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Inertial range scaling in numerical turbulence with hyperviscosity
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Numerical turbulence with hyperviscosity is studied and compared with direct simulations using ordinary
viscosity and data from wind tunnel experiments. It is shown that the inertial range scaling is similar in all
three cases. Furthermore, the bottleneck effect is approximately equally (ato@a one order of magnitugle
in these cases and only its height is increased in the hyperviscous case—presumably as a consequence of the
steeper decent of the spectrum in the hyperviscous subrange. The mean normalized dissipation rate is found to
be in agreement with both wind tunnel experiments and direct simulations. The structure function exponents
agree with the She-Leveque model. Decaying turbulence with hyperviscosity still gives the d$Badecay
law for the kinetic energy, and also the bottleneck effect is still present and about equally strong.
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I. INTRODUCTION 1024 meshpoints. This raises the question of to what extent
) the bottleneck effect seen in simulations with hyperviscosity
In recent years there has been growing awareness of thg an artifact or a real feature that becomes noticeable only
detailed structure of the kinetic energy spectrum of hydrodyzpove a certain resolution. It is thus possible that the reason
namic turbulence. In addition to the basic Kolmogoto¥®  for an exaggerated bottleneck effect in the hyperviscous
spectrum with an exponential dissipation range there argimylation is related to the fact that hyperviscosity increases
strong indications of intermittency correction@ossibly  the effective resolution beyond the threshold above which
throughout the entire inertial rangand there is also the the pottleneck effect can be seen.
so-called bottleneck effedt,2], i.e., a shallower spectrum | this paper we consider forced hydrodynamic turbulence
near the beginning of the dissipative subrange; see also Refsing hyperviscosity proportional ° (instead of the usual
[3]. These features can be seen both in high resolution simuy2 viscosity operator We find that the bottleneck effect is
lations [4] and in measurements of wind tunnel turbulencegnhanced in amplitude—but not in width, compared with
[5]. . . _direct simulations at the currently largest resolution of 4096
Over the past few years it has become evident that iy, the Earth Simulatof4]. One of the important results of
numerical turbulence the bottleneck effect is rather prothese very high resolution simulations is that an inertial
nounced4,6,7. However, some of the simulations used hy-ange pegins to emerge that is clearly distinct from the
perviscosity or other kinds of subgrid scale modeling. Hy-pottleneck effect. Furthermore, teegative slope in the
perviscosity has frequently been used in turbulence studies ipertial range is steeper than the standard Kolmogorov power
order to shorten the dissipative subrarige-12. However, |aw exponent of 5/3 by about 0.1, so it is approximately
hyperviscosity has also been suggested as a possible source7.
of an artificially enhanced bottleneck effgdt3,14. Mean- As in earlier paper§18], we consider weakly compress-
while, the apparent discrepancy in the strength of the bottlep|e turbulence using an isothermal equation of state. The
neck effect between simulations and experiments has beggot mean square Mach number is between 0.12 and 0.13;
identified as being due to the difference in the diagnostics: ifor this type of weakly compressible simulations, we find
wind tunnel experiments one is only able to measure onemat the energies of solenoidal and potential components of
dimensional (longitudinal or transversplenergy spectra, the flow have a raticE o Ego~ 104-102 for most scales;
while in simulations one generally considers shell integrateq)my towards the Nyquist frequency the ratio increases to

three-dimensional spectra. The two are related by a simplgyout 0.1. Compressibility is therefore not expected to play
integral transformatiof15-17. It turns out that, while the = g important role.

bottleneck effect can be much weaker or even completely
absent m_the one-dme_nsmngl spectrum, it is generally much II. BASIC EQUATIONS
stronger in the three-dimensional spectr{i8].

In order to see the bottleneck effect in simulations, it is We solve the compressible Navier-Stokes equations
important to have sufficiently large resolution of around

Du 1

a=—;Vp+f+Fvisc, (1)
*Electronic address: nils.haugen@phys.ntnu.no where D/Dt=4/dt+u-V is the advective derivativep is
"Electronic address: brandenb@nordita.dk pressurep is the densityf is an isotropic, random, nonheli-
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cal forcing function with power in a narrow band of wave (n=3 and larger have been studied previous|$2,20Q, but
numbers, and for usn=3 is a practical limit, because we have restricted the
maximum stencil length of all derivative schemes to thiee
Fuise= 1 v - (2p1,8M) (20  each directiop which is required for sixth order finite dif-
P ference schemes for our first and second derivati2ék
In the following we consider the convergence of the en-
ergy spectrum for our hyperviscous simulations and compare
s =(-v?)"lis (3)  with direct simulations. We then discuss the Reynolds num-
ber dependence of the normalized mean dissipation rate, and
finally present the scaling behavior of the structure functions.
S. = %(ui,j rup) - %5” V.u (4) Iqu basic conclusio_n is t_hat in hypervisco_us and direc_t simu-
ations, as well as in wind tunnel experiments, the inertial
is the usual traceless rate of strain tensor, and commas denatinge scaling is virtually identical and the width of the
partial differentiation. In the following we restrict ourselves bottleneck is similar.
to the case wherg,,=pv,=const. Using the product rule,
we can then rewrite Eq2) in the form

is the viscous force. Here,

is a higher order traceless rate of strain tensor

A. Energy spectra

Fuisc= (- 1)n—1@(v2nu +1v2nyy.y). (5) Here and below we have calculated the energy dissipation
P rate from the energy spectrum via
For n=1 we recover the normal diffusion operator for com-
pressible flows. In the present paper we chaws8, so Eq. - f 2n
(5) reduces to €=2v, | kerE(k)dk. (10

C_M3iu6 . L ivAvy. Here we have taken into account that in the code we employ
Fuisc = P (Veu+3v4VV-u). (6) a finite difference scheme which has always a discretization

In the incompressible case, which is usually considered, th'T0r, SO we have to use the effective wavenumber in the
second term in Eq6) vanishes. However, in the compress- €XPression above. The effective wave number is usually less
ible case considered here this term is important to ensurian the actual one; see Fig. 9.1 of Rgfl]. For example,
momentum conservation. The local rate of kinetic energy©" the sixth order finite difference scheme, an analytic ex-
dissipation per unit mass is pression forkg; was given in Ref[22], while in the present
case we have
€=2u5(V?S)?, )

which is positive definite. )
We consider an isothermal gas with constant sound speetfhere«=kéx is the wave number scaled by the mesh spac-
C, SO that the pressure is given hy=cZp and plvp  Ing oX. Using the effective wave number becomes particu-

=c2V In p. The density obeys the continuity equation larly important in the hyperviscous case in order not to over-
estimate the contribution tein Eq. (10).

kS¢=20-30cosc+12cosx-2cos %k, (11

Dinp _ v. ®) The dissipation wave numbd, is calculated from the
Dt u- relationse=kyuy, and e=kg'uj . This leads to
For all our simulations we have used thenciL CODE[19], KS"2= ¢l 3 (=kiPfor n=3). (12

which is a grid based high order co@&xth order in space

and third order in timgfor solving the compressible hydro- Again,3 1f/(2r n=1 one recovers the usual relatioky
dynamic equations. =(e/v>)** For larger values oh we find that, in order to

make the location of the inertial range in direct and hyper-
viscous simulations agree, we have to use an effective wave
Ill. RESULTS numberky o that is larger thay by a factor that is around 4
) ) . inour case, i.e Ky = 4Kg.
We have calculated a series of models with resolutions |, Fig. 1 we show the convergence of the energy spectra
varying between 64and 512 meshpoints using a third order hyperviscous runs for increasing resolution up to 512
hyperV|sco§|ty(n:3). When changing thg resolution, we meshpoints. All spectra are compensated g% 23 factor
keep the grid Reynolds number, here defined as and the abscissa is normalized to the effective dissipation
Re...=u S/(v k2n—1) 9) wave numbek, . All runs agree in the shape of the bottle-
Gyria = Urmd{ "oy neck and the subsequent dissipation subrange, but the length
approximately constant. Herey,=7/dx is the Nyquist of the inertial range varies from non-existent to about one
wave number andXx is the mesh spacing. Thus, when dou- order of magnitude.
bling the number of meshpoints, we can decrease the viscos- We now compare our 582meshpoints hyperviscous run
ity by a factor of about 2=32. This shows that hyperviscos- with the direct simulations of Kanedst al. [4] on the Earth
ity can allow a dramatic increase of the Reynolds numbesSimulator using 4096meshpoints; see Fig. 2. We see that in
based on the scale of the box. Higher order hyperviscositiesoth cases the bottleneck sets irkék, .~ 0.03 and spans
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FIG. 1. Time-averaged energy spectra compensated by FIG. 3. Our simulation with 1024meshpoints and normal vis-

k™53¢7213 The curves correspond to four different resolutions. All cosity show a bottleneck very similar to the bottlenecks in IR&f.
runs are with hyperviscosity. but due to a lack of resolution we do not see any inertial range.

approximately one decade, but the dissipation subrange {§mensional wind tunnel data into three-dimensional data

longer in the direct simulations. The height of the bottlenecki1g; 1yt this involves differentiation which amplifies the
increases with increasing order of the hypervisco§ity], noise in the data. Therefore we now compare one-

which is not surprising given that the steepness of the disSigimensional energy spectra of our largest hyperviscous simu-
pative subrange is the reason for the bottleneck effe(;t in theytion with the energy spectrum from a wind tunnel experi-
first place[1]. In agreement with Kanedet al. [4], we find 0t gee Fig. 4. We see that in our simulation the bottleneck
that the slope of the energy spectrum in the inertial range i55 5 Jarger amplitude than in the wind tunnel experiment,
consistent with th&™’"law found in the direct simulation. p .+ the (negative slope of the inertial range spectrum is
The Kolmogorov constant is, however, slightly smaller .omparapie in the two cases, i.e., 1.77. The Kolmogorov
(aboutx1.1) in our hyperwscous case. constant, on the other hand, is smaller by a factor of 1.5 in
We should emphasize that, although we solve the co

i i X e . - X e hyperviscous case compared to the wind tunnel experi-
pressible equations using finite differences, our direct simuz,ont’

lations agree favorably with those using spectral methods g fee| that the value of a slope of 1.77 should be taken
solving the incompressible equations. This is shown in Fig.

. ; ; : Jith caution, because it departs rather markedly from the
where we compare simulations using 1&2deshpoints and

- ) i value 1.70 expected from the She-Leveque relafip4].
normal viscosity with those of Ref4]. These data have Gjyen that the inertial range is still relatively short, a slope of

previously been discussed in Refd8,23 in connection 1 70 can certainly not be excluded.
with the bottleneck effect in hydrodynamics and hydromag- | is customary to quote the Reynolds number based on
netic turbulence. , , the Taylor microscal¢25]

We now compare with the data from a wind tunnel ex-

periment. Ideally we would like to translate the one-

[=
N=\S U ms/®rms-: (13
- Furthermorey, ,, s andw, ,, s are the r.m.s. velocity and vor-
B ticity, respectively. One usually takes the one-dimensional
& q r.m.s. velocity for defining the Reynolds number
2
) ___5123 (x1.1) | 1.00 '
S k-0t S et PR
\‘ Q \
\ % \
0.001 o 0'10 o 1'00 - Q“’ —_¥Wind tunnel data |
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FIG. 2. Time-averaged energy spectra, compensated by
k5223, for the direct simulation with 4096meshpoints at Re 0.01 . .
=1201 (solid line) from Fig. 5 of Ref.[4] and our hyperviscous 0.01 0.10 1.00
simulation with 518 meshpointgdashed ling Note that the bottle- k/kqett

neck has a higher amplitude in the hyperviscous case, but the iner-
tial range has the same slope as for the simulation with 40@&h- FIG. 4. One-dimensional time-averaged energy spectra of our
points. Our hyperviscous energy spectrum is scaled by a factor 1.targest run with hyperviscosity compared with wind tunnel data

in order to make it fall on top of the 409@esult, i.e., our Kolmog-  with Re, =730[5]. We have multiplied our energy spectra by 1.5 in
orov constant is 1.1 times smaller than for the 408ignulation. order to make it fall on top of the wind tunnel data.
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Re, = U;p\/ v, (14) 0.6
2 1.9 . . A QCAQO % +ﬁ " +
whereui,=3Ur 5. The wind tunnel experiments have ,Re 2 +
=730. 0.4 '
In the hyperviscous case the straightforward definition of &

the Taylor microscale Reynolds number would be, Re
=u;p\®/v5, but this would lead to rather large values 02r ]
(~10° which would not be meaningful in this context. In-
stead we define an effective viscosity from the actual mean 00 .
dissipation rate and the modulus of the ordinary rate of strain ' 100 1000
matrix Re,

Vet = (e)/(28%), (15 FIG. 5. Plot ofC, as a function of Refor runs with third order

which is then used to estimate the valuerdh Eq. (14). In hyperviscosity(n=3). Triangles and pIu_s signs represent Reynolds

this way we find Re=340 for our largest simulation. Com- numb_ers Calcqlated based on E6) with Re\o=7.5 ‘?‘“d 16, re-

paring with the high resolution direct simulatioBig. 2) spectively, while for the plus signs E(L4) together with Eq(15)

and with wind tunnel datgFig. 4) we see that Re=340 have been used.

probably is an underestimate for our hyperviscous simula- . )

tions. Re=7.5 and 16, respectively. Figure 5 shows that our re-
Alternatively one can define Reas a measure of the Sults are in good agreement with both numeriea26] and

width of the inertial range. Using relations that are valid in €xperimenta25] data.

the standard case with=1, we haveky e/ ki~Re’* and

—Re2 which vi
Re, ~Re'?, which yields C. Structure functions

_ Ky eff 2B The spectral information can be supplemented by similar
R&=Rao( ") (16)  scaling information in real i functi
] g information in real space using structure functions.
i . . We define the longitudinal and transversal structure functions
where we have introduced Reas a calibration parameter,
and k; is the forcing wave number or, more generally, the () ={{f - [ux +1) —ux)]"), (19
wavenumber of the energy carrying scale. If we sej Re
~7.5, we can reproduce the result,R&840 for our largest S})(r) - <{ﬁ qu(x+r) - u(x)]}p>, (20)

run. On the other hand, if we choose to calibratg Reich _ . ' o
that our run with 512 meshpoints and the wind tunnel ex- respectively. Herd, is the unit vector of andh is normal to
periments have the same Re730 (see Fig. 4then we find I, son-r=0. The structure function of the three-dimensional
Re (=16, which is perhaps a more reasonable estimate.  Vvelocity field
S(r) = (Jux+r) = ux)|?) (21
] can then be written as
According to the Kolmogorov phenomenology, the spec-
tral energy flux should be independent lofin the inertial _lr 1)
range and equal to both the rate of energy input at large SN = 3[% (r)+2§) (r)].
scales and the rate of energy dissipation at small scales. The i ) )
constant of proportionality is of fundamental interest in tur- W& define thepth order structure function scaling exponent,
bulence research and one wants to know whether this value Via the scaling relation
is indepe_ndent qf _Reynolds numkds25. It is customary to S(r) o rép. (23
define this coefficient as

B. Energy dissipation rate

(22)

s In Fig. 6 we plot the derivative of the double-logarithmic
C.=(el/uip, (17 slope of the structure functiorgsin S,/d Inr. Inertial range
where(e) is the mean energy dissipation rate dnthe inte- scaling is indicated by a plateau in this graph. We find from

C ! 1 the lower curve of Fig. 6 thaf,~0.7. More importantly, in
gral scale, which is usually defined bs (37/4)k; -, where the upper curve of Fig. 6, we show thai(r) is consistent

N ) with linear scaling, i.e.{3=1. Knowing this we can use the
ki :J KE(k) dk f E(k) dk, (18)  extended self-similarity27] to find the other structure func-
tion scaling exponents. The results are shown in Fig. 7 where
is the spectrally weighted average lof-. we see that the longitudinal structure function exponents fol-

The resulting normalized mean energy dissipation ratelow the She and Levequi4] scaling very well, while the
calculated in this way, is shown in Fig. 5 as a function oftransversal structure function is slightly more intermittent
Reynolds number. In the figure diamonds correspond to ugi.e., the graph of{, versusp is more strongly bent In
ing Egs.(14) and (15) to find the Reynolds number, while particular we note that the extended self similarity giges
triangles and plus signs correspond to using @&d) with =0.696 for the longitudinal component.
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FIG. 6. Time-averaged total structure functiol I)+25(t)]/3
for p=2 andp=3. The two dotted horizontal lines go through 0.7
and 1.0, confirming the expected scaling from the She-Levequ
relationship.

FIG. 8. Mean squared velocity as a function of time for a simu-
lation where the forcing has been stoppeti=t. In the 256 simu-
?ation we have Rg;3=0.20 (based on the initial valuely) and
TUgk; =2.8 while in the 512 simulation we have Rgq=0.24 and
TUg ky=3.1. The solid circles correspond to the experimental results

D. Decaying turbulence of Kanget al. [28].

Decaying isotropic turbulence is often considered an im-
portant benchmark of turbulence theories, and comparisons
with wind tunnel experiments and large eddy simulations are In the present decay simulations one also sees the begin-
available[28]. We have carried out simulations of decaying ning of a subinertial range, leaving only a very short inertial
turbulence by stopping the driving at a time that will now berange around 0% k(r4t)6<0.3. The slope is compatible
redefined ta=0. In Fig. 8 we show that asymptotically with the She-Leveque slope of 1.70, which corresponds to a

N residual slope ok % after compensating with®3. Thus,

(U ug = (t/n)", (24) th . . .
ere is no longer evidence for the more extreme correction

whereuy is the initial (t=0) r.m.s. velocity andris a constant  of —0.1 suggested by the forced turbulence simulatidhs
obtained from the intersection of the decay law extrapolated
to <u2>:u§. It turns out that our law is consistent with
=1.25, which is in agreement with recent wind tunnel data IV. CONCLUSION
and large eddy simulatiorf28].

The bottleneck effect is roughly unchanged; see Fig. 9. Its The present investigations have shown that turbulence
width is still about one order of magnitude in wave number,simulations with hyperviscosity are able to reproduce virtu-
which is comparable to the experimental resy28]. The ally the same inertial range scalings as simulations with or-
height of the bottleneck is much less in the experimentalinary viscosity. Specifically, the structure function expo-
data, because they show only a one-dimensional spectrunents show scaling behavior that is consistent with the She-
which gives a much weaker hump than the three-dimensionaleveque [24] model. However, the transversal structure

spectrg18]. In any case, we know already that the height offunctions show a slightly higher degree of intermittency than
the bottleneck is artificially enhanced by the use of hypervis-

cosity.

25 T T T ~ T %
- L o
2.0F R s S
,//8 = ~—

L5k ow ] 2 1.0

. PR | [
& & W
M 1.0F e . 2
) -7 Longitudinal =
" o =
_,.,vy -~ Transverse &
0.5r o She & Leveque ] —
e __ Kolmogorov (1941) R

0.0 L L L L 0.1 1 L
0 2 4 6 8 0.1 1.0
P k (vat)i/®

FIG. 7. Structure function scaling exponents found using the FIG. 9. Energy spectra for a decaying run. The abscissa is com-
concept of extended self similarity. We see that the longitudinalpensated byr,t)/® to make it dimensionless and to account for the
scaling exponents follow the She and Leveque scaling very wellslow decrease of the dissipation wavenumber. The ordinate is com-
while the transversal scaling exponents are somewhat morpensated b%>to show the location of the inertial range andtB
intermittent. to compensate for the decay.
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the longitudinal ones. This, in turn, is quite consistent with abottleneck requires at least an order of magnitude space,
number of turbulence simulations by other gro(i2s,30. A and so does the dissipative subrange, leaving almost no in-
possible explanation for the difference between longitudinakrtial range at all—even in a simulation with 162dhesh
and transversal structure functions has been offered by Siepoints. Thus, using hyperviscosity appears to be a reasonable
ert and Peinke31], who find different cascade times for procedure for gaining information about the inertial range at
longitudinal and transversal spectra. The spectra show inefoderate cost, even though one should still use a reasonably
tial range scaling similar to that found both in wind tunnel hjgh resolution to isolate true inertial range features from
experiments[5] and in very high resolution direct simula- 456 in the bottleneck subrange. On the other hand, hyper-
tions [4]. In all three casegnyperviscous and direct simula- yiscosity is not a universally valid approximation. An ex-
tions as vv_ellfas wind tunnel exp_elrlmepr'[]hig%rtlalhrange ample is in magnetohydrodynamics when magnetic helicity
?gfﬁg%m‘gngéﬁ g? l[)4e] ??(jpizggsi::jltat)tove tr?ii, rae\gglrt is is finite and a large scale magnetic field builds up in a closed
y i ’ or fully periodic box[33]. As long as it is possible to under-

not compatible with the results from the structure function tand the origin of peculiar features arising from hvbervis-
scalings and the She-Leveque relation. However, we believe 9 P 9 yp

that the presently resolved inertial range is still too short {gCOSIty or hyper-resistivityas is the case in helical hydro-

distinguish conclusively between 1.77 and the She-Levequg‘ak?r:etiC turbur:errllqaher_e may well be cirpéjmstanc?sl Whe(;el
value of 1.70. Also, the simulation data of decaying turbu-iuroulence with hyperviscosity can provide a useful mode

i ivi tain studies. One should bear in mind, however, that
lence suggest a weaker correction of 0.03, giving a slope ofﬁr cer , ,
1.70 that is compatible with the She-Leveque scaling. the height of the bottleneck depends on the order of the hy-
Another important result is that the width of the bottle- PETViScosity. For example, if we choose-3 in Eq.(2), the

neck seems to be independent of the use of hyperviscosit{),eight of the bottleneck will be even more exaggerdt.

and that only its height increases with the order of the hy-
perviscosity. This result is also confirmed in the case of de-
caying turbulence. Finally, we note that the normalized dis-
sipation rate is independent of the Reynolds number, and that
the asymptotic value o€.~0.5 is in agreement with both We acknowledge the very valuable help and discussions
experimental and numerical resuf&32). with B. R. Pearson. We thank the Danish Center for Scien-
One should of course always be concerned about the posfic Computing for granting time on the Horseshoe cluster,
sible side effects of using hyperviscosity. One worry is thatand the Norwegian High Performance Computing Consor-
hyperviscosity may actually affect almost all of the inertial tium (NOTUR) for granting time on the parallel computers
subrange{13,14. The current simulations confirm that the in Trondheim(Gridur/Emblg and BergenFire).

ACKNOWLEDGMENTS

[1] G. Falkovich, Phys. Fluid$, 1411(1994). (Cambridge University Press, Cambridge, 1958 50.
[2] D. Lohse and A. Miller-Groeling, Phys. Rev. Left4, 1747  [16] J. O. Hinze,Turbulence 2nd ed.(McGraw-Hill, New York,
(1995; Phys. Rev. E54, 395(1996. 1975, p. 202.
[3] Z.-S. She and E. Jackson, Phys. Fluid5A1526(1993. [17] A. S. Monin and A. M. Yaglom Statistical Fluid Mechanics
[4] Y. Kaneda, T. Ishihara, M. Yokokawa, K. Itakura, and A. Uno, (MIT Press, Cambridge, MA, 1987Vol. 2, Sec. 12.
Phys. Fluids15, L21 (2003. [18] W. Dobler, N. E. L. Haugen, T. A. Yousef, and A. Branden-
[5] B. R. Pearson, P. A. Krogstad, and G. R. JohnsoRegnolds burg, Phys. Rev. 68, 026304(2003).
Number Scaling in Turbulent Flgvedited by A. J. SmithiKlu- [19] http://lwww.nordita.dk/software/pencil-code/
wer Academic, Dordrecht, 2003pp. 229-236. [20] J. Cho, A. Lazarian, and E. Vishniac, Astrophys.585 812
[6] D. H. Porter, P. R. Woodward, and A. Pouquet, Phys. Fluids (2003.
10, 237(1998. [21] A. Brandenburg, inAdvances in Nonlinear Dynamos. The
[7] T. Gotoh and D. Fukayama, Phys. Rev. L&6, 3775(2001). Fluid Mechanics of Astrophysics and Geophysexiited by A.
[8] C. Basdevant, B. Legras, R. Sadourny, and M. Beland, J. At- Ferriz-Mas and M. NufiegTaylor & Francis, London, 2003
mos. Sci. 38, 2305(1981). Vol. 9, p. 269.
[9] M. Meneguzzi, U. Frisch, and A. Pouquet, Phys. Rev. L4T. [22] M. Christensson, M. Hindmarsh, and A. Brandenburg, Phys.
1060(1981). Rev. E 64, 056405(2001).
[10] J. C. McWilliams, J. Fluid Mech146, 21 (1984). [23] N. E. L. Haugen, W. Dobler, and A. Brandenburg, Phys. Rev.
[11] T. Passot and A. Pouquet, J. Comput. Ph¥4s. 300(1988. E 70, 016308(2004).
[12] V. Borue and S. Orszag, Europhys. Le®9, 687 (1995. [24] Z.-S. She and E. Leveque, Phys. Rev. L&t2, 336 (1994).
[13] D. Biskamp, E. Schwarz, and A. Celani, Phys. Rev. Létt, [25] K. R. Sreenivasan, Phys. Fluidd), 528(1998.
4855(1998. [26] B. R. Pearson, T. A. Yousef, N. E. L. Haugen, A. Brandenburg,
[14] D. Biskamp and W.-C. Miiller, Phys. Plasm@s4889(2000. and P. A. Krogstad, e-print physics/0404114.

[15] G. K. Batchelor, The Theory of Homogeneous Turbulence [27] R. Benzi, S. Ciliberto, R. Tripiccione, C. Baudet, F. Massaioli,

026405-6



INERTIAL RANGE SCALING IN NUMERICAL ... PHYSICAL REVIEW E 70, 026405(2004)

and S. Succi, Phys. Rev. B8, R29(1993. [31] M. Siefert and J. Peinke, e-print physics/0309106.
[28] H. S. Kang, S. Chester, and C. Meneveau, J. Fluid Md&®, [32] B. R. Pearson, P. A. Krogstad, and W. van de Water, Phys.
129(2003. Fluids 14, 1288(2002.
[29] T. Gotoh, Comput. Phys. Commui47, 530(2002. [33] A. Brandenburg and G. R. Sarson, Phys. Rev. L&#.055003
[30] D. Porter, A. Pouquet, and P. Woodward, Phys. Rev6 & (2002.
026301(2002.

026405-7



