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Evidence for non-Fickian diffusion of a passive scalar is presented using direct simulations of
homogeneous isotropic turbulence. The results compare favorably with an explicitly time-dependent
closure model based on the tau approximation. In the numerical experiments three different cases
are considered:~i! zero mean concentration with finite initial concentration flux,~ii ! an initial top hat
profile for the concentration, and~iii ! an imposed background concentration gradient. All cases
agree in the resulting relaxation time in the tau approximation relating the triple correlation to the
concentration flux. The first-order smoothing approximation is shown to be inapplicable. ©2004
American Institute of Physics.@DOI: 10.1063/1.1651480#

I. INTRODUCTION

In a turbulent flow the transport of a passive scalar is an
important problem in atmospheric research, astrophysics,
and combustion.1,2 Passive scalar transport is also an impor-
tant benchmark for more complicated turbulent transport
processes such as turbulent magnetic diffusion and the alpha
effect in dynamo theory,3,4 or turbulent viscosity and its non-
diffusive counterparts such as the AKA effect5,6 and the
Lambda effect.7,8

Modeling turbulent transport in terms of turbulent diffu-
sion is known to have major deficiencies. For example tur-
bulent transport is known to be anomalous, i.e., the widths
of a localized patch of passive scalar concentration may ex-
pand in time likes2;tb, whereb51 corresponds to ordi-
nary ~Brownian! diffusion, b.1 is superdiffusion, andb,1
is subdiffusion.9 Thermal convection, for example, has su-
perdiffusive properties.10 Turbulent transport is also known
to have nonlocal and nondiffusive properties. One of the out-
comes of this realization was the development of the transil-
ient matrix approach11,12 which captures nonlocal transport
properties, although only in a diagnostic fashion.10 In order
to describe nonlocal aspects in a prognostic fashion, higher
order spatial derivatives of the turbulent fluxes need to be
included. These are best incorporated in terms of an integral
kernel.13

In the present work, however, instead of invoking higher
order spatial derivatives, we follow the recent proposal of
Blackman and Field14,15 to include an additional second-
order time derivativeinstead. This turns the diffusion equa-
tion into a damped wave equation. Blackman and Field de-

rived this equation from turbulent mean field theory by
retaining triple correlations in the transport equation for the
mean flux of a passive scalar. They assumed an isotropic
turbulent flow and use a closure which relates triple correla-
tions to double correlations.16–19 This approach is in some
ways more elegant than the classical first-order smoothing
approximation,3,4,20 which breaks down because it assumes
that the triple correlations are simply negligible. This ap-
proach also incorporates the momentum equation and, in
magnetohydrodynamics, it therefore allows a natural deriva-
tion of the feedback term of the alpha effect in
magnetohydrodynamics.14,19

Adding an extra time derivative in the equation for the
turbulent transport of a passive scalar does certainly solve
another long-standing problem. Solutions to the diffusion
equation are known to violate causality, because the diffu-
sion equation is elliptic and the propagation speed of a signal
is infinite.21 This problem was originally discussed in the
context of general relativity,22 and more recently in the con-
text of black hole accretion.23,24 The extra time derivative
affects the modeling of turbulent transport most strongly at
early times, just after having injected the passive scalar. This
additional time derivative term tends to make the turbulent
transport more ballistic at early times~corresponding to
b'2!. This property is well known in the context of standard
Brownian motion.

Non-Fickian diffusion has previously also been dis-
cussed in various engineering applications, for example in
diffusion problems in composite media25,26 and in neutron
transport problems in reactors,27 which are best modeled us-
ing non-Fickian diffusion. Here, a non-Fickian diffusion
equation for particle transport arises by taking moments of
the one-dimensional Kramers equation, and approximating
the second moment by the Maxwellian value.26,28 In these
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applications, however, turbulence is not considered. One ex-
ception is the recent work of Ghosal and Keller,29 who de-
rived a non-Fickian diffusion equation with the extra time
derivative by going to the next higher order in an expansion
of the underlying integral equation. Comparing with data on
smoke plumes in the atmosphere and on heat flow in a wind
tunnel they find improved agreement with non-Fickian diffu-
sion at small distances from the source.

Given that the diffusion equation is now turned into a
damped wave equation, one wonders whether oscillatory be-
havior is possible. Blackman and Field15 find that oscillatory
behavior is indeed present for long enough damping times
but disappears for short damping times. For diffusion of a
mean passive scalar, they argue that the oscillatory behavior
is likely unphysical, and they use this to constrain their
damping time to be of order of the eddy turnover time. How-
ever, the different numerical experiments presented below
suggest that the damping time is about three times longer
than the eddy turnover time. Furthermore, the simulations
give direct evidence for mildly oscillatory behavior in a cer-
tain parameter regime.

The objective of the present paper is twofold. First we
need to find out whether the existence of the proposed addi-
tional time derivative can actually be confirmed using turbu-
lence simulations. If so, we need to find out the magnitude of
this extra term. Second, we need to study the range of modi-
fications expected from this new term. In order to do this we
consider numerical simulations of weakly compressible tur-
bulence including the transport of a passive scalar.

We begin by discussing the formalism that leads to the
emergence of the additional time derivative in mean field
theory. We then discuss the type of simulations carried out
and present three numerical experiments that quantify the
relative importance of the additional time derivative and that
support the tau-approximation formalism.

II. FIRST ORDER SMOOTHING VERSUS
t APPROXIMATION

A classic application of passive scalar transport is the
diffusion of smoke in a turbulent atmosphere. If the smoke is
injected in one point it will diffuse radially outward, so the
mean concentration is expected to be a function of radiusr
and timet. In that case it makes sense to consider averages
over spherical shells, i.e.,

C̄~r ,t ![
1

4p E
0

2pE
0

p

C~r ,u,f,t !sinu du df, ~1!

whereC is the concentration per unit volume. Another appli-
cation is the passive scalar diffusion between two parts of a
slab that are initially separated by a membrane. In that case
the mean concentration varies along the direction of the slab,
sayz, and then it makes sense to define horizontal averages,
i.e.,

C̄~z,t ![
1

LxLy
E

0

LxE
0

Ly
C~x,y,z,t !dx dy. ~2!

This is also the type of average that is best suited for studies
in Cartesian geometry considered here.

For clarity of the presentation here we ignore micro-
scopic diffusion, in which caseC satisfies the simple conser-
vation equation,

]C

]t
52“•~UC!, ~3!

where U is the fluid velocity. The effects of finite micro-
scopic diffusion will be discussed in the Appendix. We now
split U andC into mean and fluctuating parts, i.e.,

U5Ū1u, C5C̄1c, ~4!

and average Eq.~3!, so we have

]C̄

]t
52“•~ŪC̄1uc!. ~5!

The challenge is now to find an expression for the concen-
tration flux, uc[F̄ in terms of the mean concentration,C̄.
The standard approach is to express the departure of the con-
centration from its average,c[C2C̄, in terms of its past
evolution, i.e.,

c~x,t !5E
0

t

ċ~x,t8!dt8, ~6!

where the dot denotes time differentiation and

ċ[Ċ2CG 52“"~Ūc1uC̄1uc2uc! ~7!

is the evolution equation for the passive scalar fluctuation
obtained by subtracting Eq.~5! from ~3!. In the first-order
smoothing approximation or, which is the same, the quasi-
linear or second-order correlation approximation,7 one ig-
noresthe terms that are nonlinear in the fluctuations, i.e., the
termsuc2uc in Eq. ~7! are simply omitted.3,4 This is only
justified if microscopic diffusion is large~but we have al-
ready assumed it to be negligible! or if the velocity is delta-
correlated in time~which is also unrealistic!.

The terms that are nonlinear in the fluctuations would
lead to triple correlations of the formuiuj] j c. Various au-
thors have proposed to approximate triple correlations by
quadratic correlations14,16–19 which, in the present case,
would beuic/t; see Ref. 15. This is reminiscent of the eddy-
damped quasi-normal Markovian approximation,30,31 where
fourth-order correlations are approximated by third-order
correlations. This is normally referred to as the tau approxi-
mation. In order to distinguish the two approaches, Black-
man and Field15 call the approach used in Refs. 14,16–19 the
‘‘minimal tau approximation.’’ In these approaches one cal-
culates notF̄, but instead its time derivative. In that case the
time integration in Eq.~7! disappears and one has

]F̄
]t

5u~x,t !ċ~x,t !1u̇~x,t !c~x,t !. ~8!

This leads to the final equation

]F̄i

]t
52uiuj] j C̄2

F̄i

t
, ~9!

where t is some relaxation time and incompressibility has
been assumed, i.e.,] juj50. We shall now also assume isot-
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ropy, uiuj5
1
3d i j urms

2 , where urms is the rms velocity with

urms
2 5u2. The validity of Eq.~9! is clearly something that

ought to be checked numerically using turbulence simula-
tions. This is the main objective of the present paper.

The other aspect is that the time derivative may not be
ignorable in the final set of evolution equations. Thus, in
contrast to ordinary Fickian diffusion, where the passive sca-
lar flux F̄ is assumed to be proportional to the mean negative
concentration gradient~Fick’s law!, i.e.,

F̄52k t“C̄ ~Fickian diffusion!, ~10!

wherek t5
1
3tcorurms

2 is the turbulent passive scalar diffusivity
andtcor is some correlation time, one now has15

F̄52k t“C̄2t
]F̄
]t

~non-Fickian!, ~11!

where k t5
1
3turms

2 . Equation ~10! can be reconciled only
when time variations of the concentration flux have become
small and if the correlation timetcor is identified with the
damping timet.

Applying ] t1t21 on both sides of~5!, ignoring for sim-
plicity a mean flow ~Ū50!, and inserting~11! yields a
damped wave equation,

]2C̄

]t2
1

1

t

]C̄

]t
5

1

3
urms

2 ¹2C̄. ~12!

We note in passing that the extra term is in some ways analo-
gous to the displacement current in the Maxwell equations.
This is why this equation is also known in the literature as
the Cattaneo–Maxwell equation.32 The maximum signal
speed is limited byurms/A3. Assessing the importance of the
extra time derivative is another objective of the present pa-
per.

The only ill-known free parameter in this theory ist,
whose value is conveniently expressed in terms of the Strou-
hal number,4

St5turmskf , ~13!

wherekf is the forcing wavenumber or, more generally, the
wavenumber of the scale of the energy carrying eddies. Here
and elsewhere we considerurms as a constant~independent of
z and t!.

Some preliminary estimate of St can be made by consid-
ering the late time behavior where Fickian diffusion holds.
From Eq.~10! we expect that the decay rate of a large scale
pattern with wavenumberk1 is

lc5k tk1
2, ~14!

wherek t5
1
3turms

2 is the turbulent diffusion coefficient. From
forced turbulence simulations with initial mean flow or mean
magnetic field patterns,33 the decay rates of these patterns are
well described by a turbulent kinematic viscosity,n t , and a
turbulent magnetic diffusion coefficient,h t , where both co-
efficients are about equally large with

n t'h t'~0.8...0.9!3urms/kf . ~15!

Applying the same value also tok t we obtain

St'~0.8...0.9!3352.4...2.7. ~16!

This result is remarkable in view of the fact that in the classic
first-order smoothing approach to turbulent transport coeffi-
cients one has to assume St!1; see Refs. 4 and 20.

III. COMPARISON WITH SIMULATIONS

In order to test the viability of the non-Fickian diffusion
approach and to determine the value of St we have designed
three different types of turbulence simulations. We first con-
sider the problem of a finite initial flux,F̄, but with zero
mean concentration,C̄50.15 Next we consider the evolution
of an initial top hat profile forC and finally we investigate
the case of an imposed uniform gradient ofC which leads to
the most direct determination oft as a function of Reynolds
number and forcing wavenumber. We begin with a brief de-
scription of the simulations carried out.

A. Summary of the type of simulations

We consider subsonic turbulence in an isothermal gas
with constant sound speedcs in a periodic box of size 2p
32p32p. The Navier–Stokes equation for the velocityU is
written in the form

DU

Dt
52cs

2
“ ln r1Fvisc1f, ~17!

wherer is the density,D/Dt5]/]t1U•“ is the advective
derivative,

Fvisc5nS ¹2U1
1

3
““•U12S•“ ln r D ~18!

is the viscous force wheren5const is the kinematic viscos-
ity, Si j 5

1
2(Ui , j1U j ,i)2 1

3d i j Uk,k is the traceless rate of strain
tensor, andf is a random forcing function~see below!. The
continuity equation is

]r

]t
52“•~Ur!, ~19!

and the equation for the passive scalar concentration per unit
volume,C, is

]C

]t
52“•FUC2rkC“S C

r D G , ~20!

wherekC5const is the diffusion coefficient for the passive
scalar concentration, which is related ton by the Schmidt
number,

Sc5n/kC . ~21!

Throughout this work we take Sc51. A nondimensional
measure ofn and hencekC is the Reynolds number, which is
here defined with respect to the inverse forcing wavenumber,

Re5urms/~nkf !. ~22!

The maximum possible value of Re depends on the resolu-
tion and the value ofkf . For kf51.5 the typical value is
approximately equal to the number of meshpoints in one
direction.

We adopt a forcing functionf of the form
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f~x,t !5Re$Nfk~ t ! exp@ ik~ t !•x1 if~ t !#%, ~23!

where x5(x,y,z) is the position vector, and2p,f(t)
,p is a~d-correlated! random phase. The normalization fac-
tor is N5 f 0cs(kcs /dt)1/2, with f 0 a nondimensional forcing
amplitude,k5uku, and dt the length of the time step; we
chose f 050.05 so that the maximum Mach number stays
below about 0.5~the rms Mach number is close to 0.2 in all
runs34!. The vector amplitudefk describes nonhelical trans-
versal waves withufku251 and

fk5~k3e!/Ak22~k•e!2, ~24!

where e is an arbitrary unit vector. At each time step we
select randomly one of many possible wave vectors in a fi-
nite range around the forcing wavenumberkf ~see below!.

The equations are solved using the same method as in
Ref. 35, but here we employ a new cache and memory effi-
cient code36 using MPI ~Message Passing Interface! library
calls for communication between processors. This allows us
to run at resolutions up to 10243 meshpoints.37,38

B. Finite initial flux experiment

We consider first the example discussed by Blackman
and Field.15 In Fickian diffusion, ifC̄50, there should be no
flux, i.e., F̄50. Although this should in general be correct,
one can imagine contrived situations where this is not the
case, so it is an ideal problem to test whether the inclusion of
the extra time derivative of the flux is at all correct and
meaningful. Without this extra time derivativeC̄ would al-
ways stay zero.

To explain in simple terms what happens, consider a
situation where we have initially uniformly mixed white and
black balls ~so C̄50), but for some reason the balls are
given an initial push such that the white balls move to the
right part of the domain and all the black balls move to the
left part of the domain. Then, after a short time, there should
be a systematic segregation of white and black balls, in spite
of continuous random forcing. Of course, this segregation
survives only for a dynamical time, after which ordinary dif-
fusion will begin to mix white and black balls.

In order to set up such a situation in a turbulence simu-
lation we assume that att50 the turbulence has already fully
developed and then we initialize the passive scalar distribu-
tion according to

C~x,y,z,0!5C0

uz~x,y,z,0!

urms
sink1z. ~25!

Sinceūz50, and since the Reynolds rules4 are obeyed by our
horizontal averages, we haveC̄(z,0)50, but becauseuz

2

Þ0, we haveF̄z5uzcÞ0.
Numerically, we monitor the evolution of^C̄2&1/2, where

angular brackets denote an average overz. This is to be
compared with the analytic solution of the model equation
~12!. Assuming thatC̄(z,t) is proportional to exp(ik1z1lt),
the two eigenvalues are

l6~k1!52l06Dl~k1!, ~26!

where

l05
urmskf

2St
, Dl~k1!5Al0

22 1
3 urms

2 k1
2. ~27!

The solution that satisfiesC̄(z,0)50 is

^C̄2&1/25A exp~2l0t !sinh~Dlt !, ~28!

whereA is an amplitude factor. Oscillatory solutions are pos-
sible ~Dl imaginary! either when St is large enough or, since
St cannot be manipulated in a simulation, whenkf is small
enough. According to Eq.~16! we can estimate

kf /k1,2St/A3'3 ~oscillatory behavior!. ~29!

In the oscillatory case,Dl is imaginary and sô C̄2&1/2 is
proportional toe2l0tusinvtu, wherev5Im Dl.

Note that the solution depends only on the combination
St/kf , wherekf should be a known input parameter for a
given simulation. However, in order to be able to fit the
model to the simulation we have considered St andkf as
independent fit parameters and refer then to the quantity
kf

(fit) . The results of our fits of the simulations to the models
are shown in Fig. 1. The corresponding fit parameters are
listed in Table I.

We see that in all cases the Strouhal number does indeed
exceedunity. The resulting value is close to the value based
on our simple estimate in Eq.~16!. Second, oscillatory be-
havior of the solution is not only mathematically possible for
small values ofkf , see Eq.~26!, but it is even physically
realized in the solution forkf /k151.5.

FIG. 1. Passive scalar amplitude,^C̄2&1/2/C0 , vs time ~normalized by
urmskf) for two different values ofkf /k1 . The simulations have 2563 mesh-
points. The results are compared with solutions to the non-Fickian diffusion
model.

TABLE I. Summary of fit parameters for the finite initial flux experiment. In
all cases, the measured value ofurms50.23 is used. Note thatkf

(fit) is an
independent fit parameter used instead ofkf to model the solution for a
given value ofkf . The range of wavenumbers used in the forcing function
is also given.

kf /k1 ~Range! kf
(fit) /k1 St~fit! A(fit)

1.5 ~1–2! 1.0 1.8 0.21
2.2 ~2–3! 1.6 1.8 0.38
5.1 ~4.5–5.5! 3.8 2.4 0.18
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C. Initial top hat function

Next we consider the problem of an initial step function.
The advantage of such a profile as initial condition is that a
broad spectrum of wavenumbers is excited. In order to avoid
sharp jumps in the initial condition we choose a smoothed
top hat function using the initial profile

C~x,y,z,0!5 1
21 1

2 tanh@kz
2~d22z2!#, ~30!

wherekz52 andd51 throughout this work.
It is important to start the experiment at a time when the

turbulence is fully developed. A visualization ofC at three
different times after reinitializingC is shown in Fig. 2.

For Fickian diffusion the initial top hat function will
broaden and develop eventually into a Gaussian. As usual,
for large enough values of the Strouhal number, wave-like
behavior is possible and this would correspond to the initial
bump splitting up into two bumps traveling in opposite di-
rections. We have not been able to see this in our simulations
so far. We have therefore decided to introduce as a quantita-
tive measure of the departure from a Gaussian profile the
kurtosis,

k5
1

s4

* Cz4 dz

* C dz
, ~31!

wheres quantifies the width of the profile with

s25
* Cz2 dz

* C dz
. ~32!

For a Gaussian profile we havek53, so we always plotk23.
At early times,s2 increases quadratically witht, but it

soon approaches the linear regime,s2;t, until s saturates at
a value comparable to the scale of the box; see Eq.~12!.

In Fig. 3 we compare the simulation results fors2 and
k23 with those obtained from the model~12! using the same
boundary conditions~periodic inz! and for the same values
of urms. For simplicity we solve Eq.~12! numerically. How-
ever, similar to the cases considered in Sec. III B, we are
unable to obtain good fits if we choose exactly the same
values ofkf as in the simulation. Therefore, like in Sec. III B,
we treatkf as a fit parameter denoted bykf

(fit) ; see Table II.
There are characteristic departures in the values ofs2

andk23 for the model compared with the simulations. This
could perhaps be explained by the fact that, especially when
kf /k1 is of order unity, the horizontal averagesC̄ obtained
from the simulations are strongly ‘‘contaminated’’ by a small

number of large eddies. Nevertheless, both at early and at
late times the agreement between model and simulation is
excellent.

The results in this subsection confirm our finding of Sec.
III B that St is around 2~or even larger!. Again, this is large
enough for oscillatory effects to appear whenkf /k1 is small.

D. Imposed mean concentration gradient

Finally, we consider the case of a uniform gradient in the
mean concentration. It is advantageous to splitC into two
contributions,

C~x,y,z,t !5r~x,y,z,t !Gz1c~x,y,z,t !, ~33!

whereG5const is the imposed mean gradient of the concen-
tration per unit mass~not unit volume!. Although C is now
no longer periodic, this choice still preserves periodic bound-
ary conditions for the departurec from the background pro-
file rGz. Inserting Eq.~33! into Eq. ~20! we have

FIG. 2. C(x,0,z) at three different times after reinitializingC according to
Eq. ~30!. kf /k151.5, ReLS5400.

FIG. 3. Comparison of the evolution ofs2 and the kurtosisk23 for the
non-Fickian diffusion model and the simulation. Note the good agreement at
early and late times, but there are departures at intermediate times. The
simulations have 2563 meshpoints.

TABLE II. Summary of fit parameters for the initial top hat function experi-
ment. In all cases, the measured value ofurms50.23 is used. Note that the
values of St~fit! are the same as those used in Sec. III B, and the values of
kf

(fit) are now slightly closer tokf than before.

kf /k1 kf
(fit) /k1 St~fit!

1.5 1.3 1.8
2.2 2.0 1.8
5.1 4.6 2.4
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]c

]t
52“•FUc2rkC“S c

r D2rkCGẑG2rUzG, ~34!

whereẑ is the unit vector in thez direction. The main advan-
tage of this setup is the fact that we can now define mean
fields by averaging over the entire volume. We denote such
averages by angular brackets. Note that^U&50, soU5u. The
mean passive scalar flux is then^uc& and the triple correla-
tion arising from^uzċ& is

T15^uz“•~uc!&. ~35!

Furthermore, there are triple correlation terms arising from
the ^u̇zc& term via the momentum equation. Theu"“u term
yields the triple correlation

T25^~uc!•“uz&, ~36!

and the pressure gradient term,“p5cs
2
“ ln r, yields

T35^c¹zp&, ~37!

where p5cs
2 ln r can be regarded as a ‘‘reduced’’ pressure

and is related to the enthalpy. There is no correlation arising
from the forcing term, because the forcing is delta-correlated
in time. Furthermore, the contributions from the viscous and
diffusive terms are small. Because of periodic boundary con-
ditions, T11T250, so the only contribution surviving from
the sum of all three terms isT3 . Thus, the final expression
for t is

t5^uzc&/^c¹zp&. ~38!

We note however that, on the average, the two contributions
from the momentum equations cancel, i.e.,T21T350.
Therefore it is also possible to calculatet from the contribu-
tions of the passive scalar equation alone, i.e.,

t5^uzc&/^uz“•~uc!&. ~39!

We have calculated a series of simulations for different
values of the Reynolds number as a function ofkf . However,
for a fixed value ofn, and sincekf changes, the Reynolds
number, as defined by Eq.~22!, is not constant. Therefore we
label here the curves by the value of the large scale Reynolds
number that we define as

ReLS5urms/~nk1!. ~40!

The result is shown in Fig. 4.
The resulting value of St depends weakly onkf and in-

creases slowly with increasingkf . This dependence is
weaker for smaller values ofkf . As the Reynolds number
increases, however, the range where St is approximately con-
stant seems to increase. It is therefore conceivable that St
converges to a universal constant whose value is around 3.

Comparing with the work of Kleeorinet al.17,18 one has
to note that thet approximation was originally formulated in
k space~see also the early work of Orszag30!. In Eq. ~9!, on
the other hand, thet approximation is applied directly in real
space which may be the reason for minor differences. Nev-
ertheless, under the assumption of Kolmogorov turbulence
for k.kf , and no turbulence fork,kf , one finds that the
Strouhal number is unity. Given that there can be further

discrepancies arising from differences in the definition of St,
we conclude that their result is in broad agreement with ours.

Since the simulations presented here are weakly com-
pressible, comparison with incompressible theory may not be
quite proper. If the assumption of incompressibility is re-
laxed, i.e.,“"uÞ0, there is an extra term,2ui] juj C̄ on the
right-hand side of Eq.~9!. In Eq. ~12! this leads to an extra
advection term,t21

“•(ŪeffC̄) on the left-hand side. Here,
Ūeff5Ū2tu“•u is a new effective advection velocity; see
Refs. 39 and 40. In the simulations presented here, the term
u“"u is largest whenkf /k1 is small, but even then it is at
most a few percent ofurms

2 kf . This justifiesa posteriori the
neglect of compressibility effects in the interpretation of the
numerical results.

Visualizations ofC on the periphery of the simulation
domain are shown in Figs. 5 and 6 forkf55.1 and 1.5,
respectively.41 Note the combination of large patches~scale
;1/kf) together with thin filamentary structures. This is par-
ticularly clear in the case withkf /k151.5. The kinetic en-

FIG. 4. Strouhal number as a function ofkf /k1 for different values of ReLS .
The resolution varies between 643 meshpoints (ReLS5100) and 5123 mesh-
points (ReLS51000).

FIG. 5. Visualizations ofC on the periphery of the simulation domain at a
time when the simulation has reached a statistically steady state.kf /k1

55.1, ReLS5400.
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ergy spectrum is close tok25/3, but the passive scalar spec-
trum is clearly shallower~perhaps likek1.4; see Fig. 7!.
These spectra are, as usual, integrated over shells of constant
k[uku and normalized such that*0

` EK(k)dk5 1
2^u

2& and
*0

` EC(k)dk5 1
2^c

2&.

IV. CONCLUSIONS

Two important results have emerged from the present
investigation. First, the Strouhal number is generally above
unity and may have a universal value between 2 and 3 for
forced turbulence. This implies that the classical first-order
smoothing approach in invalid. Second, the triple correla-
tions that are normally neglected are of comparable magni-
tude to the second-order corrections that correspond to the
passive scalar flux. The minimal tau approximation in which
the two are assumed to be proportional to each other is
shown to be justified.

As was shown recently by Blackman and Field in the
context of magnetohydrodynamics14 and then in the context
of passive scalar diffusion,15 this leads to an additional time
derivative in the mean field equation which then takes the
form of a damped wave equation. Our work has now shown

that when the forcing occurs on large enough scale (kf

&2k1) there is evidence for mildly oscillatory behavior.
Among the various methods for determining the Strou-

hal number in a turbulence simulation, the approach of im-
posing a uniform gradient of the passive scalar concentration
is the most direct one in that no fitting procedure is needed.
Using this approach requires however firm knowledge that
the functional form of the mean field equation is correct.
This underlines the importance of the first two approaches
where we were able to compare the evolution of various
statistical quantities with those obtained by solving the
model equation. The only shortcoming here is that we had to
find not only the value of the Strouhal number, but we also
had to allowkf

(fit) to deviate~slightly! from the actual value
of kf . Although the difference between the two is perhaps
not unreasonable, one would like to have some theoretical
understanding of this discrepancy.

It is remarkable that in all three experiments the value of
the Strouhal number depends only weakly onkf . This sug-
gests that the relaxation timet decreases with increasing
values ofkf ; see Eq.~13!. We also emphasize that St is
similar in all three experiments, even though the wavenum-
ber corresponding to the variation of the mean concentration
changed significantly. This suggests thatt does not depend
on the scale of the concentration, even though such a depen-
dence is in principle being allowed for.18,19,30

The method used in the present paper to determine the
Strouhal number from simulations can straightforwardly be
applied to magnetohydrodynamics. In that case the magnetic
field plays the role of the passive scalar gradient. Both satisfy
very similar equations and in both cases a mean field can
easily be applied while still retaining fully periodic boundary
conditions. In both cases the closure approach of Blackman
and Field predicts non-Fickian turbulent diffusion and hence
the occurrence of an extra time derivative.14,15Their analytic
approach and closure agrees reasonably well with our simu-
lations. Another application would be to determine the role
of an extra time derivative in connection with turbulent vis-
cosity. In that case a mean gradient could be imposed using
the shearing box approximation.42,43 The first two methods
described in the present paper should also still be applicable
in that case. An obvious question that arises in this connec-
tion is whether non-Fickian diffusive properties could also
play a role in attempts to find useful subgrid scale models for
large eddy simulations. The difficulty here is that one has to
deal with averages that do not satisfy the Reynolds rules.
Apart from this difficulty there should be no reason why an
extra time derivative should not also be incorporated in such
simulations.
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