PHYSICAL REVIEW E 70, 016308(2004)

Simulations of nonhelical hydromagnetic turbulence

Nils Erland L. Haugeh
Department of Physics, The Norwegian University of Science and Technology, Hgyskoleringen 5, N-7034 Trondheim, Norway

Axel Brandenbur@
NORDITA, Blegdamsvej 17, DK-2100 Copenhagen &, Denmark

Wolfgang Doblet
Kiepenheuer-Institut fir Sonnenphysik, SchéneckstralRe 6, D-79104 Freiburg, Germany
(Received 3 July 2003; revised manuscript received 28 January 2004; published 26 Jyly 2004

Nonhelical hydromagnetic forced turbulence is investigated using large scale simulations on up to 256
processors and 1024nesh points. The magnetic Prandtl number is varied between 1/8 and 30, although in
most cases it is unity. When the magnetic Reynolds number is based on the inverse forcing wave number, the
critical value for dynamo action is shown to be around 35 for magnetic Prandtl number of unity. For small
magnetic Prandtl numbers we find the critical magnetic Reynolds number to increase with decreasing magnetic
Prandtl number. The Kazants&¥2 spectrum for magnetic energy is confirmed for the kinematic regime, i.e.,
when nonlinear effects are still unimportant and when the magnetic Prandtl number is unity. In the nonlinear
regime, the energy budget converges for large Reynolds nuniensnd 100D such that for our parameters
about 70% is in kinetic energy and about 30% is in magnetic energy. The energy dissipation rates are con-
verged to 30% viscous dissipation and 70% resistive dissipation. Second-order structure functions of the
Elsasser variables give evidence fok & spectrum. Nevertheless, the three-dimensional spectrum is close to
k=32 but we argue that this is due to the bottleneck effect. The bottleneck effect is shown to be equally strong
both for magnetic and nonmagnetic turbulence, but it is far weaker in one-dimensional spectra that are nor-
mally studied in laboratory turbulence. Structure function exponents for other orders are well described by the
She-Leveque formula, but the velocity field is significantly less intermittent and the magnetic field is more
intermittent than the Elsasser variables.
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[. INTRODUCTION then spatially highly intermittent with substantial power at
small length scales. Hydromagnetic turbulence has recently
Dynamo action, i.e., the conversion of kinetic energy intoalso been studied in the laboratofy1-13, but there the
magnetic energy, plays an important role in astrophysicamagnetic Reynolds numbers are still rather small. Therefore,
bodies ranging from stars to galaxies and even clusters afumerical simulations are currently the most powerful tool.
galaxies. The gas in these bodies is turbulent and the mag- In spite of significant progress over the past two decades,
netic Reynolds numbers are hugd)'® to 1¢?%. This sug- the form of the energy spectrum at large magnetic Reynolds
gests that there should be dynamo action and that the magumbers is still a matter of debate. Particular progress has
netic fields should be amplified on the time scale of thebeen made in the case where there is a large scale field.
turbulent turnover time1,2). The magnetic fields of many Goldreich and Sridhaf14] have proposed that the magnetic
astrophysical bodies show a great deal of spatiotemporal oRNergy spectrum haska® inertial range due to the aniso-
der(e.g., an 11-year cycle and equatorward migration of thdropy imposed by the local magnetic field. Th'S_;’/VzaS In con-
magnetic field in the case of the umhich can basically be flict with the earlier Iroshnikov-Kraichnafil5] k™' spec-
explained by the helicity effed3-5]. In many other astro- trum, which assumes isotropy, but can now be ruled out

i i i -3/2
hysical environments, however, the helicity effect is rob-[lﬁ_.la' Some simulations still show &= spectrum, but
gbl{/ completely irrelevante.g., in the solar tv>\//incﬂ6], clusp- this is probably due to the bottleneck effect; see below. A

-5/3
ters of galaxies [7], and the early universe after k™' total energy spectrum has, however, clearly been seen

.2 o in decaying hydromagnetic turbulen§&7]. Here the total
recomblnatlor[S]). In all these cases the magnetic field dg)esenergy spectrum is simply the sum of kinetic and magnetic
not show spatiotemporal order of the type known for hehcalenergy spectra
hydromagnetic turbulencgs]. Both analytic theory[9] as '

I ulations101 h I h hat d ' The case of an imposed large scale magnetic field with
well as simu at|0n$. ] ave long shown that dynamo action approximate equipartition strength is in some respects simi-
is possible even without kinetic helicity, but that the field is

lar to the case of a self-generated large scale field which
emerges if there is helicity in the floj4,10,19. In the latter
case of helical turbulence, and for unit magnetic Prandtl

*Electronic address: nils.haugen@phys.ntnu.no number, kinetic and magnetic energy spectra are in almost
"Electronic address: brandenb@nordita.dk perfect equipartition on all scales smaller than the forcing
*Electronic address: Wolfgang.Dobler@kis.uni-freiburg.de scale(see Fig. 11 of Ref[5]), and the two spectra tend to
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TABLE I. Summary of earlier work on hydromagnetic turbulence simulations. In addition to the reference
of each paper, we give for convenience a more descriptive abbreviation. Ifl8ethe largest resolution
wasN3=256x 512, so we have listed the geometrical mean corresponding t© 382 column “Hyper”
indicates whether or not hyperviscosity or hyperdiffusivity have been used; “Artif” stands for shock-
capturing artificial viscosity. In the column “Forced,” the abbreviation “Hel” stands for helical, “Noh” for
nonhelical, “Decay” for decaying turbulence without forcing, areN'oh” means that there is some small
fraction of helicity, but due to a small scale separation between the forcing and the box scale the simulation
is practically nonhelical. In the colum(B), “Ext” indicates the use of an external field. The column “Compr”
signifies whether the models are compressible.

Paper Ref. N Hyper Forced (B) Compr P
MFP81 [10] 64 Both Hel/noh 0 No 1
BO1 [5] 120 No Hel 0 Yes 0.1-100
KYM91 [23] 128 Yes Hel 0 No 1
MMDMO01 [29] 128 No Decay Ext/0 No 1
OMG98 [30] 128 No Decay Ext/0 Both 1
CLO3 [31] 216 Decay Ext Yes 1
MLKB98 [32] 256 Artif Decay 0 Yes 1
CV00 [16] 256 Both ~Noh Ext No 1
MCO01 [25] 256 Both Noh Ext/0 No 1-2500
MGO01 [18] 322 Yes Noh Ext No 1
CLV02 [33] 384 Yes ~Noh Ext No Large
BNP02 [34] 500 Yes Noh Ext Yes 1
BMOO [17 512 Both Decay 0 No 1
HBDO3 [35] 1024 No Noh 0 Yes 1

approach ak > inertial range as the magnetic Reynolds and to shorten the dissipative subrange. However, in recent
number is increased. In the former case, equipartitioryears it has become clear that these modifications to the vis-
throughout the inertial range may require that the energy o€osity and diffusion operators can affect major parts of the
the imposed field is comparable to the kinetic energy; forinertial subrange and make it shallower. This is also referred
stronger fields the magnetic energy becomes suppressedtatas the bottleneck effect which is present already for ordi-
small scaleq20]. If the magnetic Prandtl number is larger nary viscosity[27], but it becomes greatly exaggerated with
than unity, the resistive cutoff is prolonged to larger wavehyperviscosity; compare Figs. 8 and 11 of R@f7]. In he-
numbers by & spectrum[21]. Nevertheless, some authors lical dynamos the saturation time becomes significantly pro-
have suggested that even in the nonlinear regime the spectiahged and the final saturation level is artificially enhanced
magnetic energy increases toward smaller scales, similar §@8]. It is therefore important to use simulations with regular
the kinematic regime where the energy spectrum scales agscosity and magnetic diffusivity at high enough resolution.
k32 19,22. A lot of work has already been done in order to determine
In the absence of an imposed large scale magnetic fieldhe form of the magnetic energy spectrum at large magnetic
and with no helicity, the situation is in many ways different. Reynolds numbers. Some of the relevant papers are listed in
Early simulations suggest that the magnetic field is domi-Table |, where we indicate the main properties of their set-
nated by small scale powgtQ]. Even for a magnetic Prandtl ups. In addition to the papers mentioned above, we have
number of unity the magnetic energy exceeds the kinetigncluded a number of additional ong29-35, some of
energy at small scale3-25, a result that is otherwise which will be discussed below in more detail.
(with imposed field or with helicity only obtained for mag- In a recent paper, we already presented some initial results
netic Prandtl numbers larger than unj§;,21,25,26. on energy spectra at a resolution of up to 10@#sh points;
The main problem in determining the energy spectrum asee Ref[35], hereafter referred to as Paper I. In the present
large hydrodynamic and magnetic Reynolds numbers is thpaper we discuss the associated results for the critical mag-
lack of a proper inertial range in the magnetic field. Anothernetic Reynolds number for dynamo action, we consider a
problem is that in the absence of helicity the dynamo is muchliange of different values of the magnetic Prandtl number,
weaker and one needs significanthbout 2X) larger mag- compare with the case of finite magnetic helicity, and present
netic Reynolds numbers before the dynamo is even excitedisualizations of the magnetic field and the dissipative struc-
In practice, this means that a resolution of 128 more is  tures in hydromagnetic turbulence. We look in detail at the
mandatory. energy spectra and the structure functions of total, kinetic,
The shortness or even lack of an inertial range has freand magnetic energies. The simulations have been carried
quently led to the use of hyperviscosity and hyperdiffusivity out using the Pencil Codg6] which is a memory-efficient
[10,23, which has the tendency to extend the inertial rangehigh-order finite difference code using th&l-RK3 scheme
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TABLE Il. Summary of runs with Rj=1 (thus Re=Rg) and forcing atk;=1.5. In all cases, except D2,
we haveu,s=0.12. Run D2 had a stronger forcing, and therefgyg~0.18. The Taylor microscale Rey-
nolds number is Re=ujpf\/v, where ujp=u,,s/\3 is the rms velocity in one direction an,
=5U;ms/ ®rms IS the Taylor microscale, where,, is the rms vorticity.

Run Resolution yX 10* Re, Rey Brms € X 10 ey X 10%
A 643 7.0 80 120 0.052 1.0 1.2
B 128 4.0 110 190 0.060 0.79 1.4
C 256 2.0 160 420 0.062 0.78 1.6
D 5128 1.5 190 540 0.072 0.68 1.7
D2 512 2.0 180 600 0.092 2.2 5.0
E 1024 0.8 230 960 0.075 0.63 15

of Williamson [37]. Our approach is technically similar to ages. We adopt a forcing functidrof the form
that used in Ref[5]. The Pencil Code is fully compressible; a ) )
we therefore consider the weakly compressible cédke fx,t) = RelNfiq) exlik(t) -x +ia(t)]}, (6)

Mach number is around 0.,lwhich can be considered as an \ynerex is the position vector. The wave vectoft) and the

approximation to the incompressible case. A list of param+,nqom phase =< ¢(t) < change at every time step, so
eters for most runs discussed in the present paper is given

bl F@x,t) is & correlated in time. For the time-integrated forcing

Table II. function to be independent of the length of the time séep
the normalization factoN has to be proportional tét*2.

Il. EQUATIONS On dimensional grounds it is chosen to b#l

We adopt an isothermal equation of state with constant‘focs(|k|cs/ &)™ wheref, is a nondimensional forcing am

(isothermal sound speed,, so the pressurp is related to plitude. The value of the coefficiefi§ is chosen such that the

the densityp by p=pc2. The equation of motion is written in Maximum Mach number stays below about 0.5; in practice,
this meand,=0.02, ...,0.05.

the form .
At each time step we select randomly one of many pos-
Du_ JXB sible wave vectors in a certain range around a given forcing
ot GVinpt *Fuise+ 1, (1) wave number. The average wave number is referred tg. as
We force the system with nonhelical transversal waves,
whereD/Dt=4d/dt+u-V is the advective derivative]=V -
X B/ g is the current densityy, is the vacuum permeability, fi=(k X &/Vk* - (k - &), (7
Fuise= v(Vzu + % VV.u+2S-Vin p) 2) \t/;/]h(;:'rfe'eé islan arbitrary unit vector not aligned withy note
. : . : o ath =1
is the viscous forcey=const is the kinematic viscosity, The resulting flows are characterized by the kinetic and
magnetic Reynolds numbers,
1/dy, du, 2
Sij:—(—'+—l——5,jV 'U) (3)
2\9x  dx 3 Re:ur_ms, ReM:“F_mS, (8)
ks 7kt

is the traceless rate of strain tensor, &msla random forcing
function that consists of nonhelical plane wavyese below.  respectively. Their ratio is the magnetic Prandtl number,
The continuity equation is written in terms of the logarithmic

density, PrM = V/?']: RQ\A/RE, (9)

Dinp which is unity for most of the runs.
— ==V -u, (4) We use nondimensional quantities by measuring length in
Dt units of 1k; (wherek;=2#/L is the smallest wave number
and the induction equation is solved in terms of the magneti® the box of sizel), speed in units of the isothermal sound
vector potentialA, with B=V X A, so speedc,, density in units of the initial valugy, and magnetic

A field in units of (upec?) /2.
E:UXB+7]V2A, (5)

IIl. THE KINEMATIC PHASE AND APPROACH TO

where p=const is the magnetic diffusivity. SATURATION

We use periodic boundary conditions in all three direc-
tions for all variables. This implies that the mass in the box is  As initial condition we use a weak random seed magnetic
conserved, i.e{p)=py, Wherep, is the value of the initially ~ field. In this section we consider the time interval during
uniform density, and angular brackets denote volume avemhich the amplitude of the magnetic energy spectrum grows
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FIG. 1. Growth rate vs Rg for different values ofk;, and for FIG. 3. Log-log plot of growth rate vs Refor k=1.5, and

Pry=1. The curves represent linear fits through the data. Note thaby =1 The curves represent linear fits through the data. Note that

the critical value is around 35 for all the different runs. The resolu-there seems to be an Hedependence oh as Rg is increased.
tion varies between 64and 256, andf,=0.05 in all runs, resulting  The resolution varies between £28nd 513.

in Ums=0.2.

. o o For larger magnetic Reynolds numbers the growth rate of

ergy spectrum for all wave numbers. Fig. 3. Such a power law would be expected if the growth
rate is proportional to the eddy turnover time at the dissipa-
A. Critical magnetic Reynolds number tion wave numberkg, i.e., Nxk3®xRel where we have

used Rg <k [40]. We must emphasize, however, that the

We have determined the growth rate of the rms magnetici;?(_}'v| scaling is as yet rather short

field, A=d In B¢/ dt, for different values of Rg and Py;.
Interpolating the curves=\(Rey;) through zero, we find the
critical value, R{fﬂ?”t), which is roughly independent &f; see
Fig. 1. For the case RE1 we find R%‘:rit)%35, which is Under the somewhat unrealistic assumption that the ve-
consistent with the value obtained using a modified versiorCCity field is 5 correlated in time, one can, for a given spatial
of the eddy-damped quasinormal MarkovidEDQNM) ap-  correlation function of the velocity, and ignoring magnetic
proximation[38] which gives R§”°:29. feedback, derive an evolution equation for the correlation
As the value of Ry is lowered, the critical magnetic Rey- function of the magnetic field9,41 (see Ref.[42] for a
nolds number increases slowly like nonlinear extension This can be rewritten as an integro-
differential equation irk space which, in turn, can be written
RS ~ 35 P(Al/z (10) as a diffusion equation ik space if the velocity field has
’ only power at large scale§9,22. The result is Eﬁ"(k)

see Fig. 2. It remains uncertain whether this scaling persists K*Kno)(k/k,), where K, is the Macdonald function

to very small values of Ry that are relevant to liquid metal (modified Bessel function of the third kipd\~3/4 is an
experiments or to stellar convection zones. We note, howeigenvalue, ant(\)=0; see Ref[43] for details. In linear
ever, that the EDQNM approximation predi¢®8] that the theory the amplitude of the solution is, however, undeter-
critical magnetic Reynolds number is independent gf far ~ mined and grows exponentially if the magnetic Reynolds
a large range of Re and \prBased on application of the number exceeds a critical value of about 30{&0).
Kazantsev model Schekochihét al. [39] have shown that, In comparison with our simulations we see qualitative
if the correlation time is assumed to be independent of wavagreement as far as tké&? slope is concerned. As long as the
number, there exists a finite value of,Pbelow which dy- magnetic field is weak, the velocity field has an energy spec-
namo action is impossible. On the other hand, if the correlatrum with the expecte#™>® Kolmogorov scaling; see Fig. 4.
tion time is proportional to the eddy turnover timek /3, During this phase the spectral magnetic energy grows at all
dynamo action should be possible even for very small values

B. The Kazantsev spectrum

of Pry. » : : .
M 10° k-5/3
{ 10‘2- M .
100} . g I _Elrf{(k)
2 35Pry ~1/2 é 104f  ---Ep(k) _
§ ¥ ~ ka/z e~ -
v - < 1078 -7 8
" xk=15 2 * [ .--" AR
Aki=2.2 2
ki=5.1 1078 DAY
wl.2™ . . . N
0.1 1.0 10.0 1 10 100
PI‘M k/kl

FIG. 2. Critical magnetic Reynolds number as a function of FIG. 4. Early spectra of kinetic and magnetic energy, normal-
magnetic Prandtl number for runs with different forcing scale. ized by%ufmslkl, during the kinematic stage of run D2.
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FIG. 5. Convergence of the magnetic power spectrum toward FIG. 6. Saturation behavior of the spectral magnetic energy at
the k%2 scaling as Rg increases. All spectra correspond to the wave numberg=1 (solid line) andk=16 (dashed lingfor run D2.
kinematic stages of runs A-D with =1, but have been rescaled Note the slow saturation behavior flr 1.
to make them overlap at small valueslofThe dimension on the

ordinate is therefore arbitrary. times fork=1 andk=16 is explained by the difference be-
tween dynamical and resistive time scales.

wave numbers exponentially in time and the spectrum has In the following section we present further properties of

the expectedk®? KazantseV{9] slope; see Fig. 4. The con- these runs after the time when the field has reached satura-

vergence toward Kazantsev scaling is seen in Fig. 5, whergon.

we have plotted the magnetic energy spectrum for runs with

Re, between 120 and 54QThe kinematic growth phase for

run E was not available, because we restarted run E from run IV. DYNAMICALLY SATURATED PHASE

D after it had already reached saturatjon. When th . h hed in fracti
Originally, Kazantsev obtained thie¥’2 spectrum under en the magnetic energy has reached a certain fraction

the assumption that the velocity has power only at Iargeof th_e Kinetic energy, the magnetic fielq stops growing expo-
scales, which would correspond to a large value f.Pr ngntlally_and eventually reachesas_taﬂsﬂca[ly steady state. In
Simulations for large Ry have indeed confirmed the Kazant- thiS Séction we discuss the properties of this state.
sev slope[25]. Our results now show that the Kazantsev
spectrum is also obtained forpPx1.

The values ofp(=v) and Re, used for the different runs

discussed above are summarized in Table IL. As saturation sets in, the spectral magnetic energy begins
to exceed the spectral kinetic energy at small scales; see the

upper panel of Fig. 7, where we also show the total energy
C. Approach to saturation spectrum,Ef =EX+E}'. There is a short inertial range with
an approximate Kolmogorok > spectrum, but, as already
One would naively expect that the onset of saturation hapreported in Paper | and discussed in Re#4], there is a
pens rapidly on a dynamical time scale. That this is not thestrong bottleneck effect in the three-dimensional spectra
case in helical hydromagnetic turbulence came originally asvhich is less strong in one-dimensional spectra. Therefore,
a surprise, but it is now well understood to be a consequenc&e plot in Fig. 7 for comparison both three-dimensional and
of asymptotic magnetic helicity conservation. The same arene-dimensional spectra for the same run E. With one-
gument does not apply to nonhelical turbulence. Neverthedimensional spectra we mean spectra calculated from varia-
less, there may still be a slowdown in the saturation behaviotions along one of the coordinate directions only. Throughout
at small wave numbergt3]. this paper, we refer to the one-dimensional spectra as the
The clarification of this question is hampered by the factsum of the longitudinal plus two times the transversal spectra
that one needs very high resolution before one can with ceif44]. To obtain the three-dimensional spectra we have inte-
tainty distinguish resistive time scales from dynamical onesgrated over three-dimensional shells knspace, assuming
Figure 6 shows the saturation behavior for two different val-isotropy.
ues ofk in a run with 512 meshpoints. The initial growth is Much of the large-scale kinetic energy is probably trans-
clearly exponential both &=1 and ak=16. However, when ferred directly to smaller-scale magnetic fields. At large
the magnetic energy &t16 saturates dt=100/(u&s), the  scales the three-dimensional magnetic energy spectrum is
magnetic energy d&=1 seems to continue growing approxi- weakly increasing, it peaks &=5, and then joins th& >3
mately linearly[43]; see Fig. 6 for 106 u,hk;t<200. Look-  slope of kinetic energy, but with &2.5 times larger ampli-
ing at the simulation at later times one sees, however, that thiede. The one-dimensional energy spectrum, on the other
time sequence is actually very bursty and that the approxihand, is monotonically decreasing also for small wave num-
mately linear growth in the interval 180u,,&t<200 was bers.
only a transient(This is best seen in the inset of Fig. 6 where  All spectra terminate around the nominal dissipation cut-
the energies are shown in a linear pldtle can therefore not  off wave numberky=(e/ v*)¥4, wherev= 7 ande=ex + €y is
confirm with certainty that the difference in the saturationthe total energy dissipation rate per unit mass, and

A. Energy spectra
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FIG. 8. Convergence of compensated three-dimensi¢toa)
and one-dimension@bottom) energy spectra of kinetic energy. The
vertical arrows at the top show the dissipation cutoff wave number
(e/ v3)Y4 for the different resolutions.

FIG. 7. Three-dimensionaupper pangland one-dimensional
(lower pane) time averaged spectra, normalized %n)fmslkl, for
run E with a resolution of 1024mesh points. The energy spectra
have been averaged over a period of five turnover titoggk) ™~

e = 2(pSAlp, and ey = 7uo{IDpo (11)  again very similar bottleneck behavior, as shown in Fig. 10.
o _ ... Asimilar bottleneck effect is also found in other numerical

are the contributions from viscous and Ohmic dissipationgjmylations on up to 1034mesh pointgd46,47. As one in-
respectively. As the resolution is increased, the inertial ranggreases the resolution even furtitep to 4098 mesh points

of the total energy spectrum becomes progresswt_aly longeisg), the bottleneck assumes an asymptotic shape, and begins
(see Papen)! For run E we find~142. The “hook™ in the  to separate from the inertial range. A weak bottleneck effect
spectrum fork>400 (see Fig. J is probably a consequence s found even in wind tunnel experimeri9,50. In such

of finite resolution and is typical also of turbulence S'mU|a'experiments one usually measures one-dimensional longitu-

tions using spectral codgd5]. dinal energy spectra, and hence a much weaker bottleneck
For the numerical simulations to work and to reproduce

the turbulent cascade reliably, a certain minimum dynamic

) ) 100 T L LT :
range in the compensated spectréfPE, (k) is necessary. yo-th T TR i
We emphasize that this dynamic range increases with in- 10-2 u y
; CEie g whara [ €-2/3k8/3 EN(k)

creasing Reynolds number, as can be seen in Fig. 8, where 10-3} k
we have used viscosities close to the minimum values re- 104k - - - €7¥/%k8/3 EX(K)
quired for reliable results. 10-5} e-2/%5/3 £V (k)

Looking at one-dimensional spectra of the magnetic, ki- 10-6| k WM

i M,1D K,1D T,1D s . ‘
netic, and total energ@denoted byE, ", Eg7, andE, ), 1 10 100
compensated witla™?3%%3, one sees that arourid: 10 there k/k
is a short range where all three compensated spectra are flat; .
see Fig. 9. We emphasize again that this is seen only in the 1(_)1 T
higher-resolution runs. o~

There is some ambiguity as to what one calls the inertial ig—s -----------
range. Here we refer to inertial range as only the range where

' i ith kab/3 1074 ----
the total energy spectrum is compatible withka>* slope.
s 53 105 e-2/3s/3 gL 1Dy

The kinetic energy alone, however, can show &° slope to-s| k 1
already for smaller wave numbers; see Fig. 8. X - s

B. Comparison with nonmagnetic turbulence k/ky

For comparison we show the resulting spectra for purely FIG. 9. Compensated magnetic, kinetic, and total three- and
hydrodynamic turbulence without magnetic fields and findone-dimensional energy spectra for run E.
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9, 0.0100f Re=1080 (512°) NN, 3 forced atk =15 and normalized byuZ./k;. Ra,~37, 256 mesh
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& 00010L ----Re=590 (256%) Vo ] points, Py=1.
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r I
0.0001 L . ML . I S
1 10 100 ki>k;=1; see Fig. 12 wherkg=15. In this figure the kinetic
k/k; spectrum is somewhat shallower and scales morekfiReln

_ _ ~this run, the magnetic energy is saturated, and yet it is only
FIG. 10. Same as Fig. 8, but for a run without magnetic fieldsapout 4% of the kinetic energy. This is mainly because the

(pure hydrodynamigs for three different values of Re. Note the magnetic Reynolds number is only about 37, so the run is
appearance of a bottleneck effect in the range k650, particu- just weakly supercritical.

larly in the 3 D spectra. For these ruks=1.5, andu,,,s=~0.18.

effect is expectedid4]. A physical explanation of the bottle- D. Reynolds number dependence

neck effect is found in Ref27]. In Fig. 13 we show total energy spectra for three values of
Re=Reg, between 270 and 960. In the first case with Re
C. Subinertial range behavior =Rg, =270 the compensated spectrum shows a reasonably

flat range with a Kolmogorov consta@vy = 1.3, which is
somewhat less than the value of 2.1 found by Ketaal.

[23]. In the second case with Re=Re440 the compensated
spectrum shows clear indications of excess power just before
rning into the dissipative subrange. This is just the bottle-
recently (but probably for different reasonpgor ABC-flow 2:(532 \?vfi'ftictRzr;dR;:bgegg.mTehsu:yvtehnergg':te] eﬂrea::rﬂa;;?eg Itsh e(:)rt]:;rd

dyrII:arP\cl)vs[\F;Z].n mbers much | than the forcing wave n rnseen at sufficiently large resolution.
or wave numMbErs much 1ess than te forcing wave num-—, , qer 19 assess the reliability of the results, we have

ber(subinertial rangge the magnetic and kinetic energy spec- - ;
. . . . -~ carried out a convergence study using the same value of
tra increase wittk approximately likek?. The theory for this but different mesh rgsolution' silae theg second panel of Fig.
spectrum is reviewed in the book by Lesig&B]. This scal- 13. In both casesy=7=2x 10’4 while u...=0.13 for 513

. == 1 rms— VY-

ing is best seen in spectra where the turbulence is forced Aesh points and 0.12 for 286The energy dissipation is also

. , similar, e=2.8x 10 for 512 mesh points and 2310 for

1072 T VAT 7 256°. The compensated energy spectra agree quite well for
I TN ] the two different resolutions, and both show excess power

(bottleneck effeot just before turning into the dissipative

For the saturated state, Fig. 11 shows thatkfet5 the
magnetic energy spectrum follows approximateli*s be-
havior, as was originally expected by Batcheldj. The
same slope has also been found for convective turbulence
the time when the magnetic field is still wegKl], and, more

10-4f
| .. Re=960 (10243%)™

3
<
o
£ ]
_i 10-6| — Re=540 (5129) - subrange. This supports the conclusion that the excess power
Z - ----Re=420 (256°) 1 is not a numerical artifact.
& 1078 ....Re=190 (128%) -
T [ —..— Re=120 (64%) kY
g 10-101- N E. Convergence of energy and dissipation rate
L 10712 . . In the saturated state, the fractional magnetic and kinetic
1 10 100 energies tend to a constant value at large Reynolds number,
k/ks with
FIG. 11. Saturated three-dimensional magnetic energy spectra Em:Ex =~ 0.3:0.7, (12)

compensated bi /3. The results are comparable with the vortici-

tylike k3 scaling at small wave numbe(k<4). The vertical ar- SO Ey/Ey is about 0.4; see the upper panel of Fig. 14. This
rows at the top show the dissipation cutoff wave numiaér®)4  fraction may still depend on the forcing wave number since
for the different resolutions. the infrared part of the kinetic and magnetic energy spectra
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1.0
1.00 3 0.8F *\oﬁ:\‘\' 3
. ] 0.6f x/Ex 3
B 2563 (Re=270 J b 3
0.10 ( ) 0.4 /B .
] 02F Lo---- EEEE R +- 3
0.01f - 0.0
E 100 1000
1 10 100
1.0
08f +"“€_u_/_51"+ _____ i
: 06F L----" 3
= E paf ]
B 2 ]
[<3) ] 0.2F GK/ET 3
% 0.10k 5123 (Re=440) 3 0.0
€ 2563 (Re=440) ] 100 1000
v 0.01F -
’ o5 .. T Ty
e
1 10 100 orof T . ]
L A €u/<o
005f = 3
i B "\0\._1\|_
1.00 l ] ex/€o
E 0.00
] 100 1000
0.10F 10243 (Re=960) 3 Re
001k FIG. 14. Relative magnetic and kinetic energiapper panel
’ their respective relative dissipation rat@niddle panel, and the
1 10 100 energy dissipation rates in units egzkluf’ms (last pane), as a

k/k; function of Reynolds number for Q1.

FIG. 13. Comparison of compensated three-dimensional total

energy spectra for runs with magnetic Prandtl number unity bu€Nergy dissipation ratio only by a factor of about 2_;1}4he data
with different Reynolds numbers. In all runs the horizontal dash-c@n be parametrized by the power layy/ ex ~2.2 P
dotted line represents the value 1.3. In the second panel two runs About 70% of the energy that goes into the Kolmogorov

with the same Reynolds numbers, but different resolution, ar€ascade is eventually converted into magnetic energy by dy-
compared. namo action and is then finally converted into heat via resis-
tivity. A sketch of the energy budget is given in Fig. 15.

can have different slopes; see Fig. 12. Naively one would In_ t.he present simulations the thgrmal energy bath Is not
just compareE,,/Ex for the three nonhelical simulations in exphcnly |nclu.ded, bpt we note that in h.ydromagne_tml turbu-
Fig. 23, and find the ratio to decrease as the forcing wavéence S|mulat|on§ with shear and rotation the resistive heat
number is increased. This is, however, not correct since aff2" Pecome so important that the temperature can increase
these runs have differerimagnetis Reynolds numbers. A PY & factor of 10; see Ref54].
more comprehensive study, where the Reynolds number is
kept constant, is therefore necessary in order to find whether F. Large magnetic Prandtl numbers
or not Ey/Ek really does depend on the forcing wave num-
ber.

Equally important is the fact that also the energy dissipa
tion rates are converged for large Reynolds numbers, su
that

It has previously been argued that for Pt 1 the mag-
netic energy spectrum is peaked at small scales
5,55,26,56 For Pg,=1 this claim cannot be confirmed at

arge Reynolds numbésee Papenl The original motivation
for a peak at small scales is based on linear thg@fywhich
evie =~ 0.7:0.3, (13)  predicts ak™3'? spectrum; see also Sec. Ill B. However, the
original Kazantsev model is only valid in the limit where the
i.e., ey exceedsy by a factor of about 2.3; see the two lower
panels of Fig. 14. The reciprocal correspondence of the ratios TABLE lIl. Energy dissipation rates for four runs with different

in Egs.(12) and(13) is coincidental. _ magnetic Prandtl numbers,pPrshowing thatey/ e« is only weakly
The fact that the dissipation rates for both magnetic aniependent on fy

kinetic energies are asymptotically independent of Reynolds
number is consistent with the basic Kolmogorov phenom- s 1g¢  ,x10¢ P, X100 e, x10%  eylex
enology that leads to the scale-fre€’ spectrum. This re-

sult seems to exclude the possibility that in the large Rey- 1.5 4.5 0.33 0.79 2.4 3.0
nolds number limit the magnetic energy spectrum peaks at 1.5 1.5 1. 0.92 2.1 2.3
small scales. It is worth mentioning that the rajg/ e, de- 20 20 1. 0.87 1.9 22
pends only weakly on Rt In Table Ill we show that a 15- 75 15 5. 1.2 18 15

fold increase of the magnetic Prandtl number decreases the
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FIG. 17. Autocorrelation functions of magnetic field and veloc-
FIG. 15. Schematic view of the energy transport. Most of theity. Note that the autocorrelation functions are nearly independent
energy(70%) resides in the kinetic energy reservoir, but only 30% of resolution and Reynolds number. The velocity correlation length
of the total energy input is dissipated directly by viscous heatingis ~3 while the magnetic correlation length 4s0.5.
Instead, 70% of the energy flows into the magnetic energy reservoir,

and is finally dissipated by Ohmic heating. Wy(r) = (B(x) - B(x + r))/(BZ>

(14)
velocity has only large scale components, which correspond@@ys an important role; see also Rgs1]. We have calcu-
to Pr,> 1. In order to see how our results change with vary-1ated Wg(r) from the Fourier transform of the three-
ing magnetic Prandtl number we have calculated models fodimensional, time-averaged magnetic energy speEffa);
different values of Ry. One of the results is the possible see Fig. 17. The diffusive scale corresponds to the thickness
emergence of & tail in the magnetic energy spectrum; see Of the narrow spike ofvg(r) around the origin. The typical
Fig. 16. Thek™® tail has recently been found in largePr scale over which the magnetic field changes direction is the
simulations with an imposed magnetic fidl#1]. The k'  correlation length which corresponds to the scale where
spectrum has its roots in early work by Batchdl67] for a ~ Wg(r) has its minimum. We have compareg(r) with the
passive scalar and Moffaf§8] for the magnetic case. velocity autocorrelation functiony,(r), which is defined in

In the run with Py, =30 the viscous cutoff wave number is an analogous manner. Note that, because of isotrogly,)
k,=(ex/1®)Y4=12, so thek* tail is expected for wave num- andwg(r) are only functions of =|r|. Similar autocorrelation
bers larger than that. The plot seems to suggest that the entifienctions have also been seen in simulations of convective
inertial range could have ki’ spectrum, although this may dynamos[51]. Figure 17 shows that the velocity correlation
well be an artifact of an insufficient inertial range. Instead, alength is ~3 while the magnetic field correlation length is
more likely scenario is that for large hydrodynamic Reynolds~0.5. Clearly, the magnetic correlation length is much
numbers and large magnetic Prandtl numbers there is still shorter than the velocity correlation length, but it is practi-
k53 range for both kinetic and magnetic energies, followedcally independent of ReRg,) and certainly much longer
by a k™ subrange for magnetic energy beyond the viscoushan the resistive scale;27/ky=~0.04.
cutoff wave number. In any case, the peak of magnetic en-
ergy would still be at small wave numbers. In summary,
therefore, we find no indication of a peak of the magnetic
energy spectrum at the resistive wave number.

H. Structure functions

In numerical turbulence the signed structure functions for
odd moments are usually not well converged. It is therefore

. . customary to use unsigned structure functions, defined as
G. Autocorrelation functions

In the context of the Zeldovick69,6Q stretch-twist-fold So(h) = ([z(x+1) = z(x)[?), (15
dynamo, the shape of the auto-correlation function of thQNherez(x) is one of the two Elsasser variables
magnetic field, -

Z*=uzB/\pu. (16)
10-2 ’“_1 ‘_ The structure function exponent§,(l) normally show a
S power-law scaling
10-3 ]
SYOEIE) (17

BM(k) / [Burm/ k1)

wsk 12::220 \‘\ ] where(, is thepth o_rder structure function sca_ling exponent.
% om0 A Here, because of isotropy, we usually conS|de_r the depen-
] ¢ dence on one spatial coordinate,but we also discuss the
107" ; more general case below.
1 10 100

In Paper | we have shown th&{~ 1.0 and{,~1.3. This
is our strongest evidence that the asymptotic inertial range
FIG. 16. Magnetic energy spectra for runs with magnetic Prandtscaling isk™>® and that thek %2 scaling seen in the upper
numbers ranging from 0.3 to 30. panel of Fig. 7 is due to the bottleneck effddi4]. True

k/ky
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FIG. 18. Longitudinal and transversal structure function expo- FIG. 19. Longitudinal structure function exponents for the El-
nents for the Elsasser variables for run D. sasser variables, compared with those for velocity and magnetic
field separately for run D.

Iroshnikov-Kraichnan scaling would imply,=1, whereas

[3=1 is consistent with Goldreich-Sridhar scaling. they have a weak magnetic field, the velocity is similar to the
We find that the second-order scaling exponentzjs Elsasser variables. They find that for small Mach numbers

=0.7, which again indicates that the inertial range has a slopthe structure function scaling has codimens@ 2, while

k%2 1=k™>3 in support of our findings from the one- for supersonic turbulence they find~1. For increasing

dimensional energy spectra. Making use of the extended selMach numbers they see a continuous decrease €e to

similarity hypothesig62] we find that for allp, the values of ~C=1. This is consistent with our result 6f=1.85 since we

{, are consistent with the generalized She-Leveque formulfave a small but finite Mach number, and would therefore

[63] expect a somewhat smaller value th@am2, but considerably
larger thanC=1.
p 2/3\P3 In another set of forced turbulence simulations, @hal.
b= 9 +Cl1-{1- c ' (18) [33] find that the velocity structure function has again codi-

mensionC=2. We emphasize that in Rdf33] the structure

whereC is interpreted as the codimension of the dissipativefunctions are calculated perpendicular to the local magnetic
structures. We find thatC=2 (corresponding to one- field, and not along the global coordinate axis. In addition,
dimensional, tubelike dissipative structurggves a reason- they look at velocity scaling while we concentrate on El-
able fit to the longitudinal structure function exponents; seesasser variables. Their results can therefore not straightfor-
Fig. 18. If we allow for fractal codimensions, th&@=1.85 wardly be compared with ours, and the similarity is probably
gives the best fit for the longitudinal structure function ex-accidental. Indeed, it is shown in Rg66] that structure
ponents andC=1.45 for the transversal ones. functions calculated perpendicular to the local magnetic field

A similar difference between transversal and longitudinaland those calculated along the global coordinate axiniare
structure functions has previously been foyné,64. It has ~ comparable.
been argued64] that this difference is an artifact of the =~ On the other hand, in simulations of decaying magneto-
forcing being in the same direction as the direction in whichhydrodynami(MHD) turbulence at a resolution up to 512
the structure functions are calculated. In our simulationgollocation points, Biskamp and Mill¢t7] found the codi-
however, the forcing is chosen randomly in an isotropic manmension of the Elsasser variables to®@e1. At first glance
ner. In addition, we have also performed a calculation weréhis seems to contradict our results, but the fact that they
we average structure functions calculated in 91 different dihave considered decaying turbulence, and that the magnetic
rections distributed isotropically over the unit sphere. In thisfield is decaying more slowly than the kinetic energy, implies
calculation we find again the same difference between longithat they have a much stronger magnetic field relative to
tudinal and transversal structure functions. Additional supkinetic field than we do. Furthermore, we fisee Fig. 19
port to this result comes from the fact that longitudinal one-that the magnetic field is much more intermittent than the
dimensional energy spectra are slightly steeper than theelocity field[66]. It is therefore not surprising that they find
transversal ones. A possible explanation for the differencélifferent intermittency in their decay simulation than we do
between longitudinal and transversal structure functions hak® our forced simulation.
been offered by Siefert and Peink@9], who find different Next we look at the longitudinal structure function scaling
cascade times for longitudinal and transversal spectra. exponents for magnetic field and velocity, as well as for the

As stated above, our results for the longitudinal structureElsasser variables; see Fig. 19. The velocity is known to be
functions of the Elsasser variables follow the generalizedenerally less intermittent than the magnetic fig¢&b].
She-Leveque formula with codimensi@¥ 2 quite well. Itis ~ While the Elsasser variables follow the standard She-
difficult to make precise comparisons with earlier work Leveque scalingC=2) rather well, the velocity is less inter-
where often somewhat different cases are considered. Thwittent (C=3.5 and the magnetic field is more intermittent
perhaps closest comparison is possible with the transonicC=1.7). Obviously, a codimension larger than the embed-
hydromagnetic turbulence simulations of Pade&ual. [65].  ding dimension does not have a direct geometrical meaning,
They consider only velocity structure functions, but sinceso the value o€ for the velocity should not be interpreted as
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FIG. 20. Contours ofi? (blue or dark grayandS? (green or  FIG. 21. Contours oB? (blue or dark grayand w_z (green or
light gray) showing the dissipative structures of magnetic and ki-light gray) for the same small subvolume as shown in Fig. 20. Note

netic energy, respectively. Only a very small subvoluib&le) of  that the areas with stronB? are more extended than those with
the entire simulation domain of run E is shown. strongJ? (cf. Fig. 20 and that the locations of higi? and highS?
are near to each other, but otherwise different in their detailed ap-

. . . . Fig. 2 th 2)=(2S?).
a codimension, but just as an indicator for a low degree OPearancqsee 'g. 20, even thougHiw)=(2S"

intermittency.
y field turns out to be of surprisingly large scale, even though

. this dynamo has no helicity and no large scale field in the
I Visualizations usual sense; cf. Ref5]. The large scale structures we find

In view of the discussion on the dimensionality of the are reminiscent of the ropes discussed in RE6,61], al-
dissipative structures in hydromagnetic turbulence, it is dethough they seem to be more sheetljg&], and their thick-
sirable to obtain an estimate simply by visual inspection. Inness is of the order of the resistive scgié].

Fig. 20 we show, for a small subvolume of the entire simu-

Iation_ domain! sgrfapes of constalft(Joule dis;ipatio)qud V. CONNECTION WITH HELICAL TURBULENCE

S? (viscous dissipation Generally, the approximate dimen-

sionality of both dissipative structures is somewhere between Finally we comment on some differences between helical
sheets and tubes, althoughappears to be perhaps slightly and nonhelical turbulence. In the case of helical forcing one
more sheetlike. We conclude that the dimensionality-ois
consistent with what one would have expected from the es-
timate C=1.7 obtained in the preceding subsection. For the
dissipative structures of kinetic energy, on the other hand, the
estimateC=3.5 exceeded the embedding dimension and did *
therefore not make geometrical sense anyway. The qualita ﬁj‘g,
tive inspection ofS2 would have suggested a codimension “f
between 1 and 2. We therefore conclude f@atan only be - A
regarded as a fit parameters and that there is not always a BAN
obvious connection with the actual appearance of the dissi: oF
pative structures.

It should be noted that normally when one talks about
structures in turbulence one often talks about vortex tubes ¢
and, in the magnetic case, magnetic flux tubes. These ar ¢
quite distinct from the dissipative structures. Vorticity
=V Xu and rate of strain tens@ characterize, respectively, ¢
the antisymmetric and symmetric parts of the velocity gradi- =
ent matrix, and are therefore not expected to look similar. On
the other hand(w?)=(2S?), where and angular brackets de-
note volume averages, and Fig. 21 shows that hettand
S? exhibit similar length scales. The difference is more pro-
nounced in the magnetic case, whéris clearly dominated
by Shm?”el’ scalel Str_LljﬁFUVES \;]VhiB? C'anF(?XhiZbZit Str:UCtheS of FIG. 22d. Magnetic field vectors of run E shown at those loca-
much larger scale. I'nis Is shown In FIg. where we ViSUtions whereB) > 3B,,,c Note the long but thin arcadelike structures
alize magnetic field vectors in the full box at those locationsextending over almost the full domain. The structures are sheetlike
where the field exceeds three times the rms value. The strongjth a thickness comparable to the resistive scale.
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T 100 100F : nonhelical simulations with forcing at wave number1.5

5 10-1} 10-1f (no scale separationk;=2.3 (weak scale separatipnand

_g 10-%F 107%F k:;=5 (considerable scale separatioRor k;=1.5 the spectra
< 10:2’ 1023’ of the helical and nonhelical simulations are indeed quite
%18_5_ 18—5- similar to each othe(e.g., no inverse cascade and slight
=]

superequipartition ak>5). For k;=5.1, on the other hand,
the spectra are quite different and there is no inverse cascade
in the nonhelical case.

< 100 10°F
S 10-1 10-1
§ 10-2} 10-2
X 10-3; 10-3
X 1074t 10-4
;Se 10-5¢ 10-5 VI. CONCLUSIONS

In the present paper we have studied nonhelical MHD

= oF

:\m 13(_’1_ turbulence without imposed large scale fields. We find that,
§ 10-2h in order to get dynamo action, the magnetic Reynolds num-
g 10-3f ber has to exceed the critical value E}Q’éz 30. When the

g 1074 dynamo is in the kinematic reginighe magnetic field is still

e 109t too weak to affect the velocijywe see a kinetic energy spec-

! k/l,c? ! k/lk(: trum with the Kolmogorovk™? inertial range, while the

magnetic energy spectrum shows the expe&f&Kazant-
FIG. 23. Three-dimensional kinetic and magnetic energy specsev slopgincreasingwith k).

tra, normalized bysuZ /k,, for runs with and without helicityleft As the dynamo gets saturated we find that there is a short
and right hand columns, respectivend for the different forcing  inertial range where the magnetic and kinetic energy spectra
wave numbersk;=1.5(top), 2.3 (middle), 5.1 (bottom). 128 mesh  are parallel. This is only seen in the largest of our simula-
points. tions with 1024 mesh points. The magnetic energy spectrum

exceeds the kinetic energy spectrum by a factor=&.5,
expects arinversecascade to smaller wave numbers, ratherwhich seems to be more or less the asymptotic value as Re
than a direct cascade to larger wave numbers. We can nogrows larger. At first glance one is led to believe that the
identify two reasons why this has not really been seen isaturated energy spectra exhibi &2 inertial range, but we
early turbulence simulations with helical forcifig]. Onthe  argue that this is due to a strong bottleneck effect. For one-
one hand, the inverse cascade takes a resistive time 10 dgimensjonal spectra the bottleneck effect becomes much
velop [5], a_m_d t_hls time tends to be too Iong if magnetic \yeaxer and they have the expected® slope. We have
hyperdiffusivity is used28]. In Ref.[23] magnetic hyperdif-  gemonstrated that simulations without magnetic fields show
fusivity was indeed used and the resistive time was at least @o same hottleneck effect. Also the second-order structure
hundred times longer than the duration of the runs, so NQ,ctions are consistent with k>3 scaling. We therefore
inverse cascade should be expected. But there is a”OthEEmjecture that for larger values of Re one will se& &3
more important reason. In order for the invgrse _cascade tQubrange also for the three-dimensional MHD spectra, al-
develop, one has to have some scale separation, i.e., the Mags gh the bottleneck effect will continue to affect at least

netic field must be allowed to grow on scales larger than th@yne decade or more in wave numbers just before the dissi-
forcing scale (which corresponds to the energy carrying pative subrange.

scalg of the turbulence. This was not the case in the early a¢ large scale{1<k<5) we see &3 behavior of the
simulations_and may explain why the inverse cascade has ”ﬂjiagnetic field. However, if we force the flow etk (i.e.,
been seen in Ref23] and that those results should thereforethe energy is being injected at scales much smaller than the

be closer to the case without helicity. To substantiate this, we . size, we find that fork<k: the kinetic and magnetic
have carried out simulations with helical and nonhelical forc-energy s'pectra scale almost Iilf<é although the kinetic en-

ing using the modified forcing function ergy spectrum is somewhat shallower which may be an arti-
fact of the finite size of the computational domain.

(nohe) _ S — igei.k&k Concerning the structure functions we find that our simu-
fk=R-fy with Ry = —J—J—Jm , (19 Jations are in good agreement with those found by Padban
AY

al. [65]. The Elsasser variables follow the She-Leveque scal-
ing with a codimension somewhat less than 2, which is what
wheref"™" is the nonhelical forcing function of E¢7). I one would expect since our simulation is weakly compress-
the helical casdo=+1) we recover the forcing function ible. We also find that the magnetic field is more intermittent
used in Ref[5], and in the nonhelical caser=0) this forc-  than the velocity, which is qualitatively consistent with ear-
ing function becomes equivalent to that of E@). lier findings[10]. Quantitatively, in terms of structure func-
We show in Fig. 23 the energy spectra of helical andtion exponents, this has recently also been found by Cho
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et al. [66], but it is still not known what is the cause of this ACKNOWLEDGMENTS
difference between the intermittency of magnetic and kinetic
fields. We thank Ben Chandran for pointing out an error in one

In the case of magnetic Prandtl numbers larger than unitypf the plots of an earlier version of the paper. We acknowl-
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