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Abstract : Reaction-diffusion equations based on a polymerization model are solved to simulate the

spreading of hypothetic left and right-handed life forms on the Earth’s surface. The equations exhibit
front-like behavior as is familiar from the theory of the spreading of epidemics. It is shown that the
relevant time scale for achieving global homochirality is not, however, the time scale of front

propagation, but the much longer global diffusion time. The process can be sped up by turbulence and
large scale flows. It is speculated that, if the deep layers of the early ocean were sufficiently quiescent,
there may have been the possibility of competing early life forms with opposite handedness.
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Introduction

There has been a remarkable development in assessing the

probability of extraterrestrial life in the Universe. Although

higher life forms are now believed to be exceedingly rare,

primitive life forms may be more wide spread than what has

been believed some 20 years ago (Ward & Brownlee 2000).

Two major discoveries have contributed to this view: (i)

microfossil and carbon isotope evidence that life has existed

on Earth at least as early as 3.8 billion years ago (Schopf

1993; Mojzsis et al. 1996), and (ii) the discovery of

extremophilic life forms on Earth making it plausible that life

can exist (or has existed) on other celestial bodies in our solar

system and beyond. However, Cleaves and Chalmers (2004)

present a more cautions view quoting evidence that some of

the oldest viable organisms were actually only mesophiles,

and not at least hyperthermophiles.

Life may either have originated elsewhere and then deliv-

ered to Earth [but again, see Cleaves and Chalmers (2004) for

a more cautions view], or it may have been created locally

from prebiotic chemistry, e.g. in hydrothermal systems at the

ocean floor (Russell & Hall 1997; Martin & Russell 2003). In

either case there is the possibility of multiple sites on Earth, or

alternatively in space, where different life forms may have

coexisted for some time – even though on Earth only one life

form has prevailed in the end. Indeed, the DNA of the most

primitive life forms on Earth suggests that it is based on a

single common ancestor (e.g., Collins et al. 2003). One im-

portant characteristics of life, as we know it, is the handed-

ness (or chirality) of amino acids and sugars. It is well

known that the sugars generated in living organisms are

dextrorotatory. Examples include the glucose produced in

plants via photosynthesis, but also the ribose sugars in the

backbones of the nucleotides of the DNA and RNA.

Conversely, the amino acids in proteins of living organisms

are all left handed.

A commonly discussed pathway for the origin of life is a

pre-RNA world (Bada 1995; Nelson et al. 2000), that could

have been – in its earliest form – achiral. An early peptide

world composed of glycines has been discussed (Milner-

White & Russell 2004) and also peptide nucleic acids (PNA)

based on a glycine backbone are achiral (e.g., Pooga et al.

2001). PNA molecules are frequently discussed for tran-

scribing the genetic code of early life forms (Nielsen et al.

1993) and even artificial life forms (Rasmussen et al. 2003).

However, PNA based on other amino acids is chiral

(Tedeschi et al. 2002), and it might therefore be plausible

that the onset of chirality could have emerged during the

evolution of the PNA world and hence after the onset of life.

There is a priori no reason why life on Earth could not have

been is based on nucleotides with left handed sugars that

catalyze the production of right handed amino acids, i.e. just

opposite to what it actually is. It is now widely accepted that

at some point around the time when the first life has emerged

(or some time thereafter) there must have been a random

selection favoring one particular chirality. Whether it was

right or left handed must have been a matter of chance and

can be explained by self-catalytic polymerization of nucleo-

tides (Frank 1953). An important aspect of this process is the

cross-inhibition by nucleotides with the opposite chirality

which would spoil the polymer and prevent further pol-

ymerization on the corresponding end of the polymer (Joyce

et al. 1984). Although polymerization of alternating left and

right handed nucleotides is usually impossible (Kozlov et al.

1998), this can be different for amino acids in more compli-

cated molecules, for example certain siderophores (‘ iron

bearers’) can contain mixed left and right handed amino

acids (Martinez et al. 2000). Another example are the
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so-called ‘nests ’, i.e. are pairs of left and right handed amino

acids within relatively short sequences (Watson & Milner-

White 2002; Pal et al. 2002).

The first detailed polymerization model taking such cross-

inhibition into account was proposed by Sandars (2003). This

model was studied further by Brandenburg et al. (2004a,

hereafter referred to as BAHN) and Wattis and Coveney

(2004). Since the influential paper of Frank (1953) the various

models that have been devised to explain the origin of the

same chirality (or homochirality) of nucleotides and amino

acids were all based on a pair of two ordinary differential

equations describing the time evolution of some collective

properties of the two types of polymers with left and right

handed building blocks (e.g., Saito & Hyuga 2004a; hereafter

referred to as SH). As was shown in the paper of BAHN, a

modified version of the model of SH can actually be derived

as a reduction of the full polymerization model of Sandars

(2003).

In the present paper we extend the model of BAHN by

including the fact that opposite chiralities are likely to orig-

inate at different places. At those places where life forms of

opposite chirality meet, one of the two will eventually domi-

nate and extinguish the other. If the time for this to happen

was sufficiently long, life forms of opposite handedness may

have coexisted for some time at different places on the early

Earth.

Mathematically speaking, our model falls in the class of

diffusion-reaction (or advection-diffusion-reaction) equations

that are being discussed in many different fields; see the book

by Murray (1993) for biological applications. In this paper

the reactions correspond to the auto-catalytic polymerization

which corresponds to a local instability with a given linear

growth rate. The importance of spatial extent has already

been emphasized by Saito and Hyuga (2004b) who general-

ized the SH model by using a Monte-Carlo method as it is

used in percolation studies.

We begin by outlining the basic alterations to models

without spatial extent and discuss relevant time scales for

achieving homochirality in a spatially extended system. We

then briefly review the polymerization model of Sandars

(2003) and the reduction of BAHN, discuss the effects of

spatial extent and present results of simulations.

Relevant time scales

Since the seminal paper by Frank (1953) we know that, in the

case without spatial extent, an infinitesimally small initial

enantiomeric excess g (defined in the range x1fgf1; see

below) can grow exponentially like

g=g0e
lt (for jgxg0j51): (1)

Here g0 is the initial value, which must be close to the racemic

value of zero (see BAHN for the calculation of l). The growth

rate depends on the reaction coefficients and the source term

replenishing the substrate, from which new monomers can

grow. In the case with spatial extent, however, there is the

possibility that life forms with opposite handedness can

emerge independently at different sites. This can substantially

delay the evolution toward homochirality, because now

the relevant time scale is governed by the time it takes to

extinguish already existing life forms of opposite handedness.

The situation is somewhat analogous to the propagation of

epidemics whose expansion over the Earth’s surface is known

to be related to the speed at which fronts propagate in

reaction-diffusion systems. A prototype of such a system is

the Fisher equation (Fisher 1937; Kaliappan 1984; Murray

1993)

@c

@t
=lc 1x

c

c0

� �
+k

@2c

@x2
, (2)

where c is the concentration, l is the growth rate in the

homogeneous limit (c independent of x), c0 is a saturation

amplitude, and k is a diffusion coefficient. Equation (2) admits

propagating wave solutions of the form c=c(xxnfrontt),

where

nfront&2(kl)1=2; (3)

is the speed of the front [Murray (1993); see alsoMéndez et al.

(2003) for the case of a heterogeneous medium]. A typical

application of reaction-diffusion equations is the spreading of

the Black Death in Europe in the fourteenth century. In this

connection, Murray (1993) quotes an effective diffusion co-

efficient of about 3r104 km2/yr (corresponding to 103 m2/s)

and a reaction rate (or in this case a ‘mortality rate’) of

15 yrx1 (corresponding to ly5r10x7 sx1), which gives

nfrontB5 cm/s or about 1300 km/yr.

Applying the same front speed (1300 km/yr) to the homo-

chiralization over the whole Earth surface (typical scale

Ly10 000 km), one finds a typical time scale tfront=L/nfront,

which would be on the order of 10 years. However, it will turn

out that the time scale involving front propagation is too

optimistic an estimate for the problem at hand, because once

right and left handed life forms meet, the reaction front will

almost come to a halt. As it turns out, the only reason why

these fronts can still propagate is because of their curvature.

This leads eventually to the complete dominance of only one

handedness. The time scale for this to happen turns out to be

the global diffusion time scale

tdiff=L2=k: (4)

Putting in the same numbers as above one finds y3000 yr.

This is still rather short, but this is because the adopted value

for k is more like an effective (eddy) diffusivity and hence

rather large compared with the usual molecular values

quoted by Cotterill (2002) for air (k=10x5 m2/s) or water

(k=10x9 m2/s). These values would lead to diffusion times in

excess of the age of the universe.

Larger values of k are probably more realistic in that

they take into account the effects of additional macroscopic

mixing processes that are required to establish global homo-

chirality. Examples include ocean currents, surface waves, as

well as winds and turbulence in the atmospheric boundary
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layer (e.g. Garrett 2003). Below we shall refer to the corre-

sponding time scale as the turbulent time scale

tturb=L=urms, (5)

where urms=nu2m1/2 is the root mean square velocity.

A commonly used procedure to estimate turbulent

diffusion times is in terms of enhanced turbulent (eddy) dif-

fusivities. We return to this in more detail, but for now we just

note that in the ocean values between y10x4 m2/s for the

vertical eddy diffusivity and up to y103 m2/s for the hori-

zontal eddy diffusivity are typical (see Chap. y8.5 of Stewart

2003). This would again suggest turbulent diffusion times of

around 3000 years, which would then be the time required for

achieving global homochirality in the ocean.

The estimates outlined above can be put on a more quan-

titative basis. Before we can study the analogous equation to

the Fisher equation, we briefly review the basis of the pol-

ymerization model of Sandars (2003) and its reductions as

proposed by BAHN. Since we are interested in the spatially

extended case, we add the effects of diffusion and advection to

these equations. We therefore consider the case where the

concentrations of the different polymers [Ln] and [Rn], obey

advection-diffusion-reaction equations, i.e. everywhere in the

equations in the paper by BAHN we replace

d

dt
p

D
Dt

w
@

@t
+u � =xkr2: (6)

Here, u and k are the velocity vector and the diffusion coef-

ficient, respectively.

The polymerization model

In the polymerization model of Sandars (2003) it is assumed

that a polymer Ln with n left handed building blocks can

grow on either end by a left or right handed monomer, L1 or

R1, respectively, with a reaction coefficient 2kS or 2kI, re-

spectively. The latter reaction is referred to as enantiomeric

cross-inhibition leading to a polymer whose one end is now

‘spoiled’, allowing further growth only on the remaining

other end at rates kS or kI for a reaction with L1 or R1, re-

spectively. (The left handed polymers Ln are not to be con-

fused with the size of the domain L.) The full set of reactions

included in the model of Sandars (2003) is thus

Ln+L1 p
2kS

Ln+1, (7)

Ln+R1 p
2kI

LnR1, (8)

L1+LnR1 p
kS

Ln+1R1, (9)

R1+LnR1 p
kI

R1LnR1, (10)

where kS and kI are the reaction coefficients for monomers

to a polymer of the same or of the opposite handedness,

respectively. For all four equations we have the complemen-

tary reactions obtained by exchanging LÐR.

In addition, new monomers of either chirality are being

regenerated from a substrate S at a rate that may depend

on the already existing excess of one chirality (i.e. the en-

antiomeric excess), so

S p
kCCR

R1, S p
kCCL

L1, (11)

where kC is proportional to the growth rate of monomers and

CR and CL determine the enzymatic enhancement of right

and left handed monomers. Sandars (2003) assumed that

CR=RN and CL=LN, but different alternative proposals

have been made, for example CR=gRn and CL=gLn

(Wattis & Coveney 2004) or CR=gnRn and CL=gnLn

(BAHN). The overall behavior of the model is not however

affected by these different choices.

The governing equations, ignoring spatial dependencies,

are (for no3)

d[Ln]

dt
=2kS[L1]([Lnx1]x[Ln])x2kI[Ln][R1], (12)

d[Rn]

dt
=2kS[R1]([Rnx1]x[Rn])x2kI[Rn][L1], (13)

where the factor 2 in front of kS and kI reflects the fact that

the monomers can attach to either side of the polymer. For

n=2, however, m identical monomers interact, and the

number of corresponding pairs is not m2, as for non-identical

pairs (n>2), but only 1
2m(mx1)& 1

2m
2, canceling the factor 2

in front of the [L1]
2 term (see Sandars 2003, and also BAHN).

Thus, we have

d[L2]

dt
=kS[L1]

2x2kS[L1][L2]x2kI[L2][R1], (14)

d[R2]

dt
=kS[R1]

2x2kS[R1][R2]x2kI[R2][L1]: (15)

The evolution equations for [L1] and [R1] are given by

d[L1]

dt
=QLxlL[L1],

d[R1]

dt
=QRxlR[R1], (16)

where

lL=2kS
XNx1

n=1

[Ln]+2kI
X~NN

n=1

[Rn]+kS
XNx1

n=2

[LnR]

+kI
X~NN

n=2

[RnL], (17)

and

lR=2kS
XNx1

n=1

[Rn]+2kI
X~NN

n=1

[Ln]+kS
XNx1

n=2

[RnL]

+kI
X~NN

n=2

[LnR], (18)

are the decay rates that quantify the losses associated with the

reactions (7)–(10), respectively. Here ~NN=Nx1 in the model

of Sandars (2003) and ~NN=N in the model of BAHN.

New monomers are generated from a substrate with

concentration [S] via the source terms QL and QR,

QL=kC[S ](pCL+qCR), (19)
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QR=kC[S ](pCR+qCL), (20)

where kC is the corresponding reaction coefficient, p=1
2(1+f )

and q=1
2(1xf ), and f is the fidelity of the enzymatic

reactions. The concentration of the substrate, in turn, is

maintained by a source Q, via

d[S ]

dt
=Qx(QL+QR), (21)

where QL+QR=kC[S](CL+CR) ; see Eq. (20). In general, we

expect CL and CR to be functions of Ln and Rn, respectively.

Sandars (2003) assumed CL=[LN] and CR=[RN], i.e. the

catalytic effect depends on the concentrations of the longest

possible chains of left and right handed polymers, but other

choices are possible (see BAHN). The degree of handedness

(or enantiomeric excess) is generally characterized by the

ratio of the difference to the sum of the number of left and

right handed building blocks, i.e.

g=
ERxEL

ER+EL

, (22)

where ER=
P

n[Rn] and EL=
P

n[Ln] measure the total

number of left and right handed building blocks.

The important point is that the polymerization equations

show bifurcation behavior where f is the control parameter

and g is the control parameter. There is a critical value, fcrit,

above which the racemic solution (g=0) is linearly unstable

(with a growth rate d lng=dtwl) and a new solution with

enantiomeric excess is attained. Only for f=1 is the en-

antiomeric excess complete, i.e. g=1 or x1. The value of fcrit
depends on the ratio kI/kS. For example in the model of

BAHN, using kI/kS=1, we have fcritB0.38, and fcrit increases

for decreasing kI/kS. For kI/kS=0 (no enantiomeric excess)

no bifurcation is possible, i.e. fcrit=1.

The polymerization problem without spatial extent is

governed by the following characteristic time and length scales

tmicro=(QkS)
x1=2, jmicro=(Q=kS)

x1=6, (23)

where the subscript ‘micro’ is chosen to emphasize that

with spatial extent the problem will be governed by other

‘macroscopic’ time scales such as tdiff and tturb (see previous

section).

Since neither Q nor kS are well known, it may be advan-

tageous to assume tmicro and jmicro instead:

kS=j3microt
x1
micro, Q=jx3

microt
x1
micro: (24)

A plausible time scale for polymerization is hours

(tmicroy105 s, say), but it could be much longer, and typical

molecule concentrations are 1020 cmx3, but it could also

be much less. The nominal values correspond to

kSy10x25 cm3 sx1, Qy1015 cmx3 sx1.

The growth rate of instability of the racemic solution, l,

scales with tmicro
x1 , and it is therefore convenient to introduce

the symbol l0wtmicro
x1 . For example, for kI/kS=f=1, we have

l=0.57 l0 ; see BAHN.

Allowing for spatial extent

Before discussing the reduced model and its extension to

allow for spatial extent, let us briefly illustrate the principal

effects of spatial diffusion on the full polymerization model. If

the fidelity is close to unity, an initially small perturbation to

the racemic solution ([Rn]=[Ln]=2xn[L1] for kI=kS and

no2; see BAHN) grows until a new homochiral state is

reached where there are polymers of only one handedness

with equally many of each length (i.e. [Ln]=2[L1] for no2).

The same can happen also locally if we allow for spatial

extent provided the domain is large (L4jmicro). In Fig. 1 we

show the result of a one-dimensional numerical calculation

in a periodic domain xL/2<x<L/2 with L/jmicro=10 and

finite diffusivity k/(L2 l0)=10x2, i.e. tdiff=100tmicro, but no

flow (u=0).

Note that the domain divides into regions with opposite

handedness. If one waits a few e-folding times (lx1), each of

the homochiral sub-domains possesses polymers of appreci-

able length (Fig. 1). At later times the polymers will have

Fig. 1. Color/gray scale plots of [Rn] and [Ln] for t/tdiff=0.8 as

a function of x and n, and the corresponding dependencies ofPN
n=1 n[Rn] and

PN
n=1 n[Ln] (solid line), compared with 1

2N
PN

n=1 [Rn]

and 1
2N

PN
n=1 [Ln] (dashed line), and 1

4N
2[R1] and

1
4N

2[L1] (dotted

line), all in units of (Q=kS)
1=2: The normalized diffusivity is k=(L2l0)

=10x2 and N=20.
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grown to maximum length, with a sharp interface separating

domains with right and left handed polymers. The evolution

of these domain walls will be discussed in detail in the next

section using the reduced model of BAHN.

The reduced model

It turns out that, without changing the basic properties of the

model, a minimal version is still meaningful for N=2, and

that the explicit evolution equations for the semi-spoiled

polymers, [L2R1] and [R2L1], can be ignored. However, the

associated reaction (8) (and likewise for LÐR) still leads to

loss terms in all equations (proportional to kI). In fact, the

very presence of the kI terms is essential for the bifurcation

toward homochirality.

Thus, we only solve Eqs. (14) and (15) together with

Eqs. (16)–(18). Following Sandars (2003), we also assume

that CL=[L2] and CR=[R2] (instead of CL=EL and CR=ER,

which would yield more complicated expressions). A further

simplification can be made by regarding [L2] as a rapidly

adjusting variable that is enslaved to [L1] (and similarly

for [R2]). This technique is also known as the adiabatic

elimination of rapidly adjusting variables (e.g., Haken, 1983).

Equations (12) and (13) become

0=kS[L1]
2x2[L2](kS[L1]+kI[R1]), (25)

0=kS[R1]
2x2[R2](kS[R1]+kI[L1]), (26)

which are solved for [L2] and [R2], respectively. These quan-

tities couple back to the equations for [L1] and [R1] via QL

and QR. Finally, we also treat the substrate [S] as a rapidly

adjusting variable, i.e. we have kC[S]=Q/([L2]+[R2]). We

emphasize that the adiabatic elimination does not affect the

accuracy of steady solutions. It is convenient to introduce

new dimensionless variables,

X=[R1](2kS=Q)1=2, Y=[L1](2kS=Q)1=2, (27)

and a constant l0=(QkS=2)
1=2, which has dimensions of

(time)x1. The introduction of the 1=
ffiffiffi
2

p
factor is useful for

getting rid of factors of 2 in the reduced model equations

below.

In order to compare first with the SH model we restrict

ourselves to the special case kI/kS=1, which leads to the

revised model equations

lx1
0

_XX=
pX 2+qY 2

~rr 2
xrX, (28)

lx1
0

_YY=
pY 2+qX 2

~rr 2
xrY, (29)

where dots denote derivatives with respect to time and

r=X+Y, ~rr 2=X 2+Y 2, p=(1+f )=2 and q=(1xf )/2 have

been introduced for brevity. The reduced equations resemble

those of the SH model in that both have a quadratic term

proportional to X 2 (or Y 2), which is quenched either by a

1xr factor (in the SH model) or by a 1/(X 2+Y 2) factor in

our model. Furthermore, both models have a backreaction

term proportional toxX (orxY), but the coefficient in front

of this term (denoted by l in the SH model) is not constant

but equal to (X+Y).

The form of the equations (28) and (29) suggests a trans-

formation to a new set of variables

S=X+Y, A=XxY, (30)

in terms of which the enantiomeric excess is in the reduced

model simply

g=A=S: (31)

Adding and subtracting Eqs. (28) and (29) from each other

leads to a new pair of equations in terms of S(t) and A(t) :

lx1
0

_SS=1xS2, (32)

lx1
0

_AA=2f
SA

S2+A2 xSA: (33)

Fixed points are: S=1, A=0, t
ffiffiffiffiffiffiffiffiffiffiffiffi
2fx1

p
, corresponding to

the points ((1t
ffiffiffiffiffiffiffiffiffiffiffiffi
2fx1

p
)=2, (1�

ffiffiffiffiffiffiffiffiffiffiffiffi
2fx1

p
)=2), (12,

1
2) in the

(X, Y)-plane (the S=x1 fixed points are not physical,

because 0fX, Yf1):

We see that the enantiomeric excess is complete only for

f=1 and that for this case physical stable points with an

enantiomeric excess only appear with f>1/2 (for kI/kS=1).

The growth rate of the enantiomeric excess, g, from the

racemic point, (S, A)=(1, 0), can be found by linearizing the

equations and it turns out to be _gg=2fx1. For simplicity, we

concentrate here on the limiting case f=1, but also show in a

later section, how the results depend on changing f (and hence

the growth rate).

The first equation, Eq. (33), is easily solvable in terms of

hyperbolic functions,

S(t)=
coth l0(txt0) for S(0)>1,

tanh l0(txt0) for S(0)<1,

(
(34)

where t0 is an integration constant that can also be expressed

in terms of the initial value S(0). From Eq. (34) we note the

long time behavior: Sp1, regardless of the initial value. Since

0fX, Yf1, we have 0fSf2: The corresponding solution

for A, assuming f=1, is

A(t)=
ax

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2+ cosh2 l0(txt0)

p
sinh l0(txt0),

, (35)

for S(0)>1, and

A(t)=
ax

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2+ sinh2 l0(txt0)

p
cosh l0(txt0),

, (36)

for S(0)<1: Here a is another integration constant that

depends on the initial condition:

a=x
sinh l0t0
2A(0)

[A(0)2xS(0)2], (37)
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for S(0)>1, and

a=+
cosh l0t0
2A(0)

[A(0)2xS(0)2], (38)

for S(0)<1:

The reduced model with spatial extent

As in the model without spatial extent, the polymerization

dynamics seems to be controlled by the dynamics of the

shortest polymer. In other words, the polymerization dy-

namics of the longer polymers is enslaved by that of the

shorter ones.

This is the basis of the reduced model of BAHN and hence

we consider a reduced model with spatial extent. The new set

of reduced model equations reads as

(@t+u � =xkr2)X=l0FX(X,Y),

(@t+u � =xkr2)Y=l0FY(X,Y),
(39)

where FX and FY are the right hand sides of the reaction

equations (28) and (29).

A crucial property of this model is its bifurcation behavior

in time, as we have seen when considering the models with no

spatial extent. For u=k=0, we now have the spatially

homogeneous solution X(x, t)=Y(x, t)=1/2, i.e. there are

equally many right and left handed molecules. Furthermore

for f>1/2, there are the two additional solutions,

X(x, t)=1xY(x, t)=x1t
ffiffiffiffiffiffiffiffiffiffiffiffi
2fx1

p
: (40)

The question we wish to answer is how an initially nearly

homogeneous racemic mixture attains a final state, whether

or not it is composed of regions of different handedness and

what are the relevant time scales.

The one-dimensional case

Using the previously introduced variables S, A and special-

izing to the one-dimensional case, the equations without

advection (39) take the form

_SS=l0(1xS2)+kSa (41)

_AA=l0SA
2

S2+A2 x1

� �
+kAa, (42)

where primes indicate a derivative with respect to x. Clearly

S(x, t)=1 is a solution of the first equation. Numerically we

have seen that S tends to 1 very quickly from a Sl1: initial

state. Unless k is very large, one can view the problem in two

parts : first S relaxes to S=1 and then A begins to evolve

spatially. With S=1, Eq. (42) takes the form

_AA=l0FA(x, t)+kAa, (43)

where we have introduced

FA=A 1xA2

1+A2 : (44)

The time independent equation _AA=0 can be integrated once

and written in a suggestive form as

k

2l0
(A0 )2xV(A)=0, (45)

where

V(A)=1
2A

2x ln (1+A2)+V0, (46)

is the potential and V0 is an integration constant. The form of

the potential is shown in the left hand panel of Fig. 2. The

minimum is degenerate, the two minima are located at A=
t1 reflecting the Z2 symmetry of the theory. The minima

correspond to the two stable solutions the system tends to. As

usual, there is a domain wall solution interpolating between

the two minima. The solution is shown in the right hand panel

of Fig. 2. The shape is very well approximated by A(x)=
tanh (xax

ffiffiffiffiffiffiffiffiffiffi
l0=k

p
), where a&0:58: So in one dimension the

initially racemic mixture tends to form domain walls separ-

ating left and right handed regions. One can therefore see the

process as spontaneous symmetry breaking into different

domains. Numerical work confirms the analytical consider-

ations: the region breaks into different domains that once

relaxed to g=t1, are separated by time independent domain

walls. In one dimension, it is hence difficult to achieve a

homogeneous mixture unless the initial perturbation is only

directed towards one of the minima.
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Fig. 2. Potential V(A) (for V0=0) and the solution interpolating between the left and right handed regions.
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In Fig. 3 we show a space-time diagram of the solution

of the one-dimensional problem without advection and an

initial perturbation corresponding to a weak right handed

excess at x/L=0.1 and a somewhat stronger left handed

excess at x/L=x0.1. Note the propagation of fronts with

constant speed nfront, as given by Eq. (3), if the exterior is

racemic (i.e. X=Y=1/2) and a nonpropagating front when

the chirality is opposite on the two sides of the front.

The higher-dimensional case

We have seen that in one dimension, the racemic mixture

naturally tends toward a state where there are left and right

handed domains. Extending the analysis is straightforward.

Keeping in mind the picture of symmetry breaking into

different A minima, one can envision how the spatial distri-

bution first breaks up into different domains. The question is

then whether these domains are stable or not. This question

is easily answered by considering a spherical bubble,

described by

_AA=l0FA(r, t)+k
@2A
@r2

+
Dx1

r

@A
@r

� �
: (47)

In one dimension (D=1) this has a solution where the RHS

vanishes, making the solution stable. However, in more

than one dimension (D>1) this is not the case. Consider the

time-independent solution in one dimension: a mechanical

analogy is a point mass moving under gravity in the inverted

potentialxV(A) with r playing the role of time. The solution

that interpolates between the two minima corresponds to the

point mass rolling down from the top of the hill and then

stopping at the top of the other hill. This is possible because

in the mechanical analogy, the equations of motion include

no friction term. InD>1 dimensions, the situation is different

due to the presence of the term proportional to (Dx1)@rA:

Analogously to the one-dimensional case, this term acts as

(time dependent) friction. Hence, there is no spherically

symmetric stable solution in more than one spatial dimension.

The time dependence will work in the direction as to shrink

the bubble as is evident from Eq. (47). In a more complicated

system, where the wall is not a simple bubble, this analysis

still describes the behavior qualitatively: the local curvature

determines whether a local region tends to shrink or expand.

This behavior is also confirmed numerically.

Evolution of the enantiomeric excess

In order to measure the speed of the process, we need to

consider global quantities that well represent the left or right

handedness of the whole system. In the reduced model we use

the enantiomeric excess, as defined in Eq. (22), based on ER=R
X(x, t)dDx, EL=

R
Y(x, t)dDx: Assuming furthermore S=

1, in D dimensions we have g=
R
AdDx, and so for f=1 we

have

dg

dt
=

l0

LD

Z
FA(x, t)d

Dx, (48)

because the integral over the laplacian vanishes for periodic

boundary conditions. Here, L is the size of the domain and

D=2 or 3 for two and three-dimensional systems, respect-

ively.

We have calculated the evolution of X(x, t) and Y(x, t)

through numerical simulations in two and three spatial

dimension, with and without advection. We use the PENCIL

CODE
1, which is a modular high-order finite-difference code

(sixth order in space and third order in time) for solving

general partial differential equations and, in particular, the

compressible hydrodynamic equations. We usually start

with random initial conditions where X and Y are uniformly

distributed between 0 and 1. The results of the simulations are

shown in Figs 4–10.

In Fig. 4 we show the evolution of g for a model with large

spatial extent; L=jmicro=16p&50: Note that the evolution

proceeds in steps with piecewise constant values of _gg (see the

inset). The progressively decreasing value of _gg is associated

with a reduction of the number N of topologically connected

regions in the full domain. Looking at Fig. 5, N decreases

Fig. 3. Profile of X(x, t
*
) and space-time diagram of X(x, t) for

the one-dimensional problem without advection and an initial

perturbation corresponding to a weak (amplitude 0.01) right

handed excess at x/L=0.1 (marked in white or yellow) and a

somewhat stronger (amplitude 0.3) left handed excess at x/L=x0.1

(marked in dark or blue). Note the propagation of fronts with

constant speed if the exterior is racemic (i.e. X=Y=1/2, shown in

medium shades or red) and a nonpropagating front when the

chirality is opposite on the two sides of the front. The normalized

diffusivity is k=(L2l0)x10x2, i.e. the same as in Fig. 1.

1 http://www.nordita.dk/data/brandenb/pencil-code.
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fromN=4 at t/tdiff=0.002 toN=1 at t/tdiff=0.01, in accord

with the change of slope of g(t) see in Fig. 4.

A blow-up of the little white region in the third panel of

Fig. 5 (t/tdiff=0.006) is shown in Fig. 6. Here, instead of X,

we show FA along with a cross-section of the loop. Both

inside and outside the ring FA=0, and FAl0 only at the

location of the ring-like front.

While the fronts shrink and finally disappear, they appear

surprisingly robust and the relaxation to the final homochiral

state is a slow process compared to the initial local relaxation

to many disconnected regions with g=t1: So, even though

the local relaxation occurs on the time scale tmicro, the total

homochiralization process takes place on the much longer

time scale, tdiff.

The piecewise linear scaling of g(t) is associated with the

simple front structure shown in Fig. 6. We recall that _gg is

directly proportional to FA. However, not only is FA=0

outside the front, the positive and negative contributions on

either side of the front almost cancel. In fact, if the front were

straight, the two contributions from either side of the front

would cancel exactly, in which case _gg=0: The only reason the

two contributions do not cancel exactly is because the inner

and outer parts of the front have different radii, r1 and r2.

Denoting the width of each ring by Dr, and since their

separation is also &Dr, we have _gg / (r2xr1)Dr& (Dr)2:

Note that (Dr)2 is independent of time. Thus, the value of _gg

is independent of how complicated the structures are, as long

as its topology is the same. Furthermore, our simulations

confirm that (Dr)2 is proportional to k=l0 (see below for a

quantitative demonstration).

So far we have always assumed that kI=kS=f=1: If this is

not the case, then l=l0(=2fx1) will be different from unity,

and so will be jAj. Instead,A=t
ffiffiffi
l

p
[see Eqs. (43) and (44) of

BAHN]. Furthermore, the expression for FA is different from

that given in Eq. (44), and is now

FA=A lxA2

1+A2 : (49)

However, as before, FA=0 on either side of the front, and a

finite contribution comes only from an imperfect cancellation

from within the front, where it is governed by the value of

A /
ffiffiffi
l

p
: This is also confirmed numerically and we find (see

Fig. 7)

dg

dt
&12:5N 2l2

QkS

� �1=4
k

L2
, (50)

where we have included the dependence on the number of

topologically disconnected structures N , and the growth

rate l0 has been expressed in terms of Q and kS. Note, in

particular, that there is no evidence for a correction arising

possibly from the denominator of Eq. (49).

In three dimensions, the evolution of g(t) is no longer per-

fectly linear, but an average value of _gg can still be determined.

Fig. 5. Plot of X(x, y) at four different times for the same

simulation as in Fig. 4. White indicates X=1 and dark indicates

X=0. Note that the number of disconnected regions decreases from

4 in the first plot to 3, 2, and 1.

Fig. 6. Color/gray scale representation of the quantity FA(x, y, t)

corresponding to the third plot in Fig. 5 near the location of the

small isolated ring. Note the sharp alternations of the sign of

FA just at the boundary of the ring.

Fig. 4. Evolution of g for a two-dimensional simulation with

k=(L2l0)=2r10x4, L=jmicro=16p, and 10242 mesh points

resolution. The inset shows the normalized slope. Note the fours

distinct regimes with progressively decreasing slope.
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It turns out that these values are rather similar to the two-

dimensional case; see Fig. 8. In three dimensions the only

finite contribution to FA comes from a pair of shells with radii

r1 and r2, so _gg / (r22xr21)Dr&2�rr(Dr)2, where �rr is some mean

radius that depends on time as the shells shrink. This explains

the departures from linear scaling in the three-dimensional

case. In terms of k one has _gg / k�rr=L3: The observed similarity

between two and three-dimensional cases suggests that

2�rr=L=O(1):

The main conclusion from these studies is that the growth

of the enantiomeric excess occurs via diffusion and not via

front propagation.

Finally we turn to the case of a finite advection velocity u.

The evolution equations for X and Y are now supplemented

by an evolution equation for the three components of u and,

in this case, for the logarithmic density. The turbulence is

forced in a narrow band of wavenumbers that are about 3

times the minimum wavenumber of the box. For the present

discussion the important quantities are the root mean square

velocity, urms, and the energy carrying scale ‘(=L/3 in the

present case). The details of such simulations2 have been

discussed elsewhere in more detail (e.g., Brandenburg 2001;

Brandenburg et al. 2004b).

In the presence of turbulence, originally detached regions

with growing right and left handed polymers are driven into

close contact, enhancing thereby the probability of ex-

tinguishing one of the two possible file forms; see Fig. 9. It

turns out that _gg still grows roughly linearly in time, but now

at a dramatically enhanced rate ; see Fig. 10. As expected,

there is no dependence on k and the physically relevant

quantities are instead urms and ‘.

It is possible – and indeed customary – to express the

enhanced turbulent transport in terms of a turbulent (eddy)

diffusivity. Combining _gg& (0:3 . . . 0:6)urms=L (from Fig. 10)

and _gg&12:5kturb=L
2 [the latter being as a definition of kturb ;

cf. Eq. (50)], we find

kturb& (0:08 . . . 0:15)urms‘, (51)

where we have used ‘=L/3. This is somewhat below the

canonical estimate of 1
3urms‘ (Prandtl 1925) for turbulent

diffusion of a passive scalar, but consistent with results of

simulations of passive scalar diffusion (e.g., Brandenburg et al.

2004b). Thus, the fact that the flow has reactive properties

does not seem to affect the turbulent mixing.

Fig. 7. Normalized values of _gg as a function of l for k=(L2l0)=
6:3r10x6 (diamonds) and 1.3r10x5 (plus signs). Both groups of

data points overlap and match the fit formula Eq. (50). In order to

reduce noise in the date we have chosen a single ring-like structure

as initial condition.

Fig. 8. Normalized values of dg=dt obtained from simulations

in two dimensions (dots) and three dimensions (circles). In the

three-dimensional runs, the resolution is varied between 323 for

k/(L2l0)=8r10x3 and 2563 for k/(L2l0)=3r10x4. In all cases

L/jmicro=2p.

Fig. 9. Plot of X(x, y, t) in a two-dimensional simulation with

turbulence. As in Fig. 5, k/(L2l0)=2r10x4, L/jmicro=16p, and

10242 mesh points resolution. Note the narrow elongated structures

enhancing significantly the chance of extinguishing one or the other

life form.

2 Animations of both turbulent and purely diffusive solutions can be

found at http://www.nordita.dk/ybrandenb/movies/chiral.
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It should also be pointed out that the overall structure of

X and Y is now rather irregular and no longer front-like as

in the case of pure diffusion. Thus, the fact that we can define

a turbulent value of the diffusivity does not mean that with

turbulence the mean distributions of X and Y can accurately

be described by a diffusion term.

Discussion

Our studies have shown that, without advection, the en-

antiomeric excess grows toward homochirality with the speed

_gg � k=L2, where L is the physical size of the system; see

Eq. (50). This can be much slower than the propagation of

epidemics which proceeds on the faster time scale tfront=
L=nfront: For the Earth, this would yield a time scale for

homochiralization of t � 1017 s, i.e. comparable to the age of

the universe. So the diffusive process is too slow in creating

large homogeneous areas of one chirality, even though within

a local region, a single handed state is created on the time

scale lx1
0 , which could be on the order of days [see the dis-

cussion after Eq. (24)], or even years (as in the context of the

spreading of epidemics).

Turbulence, however, changes the situation drastically: the

speed toward homochirality is effectively _gg � urms=L, which,

assuming a root mean square flow speed of say 1 cm/s, leads

to time scales of a hundred years, in rough agreement with

results from ocean mixing studies where horizontal eddy dif-

fusivity is found to be of the order of 103 m2/s (Stewart 2003,

Chap. 8.5).

Comparisons to present day oceanographic studies must be

done with care, however, as there are a number of factors that

can affect both horizontal and vertical mixing such as the

higher salinity in the early oceans (Knauth 1998) and most

importantly the possible lack of continents on the early

Earth. The role of continents is manifold as they aid in the

vertical mixing and are possibly needed in creating large scale

flows (Garrett 2003). Hence, the conditions and mixing in the

early oceans may have been quite different from the complex

system of currents what we observe today. In addition, fre-

quent impacts on the early Earth may not only have led to

increased mixing, but also to global extinction of life more

than once (Wilde et al. 2001).

Although it is impossible to know with any degree of cer-

tainty the amount of mixing in the early ocean, the time scales

may have been rather long. If this is the case, the question of

homochirality would remain open. Thus, it might therefore

be interesting to investigate in more detail whether the chir-

ality of biomarkers from early marine sediments can be

determined. An obvious difficulty with this proposal is the

fact that dead matter tends to racemize spontaneously on

time scales that are typically shorter than a million years (e.g.,

Bada 1995).
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