.4) can now be rewritten
as

u × (∇ × u) =


∂Ψ/∂y
−∂Ψ/∂x

0

 ×


0
0
ω

 = −ω∇Ψ. (A.6)

If the vorticity is constant and independent of the spatial coor-
dinates, this can be written

u × (∇ × u) = ∇(−ωΨ ). (A.7)

The gradient of the enthalpy can now be written entirely as a
sum of gradient terms,

∇h = ∇
(

3
2
Ω2 x2 − 1

2
Ω2z2 − 2ΩΨ − 1

2
u2 − ωΨ

)
. (A.8)

This is easily integrated to give

h =
3
2
Ω2x2 − 1

2
Ω2z2 − (2Ω + ω)Ψ − 1

2
u2 + const., (A.9)

where all the integration constants are collected in just one
constant.

In order to calculate the enthalpy of the flow given by
Eqs. (20)–(22) we need to know also the stream function and
the vorticity of the flow. The magnitude of the stream func-
tion is

Ψ =
1
2

(
1
ε

x2 + εy2

)
Ω′, (A.10)

and the vorticity has the magnitude

ω = −∂
2Ψ

∂x2
− ∂

2Ψ

∂y2
= −

(
1
ε
+ ε

)
Ω′. (A.11)

This is a constant, and Eq. (A.9) can therefore be applied. To
simplify the calculations we write the enthalpy as h(x, y, z) =
hx(x)+hy(y)+hz(z) (as there are no mixed terms). For hx we get

hx =

(
3
2
Ω2 − Ω1

ε
Ω′ +

1
2
Ω′2

)
x2 ≡ Bx2; (A.12)

similarly for hy,

hy =

(
−ΩεΩ′ + 1

2
Ω′2

)
y2 ≡ Ay2; (A.13)

and for hz,

hz = −1
2
Ω2z2 ≡ Cz2. (A.14)

Now the enthalpy can be written as h = Bx2 + Ay2 +Cz2. This
can be done for any angular velocity Ω′ of the vortex.
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An equilibrium flow solution must also have ∂ρ/∂t = 0 ev-
erywhere. The continuity equation Eq. (19) can be rewritten as

∂ρ

∂t
+ ∇ · (ρu) =

∂ρ

∂t
+ ρ(∇ · u) + u · ∇ρ

=
∂ρ

∂t
+ u · ∇ρ = 0, (A.15)

since the velocity field has ∇ · u = 0. This means that the gra-
dient of the density must everywhere be perpendicular to the
flow, since u · ∇ρ must be equal to zero. In the absence of an
entropy gradient the gas is barotropic, so ∇ρ and ∇h are par-
allel, and therefore u · ∇h = 0. This means that the contours
of enthalpy must be ellipses with the same aspect ratio as the
vortex.

For the enthalpy given by h(x, y, z) = Bx2 + Ay2 + Cz2,
where the coefficients are specified in Eqs. (A.12)–(A.14), and
a velocity field given by Eqs. (20)–(22), this leads to

A
B
= ε2 =

−ΩεΩ′ + 1
2Ω
′2

3
2Ω

2 − Ω 1
ε
Ω′ + 1

2Ω
′2 , (A.16)

which implies that

3
2
Ω2ε2 − ΩεΩ′ + 1

2
ε2Ω′2 = −ΩεΩ′ + 1

2
Ω′2

⇒ Ω′ =
√

3εΩ√
1 − ε2

≡ αΩ. (A.17)

This solution requires that 0 � ε < 1. Negative ε in the same
range in principle also give solutions, but the enthalpy and ve-
locity field do not change since ε only enters as ε2 when Ω′ is
inserted. The parameters B, A and C are

B = −1
2
Ω2

− 3
1 − ε2 +

2
√

3√
1 − ε2

 , (A.18)

A = −1
2
Ω2

− 3
1 − ε2 +

2
√

3√
1 − ε2

 ε2, (A.19)

C = −1
2
Ω2. (A.20)

For 0.5 < ε < 1 the coefficients B and A are positive, re-
sulting in a region of low pressure with a clockwise rotation
around it, contrary to the counter-clockwise rotation around
low-pressures on Earth. As in the GNG paper we focus only
on 0 � ε � 0.5. Here B and A are negative, and the result is a

high-pressure region. Defining δ2 = − 3
1−ε2 +

2
√

3√
1−ε2 and requir-

ing that the enthalpy vanish on the vortex boundary gives

h =
1
2
δ2Ω2

(
b2 − x2 − ε2y2

)
− 1

2Ω
2z2. (A.21)
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A. Ferriz-Mas, & M. Núñez (London: Taylor & Francis), 269

Brandenburg, A., & Dobler, W. 2002, Comp. Phys. Comm., 147, 471
Brandenburg, A., Nordlund, Å., Stein, R. F., & Torkelsson, U. 1995,

ApJ, 446, 741
Chavanis, P. H. 2000, A&A, 356, 1089
Cuzzi, J. N., Dobrovolskies, A. R., & Champney, J. M. 1993, Icarus,

106, 102
de la Fuente Marcos, C., & Barge, P. 2001, MNRAS, 323, 601
Godon, P., & Livio, M. 1999, ApJ 523, 350
Godon, P., & Livio, M. 2000, ApJ 537, 396
Goldreich, P., & Ward, W. R. 1973, ApJ, 183, 1051
Goodman, J., Narayan, R., & Goldreich, P. 1987, MNRAS, 225, 695

(GNG)
Hawley, J. F., Gammie, C. F., & Balbus, S. A. 1995, ApJ, 440, 742
Hodgson, L. S., & Brandenburg, A. 1998, A&A, 330, 1169
Klahr, H., & Bodenheimer, P. 2003, ApJ, 582, 869
Natta, A., Grinin, V. P., & Manings, V. 2000, in Protostars and

Planets IV, ed. V. Mannings, A. P. Boss, & S. S. Russell
(University of Arizona Press), 559

von Rekowski, B., Kitchatinov, L. L., & Rüdiger, G. 1999, MNRAS,
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