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Numerical turbulence with hyperviscosity is studied and compared with direct simulations using ordinary
viscosity and data from wind tunnel experiments. It is shown that the inertial range scaling is similar in all
three cases. Furthermore, the bottleneck effect is approximately equally broad(about one order of magnitude)
in these cases and only its height is increased in the hyperviscous case—presumably as a consequence of the
steeper decent of the spectrum in the hyperviscous subrange. The mean normalized dissipation rate is found to
be in agreement with both wind tunnel experiments and direct simulations. The structure function exponents
agree with the She-Leveque model. Decaying turbulence with hyperviscosity still gives the usualt−1.25 decay
law for the kinetic energy, and also the bottleneck effect is still present and about equally strong.
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I. INTRODUCTION

In recent years there has been growing awareness of the
detailed structure of the kinetic energy spectrum of hydrody-
namic turbulence. In addition to the basic Kolmogorovk−5/3

spectrum with an exponential dissipation range there are
strong indications of intermittency corrections(possibly
throughout the entire inertial range) and there is also the
so-called bottleneck effect[1,2], i.e., a shallower spectrum
near the beginning of the dissipative subrange; see also Ref.
[3]. These features can be seen both in high resolution simu-
lations [4] and in measurements of wind tunnel turbulence
[5].

Over the past few years it has become evident that in
numerical turbulence the bottleneck effect is rather pro-
nounced[4,6,7]. However, some of the simulations used hy-
perviscosity or other kinds of subgrid scale modeling. Hy-
perviscosity has frequently been used in turbulence studies in
order to shorten the dissipative subrange[8–12]. However,
hyperviscosity has also been suggested as a possible source
of an artificially enhanced bottleneck effect[13,14]. Mean-
while, the apparent discrepancy in the strength of the bottle-
neck effect between simulations and experiments has been
identified as being due to the difference in the diagnostics: in
wind tunnel experiments one is only able to measure one-
dimensional (longitudinal or transversal) energy spectra,
while in simulations one generally considers shell integrated
three-dimensional spectra. The two are related by a simple
integral transformation[15–17]. It turns out that, while the
bottleneck effect can be much weaker or even completely
absent in the one-dimensional spectrum, it is generally much
stronger in the three-dimensional spectrum[18].

In order to see the bottleneck effect in simulations, it is
important to have sufficiently large resolution of around

10243 meshpoints. This raises the question of to what extent
the bottleneck effect seen in simulations with hyperviscosity
is an artifact or a real feature that becomes noticeable only
above a certain resolution. It is thus possible that the reason
for an exaggerated bottleneck effect in the hyperviscous
simulation is related to the fact that hyperviscosity increases
the effective resolution beyond the threshold above which
the bottleneck effect can be seen.

In this paper we consider forced hydrodynamic turbulence
using hyperviscosity proportional to¹6 (instead of the usual
¹2 viscosity operator). We find that the bottleneck effect is
enhanced in amplitude—but not in width, compared with
direct simulations at the currently largest resolution of 40963

on the Earth Simulator[4]. One of the important results of
these very high resolution simulations is that an inertial
range begins to emerge that is clearly distinct from the
bottleneck effect. Furthermore, the(negative) slope in the
inertial range is steeper than the standard Kolmogorov power
law exponent of 5/3 by about 0.1, so it is approximately
1.77.

As in earlier papers[18], we consider weakly compress-
ible turbulence using an isothermal equation of state. The
root mean square Mach number is between 0.12 and 0.13;
for this type of weakly compressible simulations, we find
that the energies of solenoidal and potential components of
the flow have a ratioEpot/Esol<10−4−10−2 for most scales;
only towards the Nyquist frequency the ratio increases to
about 0.1. Compressibility is therefore not expected to play
an important role.

II. BASIC EQUATIONS

We solve the compressible Navier-Stokes equations

Du

Dt
= −

1

r
= p + f + Fvisc, s1d

where D /Dt=] /]t+u ·= is the advective derivative,p is
pressure,r is the density,f is an isotropic, random, nonheli-
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cal forcing function with power in a narrow band of wave
numbers, and

Fvisc =
1

r
= · s2rnnS

sndd s2d

is the viscous force. Here,

Ssnd = s− ¹2dn−1S s3d

is a higher order traceless rate of strain tensor

Si j = 1
2sui,j + uj ,id − 1

3di j =·u s4d

is the usual traceless rate of strain tensor, and commas denote
partial differentiation. In the following we restrict ourselves
to the case wheremn;rnn=const. Using the product rule,
we can then rewrite Eq.(2) in the form

Fvisc = s− 1dn−1
mn

r s¹2nu + 1
3¹2sn−1d = =·ud . s5d

For n=1 we recover the normal diffusion operator for com-
pressible flows. In the present paper we choosen=3, so Eq.
(5) reduces to

Fvisc =
m3

r s¹6u + 1
3¹4 = =·ud . s6d

In the incompressible case, which is usually considered, the
second term in Eq.(6) vanishes. However, in the compress-
ible case considered here this term is important to ensure
momentum conservation. The local rate of kinetic energy
dissipation per unit mass is

e = 2m3s¹2Sd2, s7d

which is positive definite.
We consider an isothermal gas with constant sound speed

cs, so that the pressure is given byp=cs
2r and r−1=p

=cs
2= ln r. The density obeys the continuity equation

D ln r

Dt
= − =·u. s8d

For all our simulations we have used thePENCIL CODE [19],
which is a grid based high order code(sixth order in space
and third order in time) for solving the compressible hydro-
dynamic equations.

III. RESULTS

We have calculated a series of models with resolutions
varying between 643 and 5123 meshpoints using a third order
hyperviscosity sn=3d. When changing the resolution, we
keep the grid Reynolds number, here defined as

Regrid = urms/snnkNy
2n−1d s9d

approximately constant. Here,kNy=p /dx is the Nyquist
wave number anddx is the mesh spacing. Thus, when dou-
bling the number of meshpoints, we can decrease the viscos-
ity by a factor of about 25=32. This shows that hyperviscos-
ity can allow a dramatic increase of the Reynolds number
based on the scale of the box. Higher order hyperviscosities

(n=3 and larger) have been studied previously[12,20], but
for usn=3 is a practical limit, because we have restricted the
maximum stencil length of all derivative schemes to three(in
each direction), which is required for sixth order finite dif-
ference schemes for our first and second derivatives[21].

In the following we consider the convergence of the en-
ergy spectrum for our hyperviscous simulations and compare
with direct simulations. We then discuss the Reynolds num-
ber dependence of the normalized mean dissipation rate, and
finally present the scaling behavior of the structure functions.
Our basic conclusion is that in hyperviscous and direct simu-
lations, as well as in wind tunnel experiments, the inertial
range scaling is virtually identical and the width of the
bottleneck is similar.

A. Energy spectra

Here and below we have calculated the energy dissipation
rate from the energy spectrum via

e = 2nnE keff
2nEskddk. s10d

Here we have taken into account that in the code we employ
a finite difference scheme which has always a discretization
error, so we have to use the effective wavenumber in the
expression above. The effective wave number is usually less
than the actual one; see Fig. 9.1 of Ref.[21]. For example,
for the sixth order finite difference scheme, an analytic ex-
pression forkeff

2 was given in Ref.[22], while in the present
case we have

keff
6 = 20 − 30 cosk + 12 cos 2k − 2 cos 3k, s11d

wherek=kd x is the wave number scaled by the mesh spac-
ing d x. Using the effective wave number becomes particu-
larly important in the hyperviscous case in order not to over-
estimate the contribution toe in Eq. (10).

The dissipation wave numberkd is calculated from the
relationse=kdukd

3 ande=nnkd
2nukd

2 . This leads to

kd
6n−2 = e/n n

3 s=kd
16 for n = 3d . s12d

Again, for n=1 one recovers the usual relationkd
=se /n 3d1/4. For larger values ofn we find that, in order to
make the location of the inertial range in direct and hyper-
viscous simulations agree, we have to use an effective wave
numberkd,eff that is larger thankd by a factor that is around 4
in our case, i.e.,kd,eff<4kd.

In Fig. 1 we show the convergence of the energy spectra
of hyperviscous runs for increasing resolution up to 5123

meshpoints. All spectra are compensated by ak5/3e−2/3 factor
and the abscissa is normalized to the effective dissipation
wave numberkd,eff. All runs agree in the shape of the bottle-
neck and the subsequent dissipation subrange, but the length
of the inertial range varies from non-existent to about one
order of magnitude.

We now compare our 5123 meshpoints hyperviscous run
with the direct simulations of Kanedaet al. [4] on the Earth
Simulator using 40963 meshpoints; see Fig. 2. We see that in
both cases the bottleneck sets in atk/kd,eff<0.03 and spans
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approximately one decade, but the dissipation subrange is
longer in the direct simulations. The height of the bottleneck
increases with increasing order of the hyperviscosity[12],
which is not surprising given that the steepness of the dissi-
pative subrange is the reason for the bottleneck effect in the
first place[1]. In agreement with Kanedaet al. [4], we find
that the slope of the energy spectrum in the inertial range is
consistent with thek−1.77 law found in the direct simulation.
The Kolmogorov constant is, however, slightly smaller
(about31.1) in our hyperviscous case.

We should emphasize that, although we solve the com-
pressible equations using finite differences, our direct simu-
lations agree favorably with those using spectral methods
solving the incompressible equations. This is shown in Fig. 3
where we compare simulations using 10243 meshpoints and
normal viscosity with those of Ref.[4]. These data have
previously been discussed in Refs.[18,23] in connection
with the bottleneck effect in hydrodynamics and hydromag-
netic turbulence.

We now compare with the data from a wind tunnel ex-
periment. Ideally we would like to translate the one-

dimensional wind tunnel data into three-dimensional data
[18], but this involves differentiation which amplifies the
noise in the data. Therefore we now compare one-
dimensional energy spectra of our largest hyperviscous simu-
lation with the energy spectrum from a wind tunnel experi-
ment; see Fig. 4. We see that in our simulation the bottleneck
has a larger amplitude than in the wind tunnel experiment,
but the (negative) slope of the inertial range spectrum is
comparable in the two cases, i.e., 1.77. The Kolmogorov
constant, on the other hand, is smaller by a factor of 1.5 in
the hyperviscous case compared to the wind tunnel experi-
ment.

We feel that the value of a slope of 1.77 should be taken
with caution, because it departs rather markedly from the
value 1.70 expected from the She-Leveque relation[24].
Given that the inertial range is still relatively short, a slope of
1.70 can certainly not be excluded.

It is customary to quote the Reynolds number based on
the Taylor microscale[25]

l = Î5 ur.m.s./vr.m.s.. s13d

Furthermore,ur.m.s.andvr.m.s.are the r.m.s. velocity and vor-
ticity, respectively. One usually takes the one-dimensional
r.m.s. velocity for defining the Reynolds number

FIG. 1. Time-averaged energy spectra compensated by
k−5/3e−2/3. The curves correspond to four different resolutions. All
runs are with hyperviscosity.

FIG. 2. Time-averaged energy spectra, compensated by
k5/3e−2/3, for the direct simulation with 40963 meshpoints at Rel
=1201 (solid line) from Fig. 5 of Ref.[4] and our hyperviscous
simulation with 5123 meshpoints(dashed line). Note that the bottle-
neck has a higher amplitude in the hyperviscous case, but the iner-
tial range has the same slope as for the simulation with 40963 mesh-
points. Our hyperviscous energy spectrum is scaled by a factor 1.1
in order to make it fall on top of the 40963 result, i.e., our Kolmog-
orov constant is 1.1 times smaller than for the 40963 simulation.

FIG. 3. Our simulation with 10243 meshpoints and normal vis-
cosity show a bottleneck very similar to the bottlenecks in Ref.[4],
but due to a lack of resolution we do not see any inertial range.

FIG. 4. One-dimensional time-averaged energy spectra of our
largest run with hyperviscosity compared with wind tunnel data
with Rel=730[5]. We have multiplied our energy spectra by 1.5 in
order to make it fall on top of the wind tunnel data.
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Rel = u1Dl/n, s14d

whereu1D
2 = 1

3ur.m.s.
2 . The wind tunnel experiments have Rel

=730.
In the hyperviscous case the straightforward definition of

the Taylor microscale Reynolds number would be Rel

=u1Dl5/n3, but this would lead to rather large values
s,106d which would not be meaningful in this context. In-
stead we define an effective viscosity from the actual mean
dissipation rate and the modulus of the ordinary rate of strain
matrix

neff = kel/k2S2l, s15d

which is then used to estimate the value ofn in Eq. (14). In
this way we find Rel=340 for our largest simulation. Com-
paring with the high resolution direct simulations(Fig. 2)
and with wind tunnel data(Fig. 4) we see that Rel=340
probably is an underestimate for our hyperviscous simula-
tions.

Alternatively one can define Rel as a measure of the
width of the inertial range. Using relations that are valid in
the standard case withn=1, we havekd,eff/kf ,Re3/4 and
Rel,Re1/2, which yields

Rel < Rel0Skd,eff

kf
D2/3

, s16d

where we have introduced Rel0 as a calibration parameter,
and kf is the forcing wave number or, more generally, the
wavenumber of the energy carrying scale. If we set Rel0
<7.5, we can reproduce the result Rel=340 for our largest
run. On the other hand, if we choose to calibrate Rel0 such
that our run with 5123 meshpoints and the wind tunnel ex-
periments have the same Rel=730 (see Fig. 4) then we find
Rel0=16, which is perhaps a more reasonable estimate.

B. Energy dissipation rate

According to the Kolmogorov phenomenology, the spec-
tral energy flux should be independent ofk in the inertial
range and equal to both the rate of energy input at large
scales and the rate of energy dissipation at small scales. The
constant of proportionality is of fundamental interest in tur-
bulence research and one wants to know whether this value
is independent of Reynolds number[4,25]. It is customary to
define this coefficient as

Ce = kelL/u1D
3 , s17d

wherekel is the mean energy dissipation rate andL the inte-
gral scale, which is usually defined asL=s3p /4dkI

−1, where

kI
−1 =E k−1Eskd dkYE Eskd dk, s18d

is the spectrally weighted average ofk−1.
The resulting normalized mean energy dissipation rate,

calculated in this way, is shown in Fig. 5 as a function of
Reynolds number. In the figure diamonds correspond to us-
ing Eqs.(14) and (15) to find the Reynolds number, while
triangles and plus signs correspond to using Eq.(16) with

Rel0=7.5 and 16, respectively. Figure 5 shows that our re-
sults are in good agreement with both numerical[4,26] and
experimental[25] data.

C. Structure functions

The spectral information can be supplemented by similar
scaling information in real space using structure functions.
We define the longitudinal and transversal structure functions

Sp
sldsrd = khr̂ · fusx + rd − usxdgjpl , s19d

Sp
stdsrd = khn̂ · fusx + rd − usxdgjpl , s20d

respectively. Here,r̂ is the unit vector ofr andn̂ is normal to
r, son̂ ·r̂ ;0. The structure function of the three-dimensional
velocity field

Spsrd = kuusx + rd − usxdupl s21d

can then be written as

Spsrd =
1

3
fSp

sldsrd + 2Sp
stdsrdg . s22d

We define thepth order structure function scaling exponent,
zp via the scaling relation

Spsrd ~ rzp. s23d

In Fig. 6 we plot the derivative of the double-logarithmic
slope of the structure functionsd ln Sp/d ln r. Inertial range
scaling is indicated by a plateau in this graph. We find from
the lower curve of Fig. 6 thatz2<0.7. More importantly, in
the upper curve of Fig. 6, we show thatS3srd is consistent
with linear scaling, i.e.,z3=1. Knowing this we can use the
extended self-similarity[27] to find the other structure func-
tion scaling exponents. The results are shown in Fig. 7 where
we see that the longitudinal structure function exponents fol-
low the She and Leveque[24] scaling very well, while the
transversal structure function is slightly more intermittent
(i.e., the graph ofzp versusp is more strongly bent). In
particular we note that the extended self similarity givesz2
=0.696 for the longitudinal component.

FIG. 5. Plot ofCe as a function of Rel for runs with third order
hyperviscositysn=3d. Triangles and plus signs represent Reynolds
numbers calculated based on Eq.(16) with Rel0=7.5 and 16, re-
spectively, while for the plus signs Eq.(14) together with Eq.(15)
have been used.
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D. Decaying turbulence

Decaying isotropic turbulence is often considered an im-
portant benchmark of turbulence theories, and comparisons
with wind tunnel experiments and large eddy simulations are
available[28]. We have carried out simulations of decaying
turbulence by stopping the driving at a time that will now be
redefined tot=0. In Fig. 8 we show that asymptotically

ku2l/u0
2 = st/tdn, s24d

whereu0 is the initialst=0d r.m.s. velocity andt is a constant
obtained from the intersection of the decay law extrapolated
to ku2l=u0

2. It turns out that our law is consistent withn
=1.25, which is in agreement with recent wind tunnel data
and large eddy simulations[28].

The bottleneck effect is roughly unchanged; see Fig. 9. Its
width is still about one order of magnitude in wave number,
which is comparable to the experimental results[28]. The
height of the bottleneck is much less in the experimental
data, because they show only a one-dimensional spectrum
which gives a much weaker hump than the three-dimensional
spectra[18]. In any case, we know already that the height of
the bottleneck is artificially enhanced by the use of hypervis-
cosity.

In the present decay simulations one also sees the begin-
ning of a subinertial range, leaving only a very short inertial
range around 0.1&ksn3td1/6&0.3. The slope is compatible
with the She-Leveque slope of 1.70, which corresponds to a
residual slope ofk−0.03 after compensating withk5/3. Thus,
there is no longer evidence for the more extreme correction
of −0.1 suggested by the forced turbulence simulations[4].

IV. CONCLUSION

The present investigations have shown that turbulence
simulations with hyperviscosity are able to reproduce virtu-
ally the same inertial range scalings as simulations with or-
dinary viscosity. Specifically, the structure function expo-
nents show scaling behavior that is consistent with the She-
Leveque [24] model. However, the transversal structure
functions show a slightly higher degree of intermittency than

FIG. 6. Time-averaged total structure functionsfSp
sld+2Sp

stdg /3
for p=2 andp=3. The two dotted horizontal lines go through 0.7
and 1.0, confirming the expected scaling from the She-Leveque
relationship.

FIG. 7. Structure function scaling exponents found using the
concept of extended self similarity. We see that the longitudinal
scaling exponents follow the She and Leveque scaling very well,
while the transversal scaling exponents are somewhat more
intermittent.

FIG. 8. Mean squared velocity as a function of time for a simu-
lation where the forcing has been stopped att= t0. In the 2563 simu-
lation we have Regrid=0.20 (based on the initial valueu0) and
tu0k1=2.8 while in the 5123 simulation we have Regrid=0.24 and
t u0 k1=3.1. The solid circles correspond to the experimental results
of Kang et al. [28].

FIG. 9. Energy spectra for a decaying run. The abscissa is com-
pensated bysn3td1/6 to make it dimensionless and to account for the
slow decrease of the dissipation wavenumber. The ordinate is com-
pensated byk5/3 to show the location of the inertial range and byt5/4

to compensate for the decay.
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the longitudinal ones. This, in turn, is quite consistent with a
number of turbulence simulations by other groups[29,30]. A
possible explanation for the difference between longitudinal
and transversal structure functions has been offered by Sief-
ert and Peinke[31], who find different cascade times for
longitudinal and transversal spectra. The spectra show iner-
tial range scaling similar to that found both in wind tunnel
experiments[5] and in very high resolution direct simula-
tions [4]. In all three cases(hyperviscous and direct simula-
tions as well as wind tunnel experiments) the inertial range
spectrum is found to be compatible with thek−1.77 behavior
found by Kanedaet al. [4]. As discussed above, this result is
not compatible with the results from the structure function
scalings and the She-Leveque relation. However, we believe
that the presently resolved inertial range is still too short to
distinguish conclusively between 1.77 and the She-Leveque
value of 1.70. Also, the simulation data of decaying turbu-
lence suggest a weaker correction of 0.03, giving a slope of
1.70 that is compatible with the She-Leveque scaling.

Another important result is that the width of the bottle-
neck seems to be independent of the use of hyperviscosity,
and that only its height increases with the order of the hy-
perviscosity. This result is also confirmed in the case of de-
caying turbulence. Finally, we note that the normalized dis-
sipation rate is independent of the Reynolds number, and that
the asymptotic value ofCe<0.5 is in agreement with both
experimental and numerical results[4,32].

One should of course always be concerned about the pos-
sible side effects of using hyperviscosity. One worry is that
hyperviscosity may actually affect almost all of the inertial
subrange[13,14]. The current simulations confirm that the

bottleneck requires at least an order of magnitude ink space,
and so does the dissipative subrange, leaving almost no in-
ertial range at all—even in a simulation with 10243 mesh
points. Thus, using hyperviscosity appears to be a reasonable
procedure for gaining information about the inertial range at
moderate cost, even though one should still use a reasonably
high resolution to isolate true inertial range features from
those in the bottleneck subrange. On the other hand, hyper-
viscosity is not a universally valid approximation. An ex-
ample is in magnetohydrodynamics when magnetic helicity
is finite and a large scale magnetic field builds up in a closed
or fully periodic box[33]. As long as it is possible to under-
stand the origin of peculiar features arising from hypervis-
cosity or hyper-resistivity(as is the case in helical hydro-
magnetic turbulence) there may well be circumstances where
turbulence with hyperviscosity can provide a useful model
for certain studies. One should bear in mind, however, that
the height of the bottleneck depends on the order of the hy-
perviscosity. For example, if we choosen.3 in Eq. (2), the
height of the bottleneck will be even more exaggerated[12].
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