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Nonhelical hydromagnetic forced turbulence is investigated using large scale simulations on up to 256
processors and 10243 mesh points. The magnetic Prandtl number is varied between 1/8 and 30, although in
most cases it is unity. When the magnetic Reynolds number is based on the inverse forcing wave number, the
critical value for dynamo action is shown to be around 35 for magnetic Prandtl number of unity. For small
magnetic Prandtl numbers we find the critical magnetic Reynolds number to increase with decreasing magnetic
Prandtl number. The Kazantsevk3/2 spectrum for magnetic energy is confirmed for the kinematic regime, i.e.,
when nonlinear effects are still unimportant and when the magnetic Prandtl number is unity. In the nonlinear
regime, the energy budget converges for large Reynolds numbers(around 1000) such that for our parameters
about 70% is in kinetic energy and about 30% is in magnetic energy. The energy dissipation rates are con-
verged to 30% viscous dissipation and 70% resistive dissipation. Second-order structure functions of the
Elsasser variables give evidence for ak−5/3 spectrum. Nevertheless, the three-dimensional spectrum is close to
k−3/2, but we argue that this is due to the bottleneck effect. The bottleneck effect is shown to be equally strong
both for magnetic and nonmagnetic turbulence, but it is far weaker in one-dimensional spectra that are nor-
mally studied in laboratory turbulence. Structure function exponents for other orders are well described by the
She-Leveque formula, but the velocity field is significantly less intermittent and the magnetic field is more
intermittent than the Elsasser variables.
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I. INTRODUCTION

Dynamo action, i.e., the conversion of kinetic energy into
magnetic energy, plays an important role in astrophysical
bodies ranging from stars to galaxies and even clusters of
galaxies. The gas in these bodies is turbulent and the mag-
netic Reynolds numbers are huge(1010 to 1020). This sug-
gests that there should be dynamo action and that the mag-
netic fields should be amplified on the time scale of the
turbulent turnover time[1,2]. The magnetic fields of many
astrophysical bodies show a great deal of spatiotemporal or-
der (e.g., an 11-year cycle and equatorward migration of the
magnetic field in the case of the sun), which can basically be
explained by the helicity effect[3–5]. In many other astro-
physical environments, however, the helicity effect is prob-
ably completely irrelevant(e.g., in the solar wind[6], clus-
ters of galaxies [7], and the early universe after
recombination[8]). In all these cases the magnetic field does
not show spatiotemporal order of the type known for helical
hydromagnetic turbulence[5]. Both analytic theory[9] as
well as simulations[10] have long shown that dynamo action
is possible even without kinetic helicity, but that the field is

then spatially highly intermittent with substantial power at
small length scales. Hydromagnetic turbulence has recently
also been studied in the laboratory[11–13], but there the
magnetic Reynolds numbers are still rather small. Therefore,
numerical simulations are currently the most powerful tool.

In spite of significant progress over the past two decades,
the form of the energy spectrum at large magnetic Reynolds
numbers is still a matter of debate. Particular progress has
been made in the case where there is a large scale field.
Goldreich and Sridhar[14] have proposed that the magnetic
energy spectrum has ak−5/3 inertial range due to the aniso-
tropy imposed by the local magnetic field. This was in con-
flict with the earlier Iroshnikov-Kraichnan[15] k−3/2 spec-
trum, which assumes isotropy, but can now be ruled out
[16–18]. Some simulations still show ak−3/2 spectrum, but
this is probably due to the bottleneck effect; see below. A
k−5/3 total energy spectrum has, however, clearly been seen
in decaying hydromagnetic turbulence[17]. Here the total
energy spectrum is simply the sum of kinetic and magnetic
energy spectra.

The case of an imposed large scale magnetic field with
approximate equipartition strength is in some respects simi-
lar to the case of a self-generated large scale field which
emerges if there is helicity in the flow[4,10,19]. In the latter
case of helical turbulence, and for unit magnetic Prandtl
number, kinetic and magnetic energy spectra are in almost
perfect equipartition on all scales smaller than the forcing
scale(see Fig. 11 of Ref.[5]), and the two spectra tend to
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approach ak−5/3 inertial range as the magnetic Reynolds
number is increased. In the former case, equipartition
throughout the inertial range may require that the energy of
the imposed field is comparable to the kinetic energy; for
stronger fields the magnetic energy becomes suppressed at
small scales[20]. If the magnetic Prandtl number is larger
than unity, the resistive cutoff is prolonged to larger wave
numbers by ak−1 spectrum[21]. Nevertheless, some authors
have suggested that even in the nonlinear regime the spectral
magnetic energy increases toward smaller scales, similar to
the kinematic regime where the energy spectrum scales as
k+3/2 [9,22].

In the absence of an imposed large scale magnetic field,
and with no helicity, the situation is in many ways different.
Early simulations suggest that the magnetic field is domi-
nated by small scale power[10]. Even for a magnetic Prandtl
number of unity the magnetic energy exceeds the kinetic
energy at small scales[23–25], a result that is otherwise
(with imposed field or with helicity) only obtained for mag-
netic Prandtl numbers larger than unity[5,21,25,26].

The main problem in determining the energy spectrum at
large hydrodynamic and magnetic Reynolds numbers is the
lack of a proper inertial range in the magnetic field. Another
problem is that in the absence of helicity the dynamo is much
weaker and one needs significantly(about 203) larger mag-
netic Reynolds numbers before the dynamo is even excited.
In practice, this means that a resolution of 1283 or more is
mandatory.

The shortness or even lack of an inertial range has fre-
quently led to the use of hyperviscosity and hyperdiffusivity
[10,23], which has the tendency to extend the inertial range

and to shorten the dissipative subrange. However, in recent
years it has become clear that these modifications to the vis-
cosity and diffusion operators can affect major parts of the
inertial subrange and make it shallower. This is also referred
to as the bottleneck effect which is present already for ordi-
nary viscosity[27], but it becomes greatly exaggerated with
hyperviscosity; compare Figs. 8 and 11 of Ref.[17]. In he-
lical dynamos the saturation time becomes significantly pro-
longed and the final saturation level is artificially enhanced
[28]. It is therefore important to use simulations with regular
viscosity and magnetic diffusivity at high enough resolution.

A lot of work has already been done in order to determine
the form of the magnetic energy spectrum at large magnetic
Reynolds numbers. Some of the relevant papers are listed in
Table I, where we indicate the main properties of their set-
ups. In addition to the papers mentioned above, we have
included a number of additional ones[29–35], some of
which will be discussed below in more detail.

In a recent paper, we already presented some initial results
on energy spectra at a resolution of up to 10243 mesh points;
see Ref.[35], hereafter referred to as Paper I. In the present
paper we discuss the associated results for the critical mag-
netic Reynolds number for dynamo action, we consider a
range of different values of the magnetic Prandtl number,
compare with the case of finite magnetic helicity, and present
visualizations of the magnetic field and the dissipative struc-
tures in hydromagnetic turbulence. We look in detail at the
energy spectra and the structure functions of total, kinetic,
and magnetic energies. The simulations have been carried
out using the Pencil Code[36] which is a memory-efficient
high-order finite difference code using the 2N-RK3 scheme

TABLE I. Summary of earlier work on hydromagnetic turbulence simulations. In addition to the reference
of each paper, we give for convenience a more descriptive abbreviation. In Ref.[18] the largest resolution
was N3=25623512, so we have listed the geometrical mean corresponding to 3223. The column “Hyper”
indicates whether or not hyperviscosity or hyperdiffusivity have been used; “Artif” stands for shock-
capturing artificial viscosity. In the column “Forced,” the abbreviation “Hel” stands for helical, “Noh” for
nonhelical, “Decay” for decaying turbulence without forcing, and “,Noh” means that there is some small
fraction of helicity, but due to a small scale separation between the forcing and the box scale the simulation
is practically nonhelical. In the columnkBl, “Ext” indicates the use of an external field. The column “Compr”
signifies whether the models are compressible.

Paper Ref. N Hyper Forced kBl Compr PrM

MFP81 [10] 64 Both Hel/noh 0 No 1

B01 [5] 120 No Hel 0 Yes 0.1–100

KYM91 [23] 128 Yes Hel 0 No 1

MMDM01 [29] 128 No Decay Ext/0 No 1

OMG98 [30] 128 No Decay Ext/0 Both 1

CL03 [31] 216 Decay Ext Yes 1

MLKB98 [32] 256 Artif Decay 0 Yes 1

CV00 [16] 256 Both ,Noh Ext No 1

MC01 [25] 256 Both Noh Ext/0 No 1–2500

MG01 [18] 322 Yes Noh Ext No 1

CLV02 [33] 384 Yes ,Noh Ext No Large

BNP02 [34] 500 Yes Noh Ext Yes 1

BM00 [17] 512 Both Decay 0 No 1

HBD03 [35] 1024 No Noh 0 Yes 1
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of Williamson [37]. Our approach is technically similar to
that used in Ref.[5]. The Pencil Code is fully compressible;
we therefore consider the weakly compressible case(the
Mach number is around 0.1), which can be considered as an
approximation to the incompressible case. A list of param-
eters for most runs discussed in the present paper is given in
Table II.

II. EQUATIONS

We adopt an isothermal equation of state with constant
(isothermal) sound speedcs, so the pressurep is related to
the densityr by p=rcs

2. The equation of motion is written in
the form

Du

Dt
= − cs

2 = ln r +
J 3 B

r
+ Fvisc + f , s1d

where D /Dt=] /]t+u ·= is the advective derivative,J= =
3B /m0 is the current density,m0 is the vacuum permeability,

Fvisc = ns=2u + 1
3 = = ·u + 2S · = ln rd s2d

is the viscous force,n=const is the kinematic viscosity,

Si j =
1

2
S ] ui

] xj
+

] uj

] xi
−

2

3
di j = ·uD s3d

is the traceless rate of strain tensor, andf is a random forcing
function that consists of nonhelical plane waves(see below).
The continuity equation is written in terms of the logarithmic
density,

D ln r

Dt
= − = ·u, s4d

and the induction equation is solved in terms of the magnetic
vector potentialA, with B= = 3A, so

] A

] t
= u 3 B + h=2A , s5d

whereh=const is the magnetic diffusivity.
We use periodic boundary conditions in all three direc-

tions for all variables. This implies that the mass in the box is
conserved, i.e.,krl=r0, wherer0 is the value of the initially
uniform density, and angular brackets denote volume aver-

ages. We adopt a forcing functionf of the form

fsx,td = RehNfkstd expfikstd ·x + ifstdgj, s6d

wherex is the position vector. The wave vectorkstd and the
random phase −p,fstdøp change at every time step, so
fsx ,td is d correlated in time. For the time-integrated forcing
function to be independent of the length of the time stepdt,
the normalization factorN has to be proportional todt−1/2.
On dimensional grounds it is chosen to beN
= f0cssukucs/dtd1/2, wheref0 is a nondimensional forcing am-
plitude. The value of the coefficientf0 is chosen such that the
maximum Mach number stays below about 0.5; in practice,
this meansf0=0.02, . . . ,0.05.

At each time step we select randomly one of many pos-
sible wave vectors in a certain range around a given forcing
wave number. The average wave number is referred to askf.
We force the system with nonhelical transversal waves,

fk = sk 3 ed/Îk2 − sk ·ed2, s7d

wheree is an arbitrary unit vector not aligned withk; note
that ufku2=1.

The resulting flows are characterized by the kinetic and
magnetic Reynolds numbers,

Re =
urms

nkf
, ReM =

urms

hkf
, s8d

respectively. Their ratio is the magnetic Prandtl number,

PrM = n/h = ReM/Re, s9d

which is unity for most of the runs.
We use nondimensional quantities by measuring length in

units of 1/k1 (wherek1=2p /L is the smallest wave number
in the box of sizeL), speed in units of the isothermal sound
speedcs, density in units of the initial valuer0, and magnetic
field in units of sm0r0cs

2d1/2.

III. THE KINEMATIC PHASE AND APPROACH TO
SATURATION

As initial condition we use a weak random seed magnetic
field. In this section we consider the time interval during
which the amplitude of the magnetic energy spectrum grows

TABLE II. Summary of runs with PrM =1 (thus Re=ReM) and forcing atkf =1.5. In all cases, except D2,
we haveurms<0.12. Run D2 had a stronger forcing, and thereforeurms<0.18. The Taylor microscale Rey-
nolds number is Rel=u1D,l /n, where u1D=urms/Î3 is the rms velocity in one direction and,l

=Î5urms/vrms is the Taylor microscale, wherevrms is the rms vorticity.

Run Resolution n3104 Rel ReM Brms eK 3104 eM 3104

A 643 7.0 80 120 0.052 1.0 1.2

B 1283 4.0 110 190 0.060 0.79 1.4

C 2563 2.0 160 420 0.062 0.78 1.6

D 5123 1.5 190 540 0.072 0.68 1.7

D2 5123 2.0 180 600 0.092 2.2 5.0

E 10243 0.8 230 960 0.075 0.63 1.5
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exponentially and is still small compared to the kinetic en-
ergy spectrum for all wave numbers.

A. Critical magnetic Reynolds number

We have determined the growth rate of the rms magnetic
field, l;d ln Brms/dt, for different values of ReM and PrM.
Interpolating the curvesl=lsReMd through zero, we find the
critical value, ReM

scritd, which is roughly independent ofkf; see
Fig. 1. For the case PrM =1 we find ReM

scritd<35, which is
consistent with the value obtained using a modified version
of the eddy-damped quasinormal Markovian(EDQNM) ap-
proximation[38] which gives ReM

scritd=29.
As the value of PrM is lowered, the critical magnetic Rey-

nolds number increases slowly like

ReM
scritd < 35 PrM

−1/2, s10d

see Fig. 2. It remains uncertain whether this scaling persists
to very small values of PrM that are relevant to liquid metal
experiments or to stellar convection zones. We note, how-
ever, that the EDQNM approximation predicts[38] that the
critical magnetic Reynolds number is independent of PrM for
a large range of Re and PrM. Based on application of the
Kazantsev model Schekochihinet al. [39] have shown that,
if the correlation time is assumed to be independent of wave
number, there exists a finite value of PrM below which dy-
namo action is impossible. On the other hand, if the correla-
tion time is proportional to the eddy turnover time,,k−2/3,
dynamo action should be possible even for very small values
of PrM.

For larger magnetic Reynolds numbers the growth rate of
the magnetic field seems to approach a ReM

1/2 dependence; see
Fig. 3. Such a power law would be expected if the growth
rate is proportional to the eddy turnover time at the dissipa-
tion wave number,kd, i.e., l~kd

2/3~ReM
1/2, where we have

used ReM ~kd
4/3 [40]. We must emphasize, however, that the

ReM scaling is as yet rather short.

B. The Kazantsev spectrum

Under the somewhat unrealistic assumption that the ve-
locity field is d correlated in time, one can, for a given spatial
correlation function of the velocity, and ignoring magnetic
feedback, derive an evolution equation for the correlation
function of the magnetic field[9,41] (see Ref.[42] for a
nonlinear extension). This can be rewritten as an integro-
differential equation ink space which, in turn, can be written
as a diffusion equation ink space if the velocity field has
only power at large scales[9,22]. The result is Ek

Mskd
~k3/2Knsldsk/khd, where Kn is the Macdonald function
(modified Bessel function of the third kind), l<3/4 is an
eigenvalue, andnsld<0; see Ref.[43] for details. In linear
theory the amplitude of the solution is, however, undeter-
mined and grows exponentially if the magnetic Reynolds
number exceeds a critical value of about 30–60[41].

In comparison with our simulations we see qualitative
agreement as far as thek3/2 slope is concerned. As long as the
magnetic field is weak, the velocity field has an energy spec-
trum with the expectedk−5/3 Kolmogorov scaling; see Fig. 4.
During this phase the spectral magnetic energy grows at all

FIG. 1. Growth rate vs ReM for different values ofkf, and for
PrM =1. The curves represent linear fits through the data. Note that
the critical value is around 35 for all the different runs. The resolu-
tion varies between 643 and 2563, and f0=0.05 in all runs, resulting
in urms<0.2.

FIG. 2. Critical magnetic Reynolds number as a function of
magnetic Prandtl number for runs with different forcing scale.

FIG. 3. Log-log plot of growth rate vs ReM for kf =1.5, and
PrM =1. The curves represent linear fits through the data. Note that
there seems to be an ReM

1/2 dependence onl as ReM is increased.
The resolution varies between 1283 and 5123.

FIG. 4. Early spectra of kinetic and magnetic energy, normal-
ized by 1

2urms
2 /k1, during the kinematic stage of run D2.
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wave numbers exponentially in time and the spectrum has
the expectedk3/2 Kazantsev[9] slope; see Fig. 4. The con-
vergence toward Kazantsev scaling is seen in Fig. 5, where
we have plotted the magnetic energy spectrum for runs with
ReM between 120 and 540.(The kinematic growth phase for
run E was not available, because we restarted run E from run
D after it had already reached saturation.)

Originally, Kazantsev obtained thek3/2 spectrum under
the assumption that the velocity has power only at large
scales, which would correspond to a large value of PrM.
Simulations for large PrM have indeed confirmed the Kazant-
sev slope[25]. Our results now show that the Kazantsev
spectrum is also obtained for PrM =1.

The values ofhs=nd and ReM used for the different runs
discussed above are summarized in Table II.

C. Approach to saturation

One would naively expect that the onset of saturation hap-
pens rapidly on a dynamical time scale. That this is not the
case in helical hydromagnetic turbulence came originally as
a surprise, but it is now well understood to be a consequence
of asymptotic magnetic helicity conservation. The same ar-
gument does not apply to nonhelical turbulence. Neverthe-
less, there may still be a slowdown in the saturation behavior
at small wave numbers[43].

The clarification of this question is hampered by the fact
that one needs very high resolution before one can with cer-
tainty distinguish resistive time scales from dynamical ones.
Figure 6 shows the saturation behavior for two different val-
ues ofk in a run with 5123 meshpoints. The initial growth is
clearly exponential both atk=1 and atk=16. However, when
the magnetic energy atk=16 saturates att<100/surmskfd, the
magnetic energy atk=1 seems to continue growing approxi-
mately linearly[43]; see Fig. 6 for 100,urmskft,200. Look-
ing at the simulation at later times one sees, however, that the
time sequence is actually very bursty and that the approxi-
mately linear growth in the interval 100,urmskft,200 was
only a transient.(This is best seen in the inset of Fig. 6 where
the energies are shown in a linear plot.) We can therefore not
confirm with certainty that the difference in the saturation

times for k=1 andk=16 is explained by the difference be-
tween dynamical and resistive time scales.

In the following section we present further properties of
these runs after the time when the field has reached satura-
tion.

IV. DYNAMICALLY SATURATED PHASE

When the magnetic energy has reached a certain fraction
of the kinetic energy, the magnetic field stops growing expo-
nentially and eventually reaches a statistically steady state. In
this section we discuss the properties of this state.

A. Energy spectra

As saturation sets in, the spectral magnetic energy begins
to exceed the spectral kinetic energy at small scales; see the
upper panel of Fig. 7, where we also show the total energy
spectrum,Ek

T=Ek
K +Ek

M. There is a short inertial range with
an approximate Kolmogorovk−5/3 spectrum, but, as already
reported in Paper I and discussed in Ref.[44], there is a
strong bottleneck effect in the three-dimensional spectra
which is less strong in one-dimensional spectra. Therefore,
we plot in Fig. 7 for comparison both three-dimensional and
one-dimensional spectra for the same run E. With one-
dimensional spectra we mean spectra calculated from varia-
tions along one of the coordinate directions only. Throughout
this paper, we refer to the one-dimensional spectra as the
sum of the longitudinal plus two times the transversal spectra
[44]. To obtain the three-dimensional spectra we have inte-
grated over three-dimensional shells ink space, assuming
isotropy.

Much of the large-scale kinetic energy is probably trans-
ferred directly to smaller-scale magnetic fields. At large
scales the three-dimensional magnetic energy spectrum is
weakly increasing, it peaks atk=5, and then joins thek−5/3

slope of kinetic energy, but with a,2.5 times larger ampli-
tude. The one-dimensional energy spectrum, on the other
hand, is monotonically decreasing also for small wave num-
bers.

All spectra terminate around the nominal dissipation cut-
off wave number,kd=se /n3d1/4, wheren=h ande=eK +eM is
the total energy dissipation rate per unit mass, and

FIG. 5. Convergence of the magnetic power spectrum toward
the k3/2 scaling as ReM increases. All spectra correspond to the
kinematic stages of runs A–D with PrM =1, but have been rescaled
to make them overlap at small values ofk. The dimension on the
ordinate is therefore arbitrary.

FIG. 6. Saturation behavior of the spectral magnetic energy at
wave numbersk=1 (solid line) andk=16 (dashed line) for run D2.
Note the slow saturation behavior fork=1.
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eK = 2nkrS2l/r0 and eM = hm0kJ2l/r0 s11d

are the contributions from viscous and Ohmic dissipation,
respectively. As the resolution is increased, the inertial range
of the total energy spectrum becomes progressively longer
(see Paper I). For run E we findkd<142. The “hook” in the
spectrum fork.400 (see Fig. 7) is probably a consequence
of finite resolution and is typical also of turbulence simula-
tions using spectral codes[45].

For the numerical simulations to work and to reproduce
the turbulent cascade reliably, a certain minimum dynamic
range in the compensated spectrumk5/3Ekskd is necessary.
We emphasize that this dynamic range increases with in-
creasing Reynolds number, as can be seen in Fig. 8, where
we have used viscosities close to the minimum values re-
quired for reliable results.

Looking at one-dimensional spectra of the magnetic, ki-
netic, and total energy(denoted byEk

M,1D, Ek
K,1D, andEk

T,1D),
compensated withe−2/3k5/3, one sees that aroundk=10 there
is a short range where all three compensated spectra are flat;
see Fig. 9. We emphasize again that this is seen only in the
higher-resolution runs.

There is some ambiguity as to what one calls the inertial
range. Here we refer to inertial range as only the range where
the total energy spectrum is compatible with ak−5/3 slope.
The kinetic energy alone, however, can show ak−5/3 slope
already for smaller wave numbers; see Fig. 8.

B. Comparison with nonmagnetic turbulence

For comparison we show the resulting spectra for purely
hydrodynamic turbulence without magnetic fields and find

again very similar bottleneck behavior, as shown in Fig. 10.
A similar bottleneck effect is also found in other numerical
simulations on up to 10243 mesh points[46,47]. As one in-
creases the resolution even further(up to 40963 mesh points)
[48], the bottleneck assumes an asymptotic shape, and begins
to separate from the inertial range. A weak bottleneck effect
is found even in wind tunnel experiments[49,50]. In such
experiments one usually measures one-dimensional longitu-
dinal energy spectra, and hence a much weaker bottleneck

FIG. 7. Three-dimensional(upper panel) and one-dimensional
(lower panel) time averaged spectra, normalized by1

2urms
2 /k1, for

run E with a resolution of 10243 mesh points. The energy spectra
have been averaged over a period of five turnover timessurmskfd−1.

FIG. 8. Convergence of compensated three-dimensional(top)
and one-dimensional(bottom) energy spectra of kinetic energy. The
vertical arrows at the top show the dissipation cutoff wave number
se /n3d1/4 for the different resolutions.

FIG. 9. Compensated magnetic, kinetic, and total three- and
one-dimensional energy spectra for run E.
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effect is expected[44]. A physical explanation of the bottle-
neck effect is found in Ref.[27].

C. Subinertial range behavior

For the saturated state, Fig. 11 shows that forkø5 the
magnetic energy spectrum follows approximately ak1/3 be-
havior, as was originally expected by Batchelor[1]. The
same slope has also been found for convective turbulence at
the time when the magnetic field is still weak[51], and, more
recently (but probably for different reasons) for ABC-flow
dynamos[52].

For wave numbers much less than the forcing wave num-
ber(subinertial range), the magnetic and kinetic energy spec-
tra increase withk approximately likek2. The theory for this
spectrum is reviewed in the book by Lesieur[53]. This scal-
ing is best seen in spectra where the turbulence is forced at

kf @k1;1; see Fig. 12 wherekf =15. In this figure the kinetic
spectrum is somewhat shallower and scales more likek1.5. In
this run, the magnetic energy is saturated, and yet it is only
about 4% of the kinetic energy. This is mainly because the
magnetic Reynolds number is only about 37, so the run is
just weakly supercritical.

D. Reynolds number dependence

In Fig. 13 we show total energy spectra for three values of
Re=ReM between 270 and 960. In the first case with Re
=ReM =270 the compensated spectrum shows a reasonably
flat range with a Kolmogorov constantCKYM <1.3, which is
somewhat less than the value of 2.1 found by Kidaet al.
[23]. In the second case with Re=ReM =440 the compensated
spectrum shows clear indications of excess power just before
turning into the dissipative subrange. This is just the bottle-
neck effect and it becomes even more dramatic in the third
case with Re=ReM =960. Thus, the bottleneck effect is only
seen at sufficiently large resolution.

In order to assess the reliability of the results, we have
carried out a convergence study using the same value ofn,
but different mesh resolution; see the second panel of Fig.
13. In both cases,n=h=2310−4, while urms=0.13 for 5123

mesh points and 0.12 for 2563. The energy dissipation is also
similar,e=2.8310−4 for 5123 mesh points and 2.3310−4 for
2563. The compensated energy spectra agree quite well for
the two different resolutions, and both show excess power
(bottleneck effect) just before turning into the dissipative
subrange. This supports the conclusion that the excess power
is not a numerical artifact.

E. Convergence of energy and dissipation rate

In the saturated state, the fractional magnetic and kinetic
energies tend to a constant value at large Reynolds number,
with

EM:EK < 0.3:0.7, s12d

so EM /EK is about 0.4; see the upper panel of Fig. 14. This
fraction may still depend on the forcing wave number since
the infrared part of the kinetic and magnetic energy spectra

FIG. 10. Same as Fig. 8, but for a run without magnetic fields
(pure hydrodynamics), for three different values of Re. Note the
appearance of a bottleneck effect in the range 10,k,50, particu-
larly in the 3 D spectra. For these runskf =1.5, andurms<0.18.

FIG. 11. Saturated three-dimensional magnetic energy spectra
compensated byk−1/3. The results are comparable with the vortici-
tylike k1/3 scaling at small wave numbers(k,4). The vertical ar-
rows at the top show the dissipation cutoff wave numberse /n3d1/4

for the different resolutions.

FIG. 12. The subinertial range of hydromagnetic turbulence
forced atkf =15 and normalized by12urms

2 /k1. ReM <37, 2563 mesh
points, PrM =1.
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can have different slopes; see Fig. 12. Naively one would
just compareEM /EK for the three nonhelical simulations in
Fig. 23, and find the ratio to decrease as the forcing wave
number is increased. This is, however, not correct since all
these runs have different(magnetic) Reynolds numbers. A
more comprehensive study, where the Reynolds number is
kept constant, is therefore necessary in order to find whether
or not EM /EK really does depend on the forcing wave num-
ber.

Equally important is the fact that also the energy dissipa-
tion rates are converged for large Reynolds numbers, such
that

eM:eK < 0.7:0.3, s13d

i.e.,eM exceedseK by a factor of about 2.3; see the two lower
panels of Fig. 14. The reciprocal correspondence of the ratios
in Eqs.(12) and (13) is coincidental.

The fact that the dissipation rates for both magnetic and
kinetic energies are asymptotically independent of Reynolds
number is consistent with the basic Kolmogorov phenom-
enology that leads to the scale-freek−5/3 spectrum. This re-
sult seems to exclude the possibility that in the large Rey-
nolds number limit the magnetic energy spectrum peaks at
small scales. It is worth mentioning that the ratioeM /eK de-
pends only weakly on PrM. In Table III we show that a 15-
fold increase of the magnetic Prandtl number decreases the

energy dissipation ratio only by a factor of about 2; the data
can be parametrized by the power laweM /eK <2.2 PrM

−1/4.
About 70% of the energy that goes into the Kolmogorov

cascade is eventually converted into magnetic energy by dy-
namo action and is then finally converted into heat via resis-
tivity. A sketch of the energy budget is given in Fig. 15.

In the present simulations the thermal energy bath is not
explicitly included, but we note that in hydromagnetic turbu-
lence simulations with shear and rotation the resistive heat
can become so important that the temperature can increase
by a factor of 10; see Ref.[54].

F. Large magnetic Prandtl numbers

It has previously been argued that for PrM *1 the mag-
netic energy spectrum is peaked at small scales
[25,55,26,56]. For PrM =1 this claim cannot be confirmed at
large Reynolds number(see Paper I). The original motivation
for a peak at small scales is based on linear theory[9], which
predicts ak+3/2 spectrum; see also Sec. III B. However, the
original Kazantsev model is only valid in the limit where the

FIG. 13. Comparison of compensated three-dimensional total
energy spectra for runs with magnetic Prandtl number unity but
with different Reynolds numbers. In all runs the horizontal dash-
dotted line represents the value 1.3. In the second panel two runs
with the same Reynolds numbers, but different resolution, are
compared.

FIG. 14. Relative magnetic and kinetic energies(upper panel),
their respective relative dissipation rates(middle panel), and the
energy dissipation rates in units ofe0;k1urms

3 (last panel), as a
function of Reynolds number for PrM =1.

TABLE III. Energy dissipation rates for four runs with different
magnetic Prandtl numbers PrM, showing thateM /eK is only weakly
dependent on PrM.

n3104 h3104 PrM eK 3104 eM 3104 eM /eK

1.5 4.5 0.33 0.79 2.4 3.0

1.5 1.5 1. 0.92 2.1 2.3

2.0 2.0 1. 0.87 1.9 2.2

7.5 1.5 5. 1.2 1.8 1.5
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velocity has only large scale components, which corresponds
to PrM @1. In order to see how our results change with vary-
ing magnetic Prandtl number we have calculated models for
different values of PrM. One of the results is the possible
emergence of ak−1 tail in the magnetic energy spectrum; see
Fig. 16. Thek−1 tail has recently been found in large PrM
simulations with an imposed magnetic field[21]. The k−1

spectrum has its roots in early work by Batchelor[57] for a
passive scalar and Moffatt[58] for the magnetic case.

In the run with PrM =30 the viscous cutoff wave number is
kn=seK /n3d1/4<12, so thek−1 tail is expected for wave num-
bers larger than that. The plot seems to suggest that the entire
inertial range could have ak−1 spectrum, although this may
well be an artifact of an insufficient inertial range. Instead, a
more likely scenario is that for large hydrodynamic Reynolds
numbers and large magnetic Prandtl numbers there is still a
k−5/3 range for both kinetic and magnetic energies, followed
by a k−1 subrange for magnetic energy beyond the viscous
cutoff wave number. In any case, the peak of magnetic en-
ergy would still be at small wave numbers. In summary,
therefore, we find no indication of a peak of the magnetic
energy spectrum at the resistive wave number.

G. Autocorrelation functions

In the context of the Zeldovich[59,60] stretch-twist-fold
dynamo, the shape of the auto-correlation function of the
magnetic field,

wBsrd = kBsxd ·Bsx + rdl/kB2l, s14d

plays an important role; see also Ref.[61]. We have calcu-
lated wBsrd from the Fourier transform of the three-
dimensional, time-averaged magnetic energy spectra,Ek

Mskd;
see Fig. 17. The diffusive scale corresponds to the thickness
of the narrow spike ofwBsrd around the origin. The typical
scale over which the magnetic field changes direction is the
correlation length which corresponds to the scale where
wBsrd has its minimum. We have comparedwBsrd with the
velocity autocorrelation function,wusrd, which is defined in
an analogous manner. Note that, because of isotropy,wusrd
andwBsrd are only functions ofr = ur u. Similar autocorrelation
functions have also been seen in simulations of convective
dynamos[51]. Figure 17 shows that the velocity correlation
length is,3 while the magnetic field correlation length is
,0.5. Clearly, the magnetic correlation length is much
shorter than the velocity correlation length, but it is practi-
cally independent of Res=ReMd and certainly much longer
than the resistive scale,,2p /kd<0.04.

H. Structure functions

In numerical turbulence the signed structure functions for
odd moments are usually not well converged. It is therefore
customary to use unsigned structure functions, defined as

Spsld = kuzsx + ld − zsxdupl, s15d

wherezsxd is one of the two Elsasser variables

z± = u ± B/Îrm. s16d

The structure function exponentsSpsld normally show a
power-law scaling

Spsld ~ lzp, s17d

wherezp is thepth order structure function scaling exponent.
Here, because of isotropy, we usually consider the depen-
dence on one spatial coordinate,x, but we also discuss the
more general case below.

In Paper I we have shown thatz3<1.0 andz4<1.3. This
is our strongest evidence that the asymptotic inertial range
scaling isk−5/3 and that thek−3/2 scaling seen in the upper
panel of Fig. 7 is due to the bottleneck effect[44]. True

FIG. 15. Schematic view of the energy transport. Most of the
energys70%d resides in the kinetic energy reservoir, but only 30%
of the total energy input is dissipated directly by viscous heating.
Instead, 70% of the energy flows into the magnetic energy reservoir,
and is finally dissipated by Ohmic heating.

FIG. 16. Magnetic energy spectra for runs with magnetic Prandtl
numbers ranging from 0.3 to 30.

FIG. 17. Autocorrelation functions of magnetic field and veloc-
ity. Note that the autocorrelation functions are nearly independent
of resolution and Reynolds number. The velocity correlation length
is ,3 while the magnetic correlation length is,0.5.
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Iroshnikov-Kraichnan scaling would implyz4=1, whereas
z3=1 is consistent with Goldreich-Sridhar scaling.

We find that the second-order scaling exponent isz2
=0.7, which again indicates that the inertial range has a slope
k−z2−1<k−5/3, in support of our findings from the one-
dimensional energy spectra. Making use of the extended self-
similarity hypothesis[62] we find that for allp, the values of
zp are consistent with the generalized She-Leveque formula
[63]

zp =
p

9
+ CF1 −S1 −

2/3

C
Dp/3G , s18d

whereC is interpreted as the codimension of the dissipative
structures. We find thatC=2 (corresponding to one-
dimensional, tubelike dissipative structures) gives a reason-
able fit to the longitudinal structure function exponents; see
Fig. 18. If we allow for fractal codimensions, thenC=1.85
gives the best fit for the longitudinal structure function ex-
ponents andC=1.45 for the transversal ones.

A similar difference between transversal and longitudinal
structure functions has previously been found[46,64]. It has
been argued[64] that this difference is an artifact of the
forcing being in the same direction as the direction in which
the structure functions are calculated. In our simulation,
however, the forcing is chosen randomly in an isotropic man-
ner. In addition, we have also performed a calculation were
we average structure functions calculated in 91 different di-
rections distributed isotropically over the unit sphere. In this
calculation we find again the same difference between longi-
tudinal and transversal structure functions. Additional sup-
port to this result comes from the fact that longitudinal one-
dimensional energy spectra are slightly steeper than the
transversal ones. A possible explanation for the difference
between longitudinal and transversal structure functions has
been offered by Siefert and Peinke[69], who find different
cascade times for longitudinal and transversal spectra.

As stated above, our results for the longitudinal structure
functions of the Elsasser variables follow the generalized
She-Leveque formula with codimensionC=2 quite well. It is
difficult to make precise comparisons with earlier work
where often somewhat different cases are considered. The
perhaps closest comparison is possible with the transonic
hydromagnetic turbulence simulations of Padoanet al. [65].
They consider only velocity structure functions, but since

they have a weak magnetic field, the velocity is similar to the
Elsasser variables. They find that for small Mach numbers
the structure function scaling has codimensionC<2, while
for supersonic turbulence they findC<1. For increasing
Mach numbers they see a continuous decrease fromC=2 to
C=1. This is consistent with our result ofC=1.85 since we
have a small but finite Mach number, and would therefore
expect a somewhat smaller value thanC=2, but considerably
larger thanC=1.

In another set of forced turbulence simulations, Choet al.
[33] find that the velocity structure function has again codi-
mensionC=2. We emphasize that in Ref.[33] the structure
functions are calculated perpendicular to the local magnetic
field, and not along the global coordinate axis. In addition,
they look at velocity scaling while we concentrate on El-
sasser variables. Their results can therefore not straightfor-
wardly be compared with ours, and the similarity is probably
accidental. Indeed, it is shown in Ref.[66] that structure
functions calculated perpendicular to the local magnetic field
and those calculated along the global coordinate axis arenot
comparable.

On the other hand, in simulations of decaying magneto-
hydrodynamic(MHD) turbulence at a resolution up to 5123

collocation points, Biskamp and Müller[17] found the codi-
mension of the Elsasser variables to beC=1. At first glance
this seems to contradict our results, but the fact that they
have considered decaying turbulence, and that the magnetic
field is decaying more slowly than the kinetic energy, implies
that they have a much stronger magnetic field relative to
kinetic field than we do. Furthermore, we find(see Fig. 19)
that the magnetic field is much more intermittent than the
velocity field [66]. It is therefore not surprising that they find
different intermittency in their decay simulation than we do
in our forced simulation.

Next we look at the longitudinal structure function scaling
exponents for magnetic field and velocity, as well as for the
Elsasser variables; see Fig. 19. The velocity is known to be
generally less intermittent than the magnetic field[66].
While the Elsasser variables follow the standard She-
Leveque scalingsC=2d rather well, the velocity is less inter-
mittent sC=3.5d and the magnetic field is more intermittent
sC=1.7d. Obviously, a codimension larger than the embed-
ding dimension does not have a direct geometrical meaning,
so the value ofC for the velocity should not be interpreted as

FIG. 18. Longitudinal and transversal structure function expo-
nents for the Elsasser variables for run D.

FIG. 19. Longitudinal structure function exponents for the El-
sasser variables, compared with those for velocity and magnetic
field separately for run D.
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a codimension, but just as an indicator for a low degree of
intermittency.

I. Visualizations

In view of the discussion on the dimensionality of the
dissipative structures in hydromagnetic turbulence, it is de-
sirable to obtain an estimate simply by visual inspection. In
Fig. 20 we show, for a small subvolume of the entire simu-
lation domain, surfaces of constantJ2 (Joule dissipation) and
S2 (viscous dissipation). Generally, the approximate dimen-
sionality of both dissipative structures is somewhere between
sheets and tubes, althoughJ2 appears to be perhaps slightly
more sheetlike. We conclude that the dimensionality ofJ2 is
consistent with what one would have expected from the es-
timate C=1.7 obtained in the preceding subsection. For the
dissipative structures of kinetic energy, on the other hand, the
estimateC=3.5 exceeded the embedding dimension and did
therefore not make geometrical sense anyway. The qualita-
tive inspection ofS2 would have suggested a codimension
between 1 and 2. We therefore conclude thatC can only be
regarded as a fit parameters and that there is not always an
obvious connection with the actual appearance of the dissi-
pative structures.

It should be noted that normally when one talks about
structures in turbulence one often talks about vortex tubes
and, in the magnetic case, magnetic flux tubes. These are
quite distinct from the dissipative structures. Vorticityv
= = 3u and rate of strain tensorS characterize, respectively,
the antisymmetric and symmetric parts of the velocity gradi-
ent matrix, and are therefore not expected to look similar. On
the other hand,kv2l=k2S2l, where and angular brackets de-
note volume averages, and Fig. 21 shows that bothv2 and
S2 exhibit similar length scales. The difference is more pro-
nounced in the magnetic case, whereJ is clearly dominated
by smaller scale structures whileB can exhibit structures of
much larger scale. This is shown in Fig. 22 where we visu-
alize magnetic field vectors in the full box at those locations
where the field exceeds three times the rms value. The strong

field turns out to be of surprisingly large scale, even though
this dynamo has no helicity and no large scale field in the
usual sense; cf. Ref.[5]. The large scale structures we find
are reminiscent of the ropes discussed in Refs.[60,61], al-
though they seem to be more sheetlike[67], and their thick-
ness is of the order of the resistive scale[68].

V. CONNECTION WITH HELICAL TURBULENCE

Finally we comment on some differences between helical
and nonhelical turbulence. In the case of helical forcing one

FIG. 20. Contours ofJ2 (blue or dark gray) and S2 (green or
light gray) showing the dissipative structures of magnetic and ki-
netic energy, respectively. Only a very small subvolumes1/163d of
the entire simulation domain of run E is shown.

FIG. 21. Contours ofB2 (blue or dark gray) and v2 (green or
light gray) for the same small subvolume as shown in Fig. 20. Note
that the areas with strongB2 are more extended than those with
strongJ2 (cf. Fig. 20) and that the locations of highv2 and highS2

are near to each other, but otherwise different in their detailed ap-
pearance(see Fig. 20), even thoughkv2l=k2S2l.

FIG. 22. Magnetic field vectors of run E shown at those loca-
tions whereuBl.3Brms. Note the long but thin arcadelike structures
extending over almost the full domain. The structures are sheetlike
with a thickness comparable to the resistive scale.
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expects aninversecascade to smaller wave numbers, rather
than a direct cascade to larger wave numbers. We can now
identify two reasons why this has not really been seen in
early turbulence simulations with helical forcing[23]. On the
one hand, the inverse cascade takes a resistive time to de-
velop [5], and this time tends to be too long if magnetic
hyperdiffusivity is used[28]. In Ref. [23] magnetic hyperdif-
fusivity was indeed used and the resistive time was at least a
hundred times longer than the duration of the runs, so no
inverse cascade should be expected. But there is another
more important reason. In order for the inverse cascade to
develop, one has to have some scale separation, i.e., the mag-
netic field must be allowed to grow on scales larger than the
forcing scale (which corresponds to the energy carrying
scale) of the turbulence. This was not the case in the early
simulations and may explain why the inverse cascade has not
been seen in Ref.[23] and that those results should therefore
be closer to the case without helicity. To substantiate this, we
have carried out simulations with helical and nonhelical forc-
ing using the modified forcing function

fk = R · fk
snoheld with Ri j =

di j − isei jkk̂k

Î1 + s2
, s19d

wherefk
snoheld is the nonhelical forcing function of Eq.(7). In

the helical casess= ±1d we recover the forcing function
used in Ref.[5], and in the nonhelical casess=0d this forc-
ing function becomes equivalent to that of Eq.(7).

We show in Fig. 23 the energy spectra of helical and

nonhelical simulations with forcing at wave numberkf =1.5
(no scale separation), kf =2.3 (weak scale separation), and
kf =5 (considerable scale separation). For kf =1.5 the spectra
of the helical and nonhelical simulations are indeed quite
similar to each other(e.g., no inverse cascade and slight
superequipartition atk.5). For kf =5.1, on the other hand,
the spectra are quite different and there is no inverse cascade
in the nonhelical case.

VI. CONCLUSIONS

In the present paper we have studied nonhelical MHD
turbulence without imposed large scale fields. We find that,
in order to get dynamo action, the magnetic Reynolds num-
ber has to exceed the critical value ReM

scritd<30. When the
dynamo is in the kinematic regime(the magnetic field is still
too weak to affect the velocity) we see a kinetic energy spec-
trum with the Kolmogorovk−5/3 inertial range, while the
magnetic energy spectrum shows the expectedk3/2 Kazant-
sev slope(increasingwith k).

As the dynamo gets saturated we find that there is a short
inertial range where the magnetic and kinetic energy spectra
are parallel. This is only seen in the largest of our simula-
tions with 10243 mesh points. The magnetic energy spectrum
exceeds the kinetic energy spectrum by a factor of<2.5,
which seems to be more or less the asymptotic value as Re
grows larger. At first glance one is led to believe that the
saturated energy spectra exhibit ak−3/2 inertial range, but we
argue that this is due to a strong bottleneck effect. For one-
dimensional spectra the bottleneck effect becomes much
weaker and they have the expectedk−5/3 slope. We have
demonstrated that simulations without magnetic fields show
the same bottleneck effect. Also the second-order structure
functions are consistent with ak−5/3 scaling. We therefore
conjecture that for larger values of Re one will see ak−5/3

subrange also for the three-dimensional MHD spectra, al-
though the bottleneck effect will continue to affect at least
one decade or more in wave numbers just before the dissi-
pative subrange.

At large scaless1økø5d we see ak1/3 behavior of the
magnetic field. However, if we force the flow atkf @k1 (i.e.,
the energy is being injected at scales much smaller than the
box size), we find that fork!kf the kinetic and magnetic
energy spectra scale almost likek2, although the kinetic en-
ergy spectrum is somewhat shallower which may be an arti-
fact of the finite size of the computational domain.

Concerning the structure functions we find that our simu-
lations are in good agreement with those found by Padoanet
al. [65]. The Elsasser variables follow the She-Leveque scal-
ing with a codimension somewhat less than 2, which is what
one would expect since our simulation is weakly compress-
ible. We also find that the magnetic field is more intermittent
than the velocity, which is qualitatively consistent with ear-
lier findings [10]. Quantitatively, in terms of structure func-
tion exponents, this has recently also been found by Cho

FIG. 23. Three-dimensional kinetic and magnetic energy spec-
tra, normalized by1

2urms
2 /k1, for runs with and without helicity(left

and right hand columns, respectively) and for the different forcing
wave numbers:kf =1.5 (top), 2.3 (middle), 5.1 (bottom). 1283 mesh
points.
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et al. [66], but it is still not known what is the cause of this
difference between the intermittency of magnetic and kinetic
fields.

In the case of magnetic Prandtl numbers larger than unity,
there are indications of ak−1 range for the magnetic energy
spectrum below the viscous cutoff wave number. In order to
ensure that this is really the asymptotic slope, yet larger
simulations are required.
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