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Abstract. We present an axisymmetric numerical model of a dynamo active accretion disc. If the dynamo-generated magnetic
field in the disc is sufficiently strong (close to equipartition with thermal energy), a fast magneto-centrifugally driven outflow
develops within a conical shell near the rotation axis, together with a slower pressure driven outflow from the outer parts of the
disc as well as around the axis. Our results show that a dynamo active accretion disc can contribute to driving an outflow even
without any external magnetic field. The fast outflow in the conical shell is confined by the azimuthal field which is produced
by the dynamo in the disc and advected to the disc corona. This part of the outflow has high angular momentum and is cooler
and less dense than its surroundings. The conical shell’s half-opening angle is typically about 30◦ near the disc and decreases
slightly with height. The slow outflow is hotter and denser.
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1. Introduction

The importance of magnetic fields for disc accretion is widely
recognized (e.g., Mestel 1999), and the turbulent dynamo is be-
lieved to be a major source of magnetic fields in accretion discs
(Pudritz 1981a, 1981b; Stepinski & Levy 1988; Brandenburg
et al. 1995; Hawley et al. 1996). A magnetic field anchored in
the disc is further considered to be a major factor in launch-
ing and collimating a wind in young stellar objects and active
galactic nuclei (Blandford & Payne 1982; Pelletier & Pudritz
1992); see Königl & Pudritz (2000) for a recent review of stel-
lar outflows. Yet, most models of the formation and collimation
of jets rely on an externally imposed poloidal magnetic field
and disregard any field produced in the disc. Our aim here is to
study outflows in connection with dynamo-generated magnetic
fields. We discuss parameters of young stellar objects in our
estimates, but the model also applies to systems containing a
compact central object after rescaling and possibly other mod-
ifications such as the appropriate choice of the gravitational
potential.

Extensive numerical studies of collimated disc winds have
been performed using several types of model. Uchida &
Shibata (1985), Matsumoto et al. (1996) and Kudoh et al.
(1998) consider an ideal MHD model of an accretion disc
embedded in a non-rotating corona, permeated by an exter-
nal magnetic field initially aligned with the disc rotation axis.
Intense accretion develops in the disc (Stone & Norman 1994),
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accompanied by a centrifugally driven outflow. The wind is
eventually collimated by toroidal magnetic field produced in
the corona by winding up the poloidal field.

Bell (1994), Bell & Lucek (1995) and Lucek & Bell (1996,
1997) use two- and three-dimensional ideal MHD models, with
a polytropic equation of state, to study the formation and sta-
bility of pressure driven jets collimated by poloidal magnetic
field, which has a minimum inside the jet. The general struc-
ture of thermally driven disc winds was studied analytically by,
e.g., Fukue (1989) and Takahara et al. (1989).

Another type of model was developed by Ustyugova et al.
(1995), Romanova et al. (1997, 1998), Ouyed et al. (1997)
and Ouyed & Pudritz (1997a, 1997b, 1999) who consider ideal
MHD in a polytropic corona permeated by an external poloidal
magnetic field and subsume the physics of the accretion disc
into boundary conditions at the base of the corona. The disc
is assumed to be in Keplerian rotation (with any accretion ne-
glected). The corona is non-rotating initially, and the system
is driven by the injection of matter through the boundary that
represents the disc surface. These models develop a steady (or
at least statistically steady) state consistent with the analyti-
cal models by Blandford & Payne (1982), showing a magneto-
centrifugal wind collimated by toroidal magnetic field, which
again is produced in the corona by the vertical shear in the an-
gular velocity. Three-dimensional simulations suggest that the
resulting collimated outflow does not break due to the kink in-
stability (Ouyed et al. 2003; Thomsen & Nordlund 2003).

It is not quite clear how strong the external magnetic field
in accretion discs can be. Dragging of an external field from
large radii in a viscous disc requires that magnetic diffusivity
is much smaller than the kinetic one (Lubow et al. 1994), i.e.
that the magnetic Prandtl number is significantly larger than
unity which would be difficult to explain in a turbulent disc
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(Heyvaerts et al. 1996). This argument neglects, however, the
effect of magnetic torques which could produce significant field
line dragging even when the magnetic Prandtl number is of or-
der unity (Shalybkov & Rüdiger 2000). On the other hand, the
efficiency of trapping an external magnetic field at initial stages
of the disc formation is questionable because only a small frac-
tion of the external flux can be retained if the density contrast
between the disc and the surrounding medium is large. In that
case the magnetic field will be strongly bent and reconnection
will remove most of the flux from the disc. Furthermore, the
ionization fraction is probably too small in the inner disc to en-
sure sufficient coupling between the gas and the magnetic field
(Fromang et al. 2002). For these reasons it seems appropriate to
explore whether or not magnetic fields generated by a dynamo
within the disc can produce an outflow with realistic properties.

The models of Ustyugova et al. (1995) and Ouyed &
Pudritz (1997a, 1997b, 1999) have a distributed mass source
and imposed poloidal velocity at the (unresolved) disc sur-
face. As a result, their system develops a persistent outflow
which is not just a transient. On the other hand, the models
of Matsumoto et al. (1996) resolve the disc, but have no mass
replenishment to compensate losses via the outflow and accre-
tion, and so the disc disappears with time. Our model is an at-
tempt to combine advantages of both of these approaches and
also to add dynamo action in the disc. Instead of a rigidly pre-
scribed mass injection, we allow for self-regulatory replenish-
ment of matter within a resolved disc. Instead of prescribing
poloidal velocity at the disc surface, we resolve the disc and
prescribe an entropy contrast between the disc and the corona,
leaving more freedom for the system. Such an increase of en-
tropy with height is only natural to expect for a disc surrounded
by a hot corona, and we parameterize the coronal heating by a
(fixed) entropy contrast. We further add self-sustained, intrin-
sic magnetic field to our system, as opposed to an external field
used in the other models. Since our model goes beyond ideal
MHD, the magnetic field must be maintained against decay. A
simple form of mean-field dynamo action is included for this
purpose.

Like in the model of Ouyed & Pudritz (1997a, 1997b,
1999), the hot, pressure supported corona does not rotate ini-
tially. The disc is cool and is therefore centrifugally sup-
ported, so its rotation is nearly Keplerian. The corresponding
steady-state solution is used as our initial condition. This so-
lution is, however, unstable because of the vertical shear in
the angular velocity between the disc and the corona (Urpin
& Brandenburg 1998). Angular momentum transfer by viscous
and magnetic stresses also leads to a departure from the initial
state. As a result, a meridional flow develops, which exchanges
matter between the corona and the disc surface layers. Mass
losses through the disc surface and to the accreting central ob-
ject are then replenished in the disc where we allow local mass
production whenever and wherever the density decreases be-
low a reference value. Matter is heated as it moves into the
corona; this leads to an increase in pressure which drives the
wind. Another efficient driver of the outflow in our model is
magneto-centrifugal acceleration. A strong toroidal magnetic
field produced by the dynamo in the disc is advected into the
corona and contributes to confining the wind.
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Fig. 1. General structure of the outflows typically obtained in the mag-
netic runs with mass sink presented in this paper. The cool, dense disc
emits (a) a hardly collimated, thermally driven wind (slow, hot, dense,
magnetized, rotating), (b) a magneto-centrifugally driven outflow in
a conical shell (faster, cooler, less dense, magnetized, quickly rotat-
ing), and (c) a thermally driven outflow near the axis (slow, hot, dense,
weakly magnetized and weakly rotating).

Altogether, our model contains many features included in
a range of earlier models. For example, the disc is essentially
resistive to admit dynamo action, whereas magnetic diffusion
turns out to be relatively unimportant in the corona, similarly
to the models of, e.g., Wardle & Königl (1993), Ferreira &
Pelletier (1995) and Casse & Ferreira (2000a, 2000b). The syn-
thetic nature of the outflow, driven by both pressure forces and
magneto-centrifugally, is characteristic of the self-similar so-
lutions of Ferreira & Pelletier (1995) and Casse & Ferreira
(2000b). The latter authors also stress the rôle of the verti-
cal entropy gradient in enhancing the mass flux in the outflow
and prescribe a vertical profile of the entropy production rate.
Structured outflows outwardly similar to our results have been
discussed by Krasnopolsky et al. (1999) and Goodson et al.
(1997). However, in the former paper the structure in their so-
lutions is due to the boundary conditions imposed on the disc
surface, and in the latter model the structure is due to the inter-
action between the stellar magnetic field and the disc under the
presence of differential rotation between star and disc. On the
contrary, the structure in our model results from the dominance
of different driving mechanisms in the inner and outer parts of
the disc.

While we had initially expected to find collimated outflows
similar to those reported by Ouyed & Pudritz (1997a, 1997b),
the outflow patterns we obtained turned out to be of quite dif-
ferent nature. However, a significant difference in our model is
the resolved disc, which is necessary to model dynamo action
in the disc, and the relatively small extension into the corona,
where collimation is not yet expected. Figure 1 shows a sketch
of the overall, multi-component structure of the outflows in the
presence of magnetic fields and mass sink, which needs to be
compared to the individual figures in the rest of the paper.

The plan of the paper is as follows. We introduce our model
in Sect. 2, and then consider a range of parameters in Sect. 3
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to clarify and illustrate the main physical effects. In Sect. 4 we
explore the parameter space, and our conclusions are presented
in Sect. 5.

2. The model

2.1. Basic equations

Our intention is to make our model as simple as possible and
to avoid detailed modelling of mass supply to the accretion
disc, which occurs differently in different accreting systems.
For example, matter enters the accretion disc at large radii in
a restricted range of azimuthal angles in binary systems with
Roche lobe overflow. On the other hand, matter supply can be
more uniform in both azimuth and radius in active galactic nu-
clei. Being interested in other aspects of accretion physics, we
prefer to avoid detailed modelling of these processes. Instead,
similarly to the model of Ouyed & Pudritz (1997a, 1997b), we
inject matter into the system, but an important difference is that
we introduce a self-regulating mass source in the disc. We also
allow for a mass sink at the centre to model accretion onto the
central object (star). With these two effects included, the conti-
nuity equation becomes

∂�

∂t
+ ∇ · (�u) = qdisc

� + qstar
� ≡ �̇, (1)

where u is the velocity field and � is the gas density. The mass
source, qdisc

� , is localized in the disc (excluding the star) and
turns on once the local density drops below a reference value �0

(chosen to be equal to the initial density, see Sect. 2.4), i.e.

qdisc
� =

ξdisc(r) − ξstar(r)
τdisc

(�0 − �)+, (2)

where the subscript “+” indicates that only positive values are
used, i.e.

x+ =

{
x if x > 0,
0 otherwise.

(3)

This means that matter is injected only if � < �0, and that the
strength of the mass source is proportional to the gas density
deficit. Throughout this work we use cylindrical polar coordi-
nates (�, ϕ, z), assuming axisymmetry. The shapes of the disc
and the central object are specified with the profiles ξdisc and
ξstar via

ξdisc(�, z) = Θ (�0−�, d) Θ (z0−|z|, d) , (4)

ξstar(�, z) = Θ (r0−r, d) . (5)

Here, Θ(x, d) is a smoothed Heaviside step function with a
smoothing half-width d set to 8 grid zones in ξdisc and d = r0

in ξstar; r =
√
�2 + z2 is the spherical radius and r0 is the

stellar radius introduced in Eq. (23); �0 and z0 are the disc
outer radius and disc half-thickness, respectively. So, ξdisc is
equal to unity at the disc midplane and vanishes in the corona,
whereas ξstar is unity at the centre of the central object and van-
ishes outside the star. Note that ξdisc − ξstar ≥ 0 everywhere,
since ξdisc > 0) all the way to the origin, z = � = 0.

In Eq. (2), τdisc is a response time which is chosen to be
significantly shorter than the time scale of the depletion pro-
cesses, which is equivalent to the time scale of mass replenish-
ment in the disc, Mdisc/Ṁsource (cf. Sect. 3.4), to avoid unphysi-
cal influences of the mass source. We do not fix the distribution
and magnitude of qdisc

� beforehand, but the system adjusts itself
such as to prevent the disc from disappearing.

The self-regulating mass sink at the position of the central
star is modelled in a similar manner,

qstar
� = −

ξstar(r)
τstar

(� − �0)+, (6)

where ξstar is defined in Eq. (5) and τstar is a central accretion
time scale that controls the efficiency of the sink. We discuss
physically meaningful values of τstar in Sect. 2.5.

Apart from the continuity Eq. (1), the mass source also ap-
pears in the Navier–Stokes equation, unless matter is always
injected with the ambient velocity of the gas. In that case,
however, a runaway instability can occur: if matter is already
slower than Keplerian, it falls inward, and so does the newly in-
jected matter. This enhances the need for even more mass injec-
tion. A similar argument applies also if matter is rotating faster
than Keplerian. This is why we inject matter at the Keplerian
speed. This leads to an extra term in the Navier–Stokes equa-
tion, (uK − u)qdisc

� , which would only be absent if the gas were
rotating at the Keplerian speed. Thus, the Navier–Stokes equa-
tion takes the form

Du
Dt
= −1
�
∇p − ∇Φ + 1

�

[
F + (uK − u)qdisc

�

]
, (7)

where D/Dt = ∂/∂t + u · ∇ is the advective derivative, p is the
gas pressure, Φ is the gravitational potential, F = J × B+∇ · τ
is the sum of the Lorentz and viscous forces, J = ∇ × B/µ0

is the current density due to the (mean) magnetic field B, µ0 is
the magnetic permeability, and τ is the viscous stress tensor,

τi j = �ν(∂ui/∂x j + ∂u j/∂xi). (8)

Here, ν is the kinematic viscosity, which has been subdivided
into three contributions,

ν = νt + νadv + νshock. (9)

The first term is a turbulent (Shakura–Sunyaev) viscosity in the
disc,

νt = αSScsz0ξdisc(r), (10)

where cs = (γp/�)1/2 is the sound speed and γ is the ratio
of specific heats. The second term is an artificial advection
viscosity,

νadv = cadv
ν δx (u2

pol + c2
s + v

2
A,pol)

1/2, (11)

which is required to stabilize rapidly moving patterns. Here,
δx = min(δ�, δz) is the mesh size, and cadv

ν is a constant spec-
ified in Sect. 2.5. In Eq. (11) we have only used the poloidal
velocity, upol, and the Alfvén speed due to the poloidal mag-
netic field, vA,pol = (B2

pol/�µ0)1/2, because in an axisymmetric
calculation advection in the ϕ-direction is unimportant. Finally,

νshock = cshock
ν δx2(−∇ · u)+ (12)
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is an artificial shock viscosity, with cshock
ν a constant specified

in Sect. 2.5. Note that νadv and νshock are needed for numerical
reasons; they tend to zero for increasing resolution, δx→ 0.

We assume that the magnetic field in the disc is gener-
ated by a standard α2Ω-dynamo (e.g., Krause & Rädler 1980),
which implies an extra electromotive force, αB, in the induc-
tion equation for the mean magnetic field, B. To ensure that B
is solenoidal, we solve the induction equation in terms of the
vector potential A,

∂A
∂t
= u × B + αB − ηµ0 J , (13)

where B = ∇ × A, and η is the magnetic diffusivity.
Since α(r) has to be antisymmetric about the midplane and

vanishing outside the disc, we adopt the form

α = α0
z
z0

ξdisc(r)

1 + v2A/v
2
0

, (14)

where vA is the Alfvén speed based on the total magnetic field,
and α0 and v0 are parameters that control the intensity of dy-
namo action and the field strength in the disc, respectively. The
α-effect has been truncated near the axis, so that α = 0 for
� ≤ 0.2. For the magnetic diffusivity we assume

η = η0 + ηt, (15)

where η0 is a uniform background diffusivity and the turbulent
part, ηt = ηt0ξdisc(r), vanishes outside the disc. Thus, magnetic
diffusivity in the corona is smaller than in the disc.

Depending on the sign of α and the vertical distribution
of η, the dynamo can generate magnetic fields of either dipo-
lar or quadrupolar symmetry. We shall discuss both types of
geometry.

2.2. Implementation of a cool disc embedded
in a hot corona

Protostellar systems are known to be strong X-ray sources
(see, e.g., Glassgold et al. 2000; Feigelson & Montmerle 1999;
Grosso et al. 2000). The X-ray emission is generally attributed
to coronae of disc-star systems, plausibly heated by small scale
magnetic reconnection events (Galeev et al. 1979), for exam-
ple in the form of nanoflares that are caused by slow footpoint
motions (Parker 1994). Heating of disc coronae by fluctuating
magnetic fields is indeed quite natural if one accepts that the
disc turbulence is caused by the magneto-rotational instability.
Estimates for the coronal temperatures of YSOs range from
106 K to 108 K (see, e.g., Feigelson & Montmerle 1999). For
the base of the disc corona, temperatures of at least 8 × 103

are to be expected in order to explain the observed mass loss
rates (Kwan & Tademaru 1995; Kwan 1997). The discs, on
the other hand, have typical temperatures of a few 103 K (e.g.,
Papaloizou & Terquem 1999).

A simple way to implement a dense, relatively cool disc
embedded in a rarefied, hot corona without modelling the de-
tailed physics of coronal heating is to prescribe the distribution
of specific entropy, s(r), such that s is smaller within the disc
and larger in the corona. For a perfect gas this implies p = K�γ

(in a dimensionless form), where K = es/cv is a function of po-
sition (here p and � are gas pressure and density, γ = cp/cv,
and cp and cv are the specific heats at constant pressure and
constant volume, respectively).

We prescribe the polytrope parameter K to be unity in the
corona and smaller in the disc, so we put

[K(r)]1/γ = es/cp = 1 − (1−β)ξdisc(r), (16)

where 0 < β < 1 is a free parameter with β = e−∆s/cp , that con-
trols the entropy contrast, ∆s > 0, between corona and disc.
We consider values of β between 0.1 and 0.005, which yields
an entropy contrast, ∆s/cp, between 2.3 and 5.3. The tempera-
ture ratio between disc and corona is roughly β; see Eq. (26).
Assuming pressure equilibrium between disc and corona, and
p ∝ ρT for a perfect gas, the corresponding density ratio is β−1.

2.3. Formulation in terms of potential enthalpy

In the present case it is advantageous to use the potential
enthalpy,

H = h + Φ, (17)

as a variable. Here, h is the specific enthalpy, h = cvT + p/� =
cpT for a perfect gas (with constant specific heats), and T is
temperature. Therefore, specific enthalpy h is related to p and �
via h = γ(γ−1)−1 p/�. Specific entropy s is related to p and �
(up to an additive constant) through s = cv ln p − cp ln � for a
perfect gas. We have therefore

D ln h
Dt

=
D ln p

Dt
− D ln �

Dt
= (γ−1)

D ln �
Dt

+
γ

cp

Ds
Dt
· (18)

Since s is independent of time, Ds/Dt = u · ∇s. Together with
Eq. (1), this yields an evolution equation for h, which can be
written in terms of H as

DH
Dt
= u · ∇Φ + (γ − 1)h

(
�̇

�
− ∇ · u

)
+
γh
cp

u · ∇s. (19)

In the following we solve Eq. (19) instead of Eq. (1). In terms
of h, density and sound speed are given by

�γ−1 =
γ − 1
γ

h
K
, c2

s = (γ − 1)h = γ
p
�
· (20)

It proved necessary to include an artificial diffusion term in
Eq. (19) with a diffusion coefficient proportional to ν.

The first law of thermodynamics allows us to express the
pressure gradient in terms of h and s,

−1
�
∇p = −∇h + T∇s, (21)

and with T = h/cp we obtain

Du
Dt
= −∇H + h∇s/cp +

1
�

[
F + (uK − u)qdisc

�

]
, (22)

which now replaces Eq. (7).
We use a softened, spherically symmetric gravitational po-

tential of the form

Φ = −GM∗
(
rn + rn

0

)−1/n
, (23)
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where G is the gravitational constant, M∗ is the mass of the
central object, r is the spherical radius, r0 is the softening ra-
dius, and n = 5; tentatively, r0 can be identified with the stellar
radius.

2.4. The initial state

Our initial state is the hydrostatic equilibrium obtained by solv-
ing, for h, the vertical balance equation obtained from Eq. (22),

− ∂
∂z

(h + Φ) + h
∂s/cp

∂z
= 0, (24)

from large z (where h + Φ = 0) down to z = 0. The initial den-
sity distribution �0 is then obtained using Eq. (20); it decreases
monotonically with both z and� in the equilibrium state.

The initial rotation velocity, uϕ0, follows from the radial
balance equation,

−
u2
ϕ0

�
= − ∂
∂�

(h + Φ) + h
∂s/cp

∂�
· (25)

In the disc, h = cpT is small, so uϕ0 is close to the Keplerian
velocity, while the corona does not rotate initially, and so is
supported by the pressure gradient.

As a rough estimate, the value of h in the midplane of the
disc is

hdisc ≈ β hcorona ≡ βGM∗/�, (26)

as can be seen by integrating Eq. (24), ignoring the ∂Φ/∂z
term. Thus, the initial toroidal velocity in the midplane can
be obtained from Eq. (25) using Eq. (26) and recalling that
∂s/∂� = 0 in the midplane, which gives

uϕ0 ≈
√

(1 − β)GM∗/� =
√

1 − βuK. (27)

For β = 0.1, for example, the toroidal velocity is within 5% of
the Keplerian velocity.

2.5. Dimensionless variables and choice
of parameters

Our model is scale invariant and can therefore be applied to
various astrophysical objects. We consider here the range of
parameters typical of protostellar discs, for which a typical sur-
face density is Σ0 ≈ 1 g cm−2. A typical coronal sound speed
is cs0 ≈ 102 km s−1, which corresponds to a temperature of
T ≈ 4 × 105 K. This allows us to fix relevant units as follows:

[Σ] = Σ0, [u] = cs0, [x] = GM∗c−2
s0 , [s] = cp. (28)

With M∗ = 1 M� we have [x] ≈ 0.1 AU, and [t] = [x]/[u] ≈
1.5 day. The unit for density is [�] = [Σ]/[x] ≈ 7×10−13 g cm−3,
the unit for the mass accretion rate is [Ṁ] = [Σ][u][x] ≈
2 × 10−7 M� yr−1, and the unit for the magnetic field is [B] =
[u](µ0[�])1/2 ≈ 30 G.

Since [h] = [u]2, the dimensionless value h = 1 corre-
sponds to 1014 cm2 s−2. With a mean specific weight µ = 0.6,
the universal gas constant R = 8.3 × 107 cm2 s−2 K−1 and
γ = 5/3, we have

cp =
γ

γ − 1
R
µ
≈ 3.5 × 108 cm2 s−2 K−1. (29)

Therefore, h = 1 corresponds to T = [u]2/[s] = [h]/cp ≈
3 × 105 K. Using h = −Φ in the corona, this corresponds to a
temperature of 3 × 105 K at r = [x] ≡ 0.1 AU.

We choose β between 0.1 and 0.005, corresponding to
a typical disc temperature (in the model) of 3 × 104 K to
1.5 × 103 K; see Eq. (26); real protostellar discs have typical
temperatures of about a few thousand Kelvin (see Sect. 2.2).

In our models, we use �0 = 1.5 for the disc outer radius,
z0 = 0.15 for the disc semi-thickness and r0 = 0.05 for the
softening (stellar) radius. The disc aspect ratio is z0/�0 = 0.1.
Note that r0 = 0.05 corresponds to 7 × 1010 cm, i.e. one solar
radius. Therefore, we shall not reduce it much below this physi-
cally meaningful value. Note, however, that smaller values of r0

would result in faster outflows (Ouyed & Pudritz 1999).
Furthermore, cadv

ν = 0.02 and cshock
ν = 1.2. We vary the

value of αSS between 0.003 and 0.007.
The mean-field dynamo is characterized by the parameters

|α0| = 0.3, v0 = cs, ηt0 = 10−3 and η0 = 5×10−4. The total mag-
netic diffusivity in the disc is therefore ηT0 = ηt0+η0 = 0.0015.
In terms of the usual Shakura–Sunyaev viscosity parameter,
this corresponds to

α
(η)
SS ≡

ηT0

cs,discz0
≈ 0.01

(
�

β

)1/2 (
ηT0

0.0015

) ( z0

0.15

)−1
, (30)

where we have used c2
s,disc ≈ βc2

s,corona (cf. Eqs. (20) and (26))
and cs,corona ≈ �−1/2.

In terms of the usual nondimensional dynamo parameters
we have

|Cα| = |α0|z0/ηT0 = 30 (31)

and, for Keplerian rotation,

Cω = (�∂Ω/∂�)z2
0/ηT0 = −22.5�−3/2, (32)

so that the dynamo number is given by

|D| = |CαCω| = 675�−3/2. (33)

Note that the value of the dynamo number expected for accre-
tion discs is given by

|D| = |α0�∂Ω/∂�| z3
0

η2
T0

<∼ 3
2

(
α

(η)
SS

)−2
(34)

for ηT0 = α
(η)
SScs,discz0, |α0| <∼ cs,disc and cs,disc = Ωz0. As follows

from Eqs. (30)–(33), for Keplerian rotation,

2
3
|D|

(
α

(η)
SS

)2
= |α0|z0β

−1�−1/2. (35)

(Note that this expression is independent of ηT0.) For our choice
of parameters of |α0| = 0.3 and z0 = 0.15, expression (35) is
<∼1 if � >∼ 0.002 β−2 = 0.2 for β = 0.1, which corresponds to
the truncation radius of the α-effect. Therefore, our choice of
parameters is consistent with the constraint (34).

We take γ = 5/3, τdisc = 0.1, and consider two values of
τstar. For τstar → ∞, the mass sink at the central object is sup-
pressed, whereas τstar → 0 implies instantaneous accretion of
any extra matter (relative to the hydrostatic equilibrium) by the
central object. A realistic lower limit for τstar can be estimated
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as τstar >∼ r0/vff ≈ 0.008, where vff is the free fall velocity (given
by 1

2 v
2
ff
= GM∗/r0 in dimensional quantities). In most cases

we used τstar = 0.01, but we also tried an even smaller value
of τstar = 0.005 and obtained very similar results. A finite value
of τstar implies that matter is not instantaneously absorbed by
the sink. Therefore, some matter can leave the sink if it moves
so fast that its residence time in the sink is shorter than τstar. As
can be seen below, a small (negligible) fraction of mass does
indeed escape from the sink.

Computations have been carried out in domains ranging
from (�, z) ∈ [0, 2]× [−1, 1] to [0, 8]× [−2, 30], but the results
are hardly different in the overlapping parts of the domains. In
our standard computational box, δ� = δz = 0.01 and in the
case of the larger computational domain δ� = δz = 0.02.

2.6. Numerical method and boundary conditions

We use third order Runge–Kutta time-stepping and a sixth or-
der finite-difference scheme in space. Details and test calcula-
tions are discussed by Brandenburg (2003).

On the outer boundaries, the induction equation is evolved
using one-sided derivatives (open boundary conditions). The
normal velocity component has zero derivative normal to the
boundary, but the velocity is required to be always directed
outwards. The tangential velocity components and potential en-
thalpy on the boundaries are similarly obtained from the next
two interior points away from the boundary. Tests show that
the presence of the boundaries does not affect the flow inside
the computational domain. Regularity conditions are adopted
on the axis where the � and ϕ components of vectorial quan-
tities vanish, whereas scalar variables and the z components of
vectorial quantities have vanishing radial derivative.

3. Results

In this section we discuss a range of models of increasing de-
gree of complexity. We first consider in Sect. 3.1 the simplest
model that contains neither magnetic field nor mass sink at the
centre to show how the pressure gradient resulting from the
(fixed) entropy distribution drives a disc outflow. It is further
shown that the outflow is significantly reduced if accretion onto
the central object is allowed, but restored again if the disc can
generate a large-scale magnetic field (Sect. 3.2). Having thus
demonstrated the importance of the large-scale magnetic field
in our model, we discuss in Sect. 3.3 its structure, largely con-
trolled by the dynamo action but affected by the outflow. Model
parameters used in these sections are not necessarily realistic as
we aim to illustrate the general physical nature of our solutions.
We present a physically motivated model in Sect. 4 where the
set of model parameters is close to that of a standard accretion
disc around a protostellar object. The physical nature of our
solutions is discussed in Sects. 3.4–3.6.

3.1. Nonmagnetic outflows

We illustrate in Fig. 2 results obtained for a model without any
magnetic fields and without mass sink. A strong outflow de-
velops even in this case, which is driven mostly by the vertical

Fig. 2. A nonmagnetic model without mass sink at the centre: veloc-
ity vectors and logarithmically spaced density contours (from 0.008
to 6000, separation factor of 1.6) superimposed on a grey scale rep-
resentation of log10 h at time t = 223. Specific enthalpy h is directly
proportional to temperature T , and log10 h = (−1, 0, 1) corresponds to
T ≈ (3 × 104, 3 × 105, 3 × 106) K. Note hot gas near the central object
and in the near corona, and cooler gas in the disc and the far corona.
The dashed line shows the sonic surface where the poloidal velocity
equals cs. The disc boundary is shown with a thin black line; β = 0.1.

pressure gradient in the transition layer between the disc and
the corona, in particular by the term T∇s in Eq. (21). The gain
in velocity is controlled by the total specific entropy difference
between the disc and the corona, but not by the thickness d of
the transition layer in the disc profile (4).

The flow is fastest along the rotation axis and within a cone
of polar angle of about 30◦, where the terminal velocity uz ≈ 3
is reached. The conical shape of the outflow is partly due to
obstruction from the dense disc, making it easier for matter to
leave the disc near the axis. Both temperature and density in
nonmagnetic runs without mass sink are reduced very close to
the axis where the flow speed is highest.

The general flow pattern is sensitive to whether or not mat-
ter can accrete onto the central object. We show in Fig. 3 re-
sults for the same model as in Fig. 2, but with a mass sink
given by Eq. (6) with τstar = 0.01. This can be compared with
earlier work on thermally driven winds by Fukue (1989) who
also considered polytropic outflows, but the disc was treated
as a boundary condition. In Fukue (1989), outflows are driven
when the injected energy is above a critical value. The origin of
this energy injection may be a hot corona. The critical surface
in his model (see the lower panel of his Fig. 2) is quite similar
to that found in our simulation (our Fig. 3), although our open-
ing angle was found to be larger than in Fukue’s (1989) model.
(Below we show, albeit with magnetic fields, that smaller
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Fig. 3. As in Fig. 2, but with a mass sink at the centre, τstar = 0.01, at
time t = 312. The outflow speed near the axis is strongly reduced in
comparison to that in the model without mass sink shown in Fig. 2.

values of β do result in smaller opening angles, see Fig. 9,
which would then be compatible with the result of Fukue
(1989).)

As could be expected, the mass sink hampers the outflow in
the cone (but not at � >∼ 0.5). The flow remains very similar to
that of Fig. 3 when τstar is reduced to 0.005. Thus, the nonmag-
netic outflows are very sensitive to the presence of the central
sink. As we show now, magnetized outflows are different in this
respect.

3.2. Magnetized outflows

In this section we discuss results obtained with magnetic fields,
first without mass sink at the centre and then including a sink.
We show that the effects of the sink are significantly weaker
than in the nonmagnetic case.

A magnetized outflow without the central mass sink, shown
in Fig. 4, is similar to that in Fig. 2, but is denser and hotter near
the axis, and the high speed cone has a somewhat larger open-
ing angle. In addition, the outflow becomes more structured,
with a well pronounced conical shell where temperature and
density are smaller than elsewhere (the conical shell reaches
z = ±1 at � ≈ 1.2 in Fig. 4). Here and in some of the follow-
ing figures we also show the fast magnetosonic surface with re-
spect to the poloidal field. In Sect. 3.5 we show that this surface
is close to the fast magnetosonic surface. As shown in Fig. 5,
the outflow becomes faster inside the cone (uz ≈ 5 on the axis).
As expected, we find that deeper potential wells, i.e. smaller
values of r0 in Eq. (5) and (23), result in even faster flows and
in larger opening angles.

Fig. 4. A magnetic model without mass sink at the centre: velocity
vectors and poloidal magnetic field lines (white) superimposed on a
grey scale representation of temperature (in terms of h) for a run with
α0 = −0.3 (resulting in roughly dipolar magnetic symmetry) at time
t = 269. In contrast to the nonmagnetic model of Fig. 2, a conical shell
has developed that is cooler and less dense than its exterior. The con-
ical shell intersects z = ±1 at around � ≈ 1.2. The dashed line shows
the surface where the poloidal velocity equals (cs

2 + v2A,pol)
1/2, with

vA,pol the Alfvén speed from the poloidal magnetic field (fast magne-
tosonic surface with respect to the poloidal field). The disc boundary
is shown with a thin black line; β = 0.1.

Fig. 5. Profiles of vertical velocity and sound speed along the axis,
� = 0, for the nonmagnetic model of Fig. 2 with smoothing radius
r0 = 0.05 (dotted) and two runs with magnetic field, with r0 = 0.05
as in Fig. 4 (solid) and r0 = 0.02 (dashed, t = 162). The shaded area
marks the location of the disc. Terminal wind speeds are reached after
approximately three disc heights. The presence of a magnetic field and
a deeper potential well (smaller r0) both result in faster outflows. The
models shown here have no mass sink at the centre and β = 0.1.



832 B. von Rekowski et al.: Structured outflow from a dynamo active accretion disc

Fig. 6. Results for a larger domain, [0, 8] × [−2, 30], with the same parameters as in Fig. 4, averaged over times t = 200 . . . 230, β = 0.1. Left
panel: velocity vectors, poloidal magnetic field lines and grey scale representation of h in the inner part of the domain. Right panel: velocity
vectors, poloidal magnetic field lines and normalized specific enthalpy h/|Φ| in the full domain.

Our results are insensitive to the size and symmetry of the
computational domain: we illustrate this in Fig. 6 with a larger
domain of the size [0, 8] × [−2, 30]. The disc midplane in this
run is located asymmetrically in z in order to verify that the
(approximate) symmetry of the solutions is not imposed by the
symmetry of the computational domain. Figure 6 confirms that
our results are not affected by what happens near the computa-
tional boundaries.

Unlike the nonmagnetized system, the magnetized outflow
changes only comparatively little when the mass sink is in-
troduced at the centre. We show in Fig. 7 the results with a
sink (τstar = 0.01) and otherwise the same parameters as in
Fig. 4. As could be expected, the sink leads to a reduction in the

outflow speed near the axis; the flow in the high speed cone be-
comes slower. But apart from that, the most important effects
of the sink are the enhancement of the conical structure of the
outflow and the smaller opening angle of the conical shell. A
decrease in τstar by a factor of 2 to 0.005 has very little effect,
as illustrated in Figs. 8 and 10.

Increasing the entropy contrast (while keeping the specific
entropy unchanged in the corona) reduces the opening angle of
the conical shell. Pressure driving is obviously more important
in this case, as compared to magneto-centrifugal driving (see
Sect. 3.5). A model with β = 0.02 (corresponding to a den-
sity and inverse temperature contrast of about 50:1 between the
disc and the corona) is shown in Fig. 9. At ϑ = 60◦, the radial



B. von Rekowski et al.: Structured outflow from a dynamo active accretion disc 833

Fig. 7. As in Fig. 4, but with a mass sink at the centre, τstar = 0.01. The
outflow speed near the axis and the opening angle of the conical shell
(now reaching z = ±1 at� ≈ 0.5) are reduced in comparison to that in
the model without mass sink shown in Fig. 4, but the general structure
of the outflow is little affected. Averaged over times t = 130 . . . 140,
β = 0.1. (Reference model.)

velocity ur is slightly enhanced relative to the case β = 0.1
(contrast 10:1); see Fig. 10. At ϑ = 30◦, on the other hand, the
flow with the larger entropy contrast reaches the Alfvén point
close to the disc (at r ≈ 0.27 as opposed to r >∼ 1 in the other
case), which leads to a smaller terminal velocity.

We conclude that the general structure of the magnetized
flow and its typical parameters remain largely unaffected by
the sink, provided its efficiency τ−1

star does not exceed a certain
threshold. It is plausibly the build-up of magnetic pressure at
the centre that shields the central object to make the central ac-
cretion inefficient. This shielding would be even stronger if we
included a magnetosphere of the central object. We discuss in
Sect. 4.1 the dependence of our solution on the geometrical size
of the sink and show that the general structure of the outflow
persists as long as the size of the sink does not exceed the disk
thickness.

3.3. Magnetic field structure

The dynamo in most of our models has α0 < 0, consis-
tent with results from simulations of disc turbulence driven
by the magneto-rotational instability (Brandenburg et al. 1995;
Ziegler & Rüdiger 2000). The resulting field symmetry is
roughly dipolar, which seems to be typical of αΩ disc dy-
namos with α0 < 0 in a conducting corona (e.g., Brandenburg
et al. 1990). We note that the dominant parity of the magnetic
field is sensitive to the magnetic diffusivity in the corona: a

Fig. 8. As in Fig. 7, but with a stronger mass sink at the centre, τstar =

0.005. The flow pattern is very similar to that of Fig. 7 where the time
scale of the sink is twice as large. Averaged over times t = 122 . . . 132,
β = 0.1.

Fig. 9. As in Fig. 7, but with a larger entropy contrast, β = 0.02. The
opening angle of the conical shell is reduced in comparison to that of
Figs. 7 and 8 where the entropy contrast is smaller (the shell crosses
z = ±1 at � ≈ 0.15). Averaged over times t = 140...240, τstar = 0.01.

quadrupolar oscillatory magnetic field dominates for α0 < 0 if
the disc is surrounded by vacuum (Stepinski & Levy 1988).
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Fig. 10. Spherical radial velocity component, ur (dashed), and poloidal
Alfvén speed, vA,pol (solid), as functions of spherical radius at polar
angles ϑ = 30◦ (thick lines) and ϑ = 60◦ (thin lines) for the models of
Figs. 7 (top panel), 8 (middle panel) and 9 (bottom panel).

For α0 < 0, the critical value of α0 for dynamo action is
about 0.2, which is a factor of about 50 larger than without
outflows. Our dynamo is then only less than twice supercritical.
A survey of the dynamo regimes for similar models is given by
Bardou et al. (2001).

The initial magnetic field (poloidal, mixed parity) is weak
(pmag ≡ B2/(2µ0) ≈ 10−5), cf. Fig. 11 for comparison with
the gas pressure], but the dynamo soon amplifies the field in
the disc to pmag,tor ≈ 10, and then supplies it to the corona.
As a result, the corona is filled with a predominantly azimuthal
field with pmag,tor/p ≈ 100 at larger radii; see Fig. 11. We note,

Fig. 11. Radial profiles of magnetic pressure from the toroidal (solid)
and poloidal (dotted) magnetic fields and thermal pressure (dashed)
for the model of Fig. 6. Shown are the averages over the disc volume
(lower panel) and over a region of the same size around z = 8 in the
corona (upper panel). β = 0.1.

however, that the flow in the corona varies significantly in both
space and time1. Magnetic pressure due to the toroidal field Bϕ,
pmag,tor, exceeds gas pressure in the corona outside the inner
cone and confines the outflow in the conical shell. The main
mechanisms producing Bϕ in the corona are advection by the
wind and magnetic buoyancy (cf. Moss et al. 1999). Magnetic
diffusion and stretching of the poloidal field by vertical shear
play a relatively unimportant rôle.

The field in the inner parts of the disc is dominated by the
toroidal component; |Bϕ/Bz| ≈ 3 at � <∼ 0.5; this ratio is larger
in the corona at all �. However, as shown in Fig. 11, this ratio
is closer to unity at larger radii in the disc.

As expected, α0 > 0 results in mostly quadrupolar fields
(e.g., Ruzmaikin et al. 1988). As shown in Fig. 12, the magnetic
field in the corona is now mainly restricted to a narrow conical
shell that crosses z = ±1 at� ≈ 0.6. Comparing this figure with
the results obtained with dipolar magnetic fields (Fig. 4), one
sees that the quadrupolar field has a weaker effect on the out-
flow than the dipolar field; the conical shell is less pronounced.
However, the structures within the inner cone are qualitatively
similar to each other.

The magnitude and distribution of α in Eq. (14) only
weakly affect magnetic field properties as far as the dynamo
is saturated. For a saturated dynamo, the field distribution in
the dynamo region (0.2 < � < 1.5, |z| < 0.15) roughly fol-
lows from the equipartition field, B � (�µ0v

2
0)1/2 with v0 = cs.

In other words, nonlinear states of disc dynamos are almost in-
sensitive to the detailed properties of α (e.g., Beck et al. 1996;
Ruzmaikin et al. 1988).

1 See movie at http://www.nordita.dk/∼brandenb/
movies/outflow
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Fig. 12. As in Fig. 4, but with α0 = +0.3, at time t = 132. The mag-
netic field geometry is now mostly quadrupolar because α0 > 0.

A discussion of disc dynamos with outflows, motivated by
the present model, can be found in Bardou et al. (2001). It is
shown that the value of magnetic diffusivity in the corona does
not affect the dynamo solutions strongly. Moreover, the outflow
is fast enough to have the magnetic Reynolds number in the
corona larger than unity, which implies that ideal integrals of
motion are very nearly constant along field lines; see Sect. 3.6.
The most important property is the sign of α as it controls the
global symmetry of the magnetic field.

3.4. Mass and energy loss

The mass injection and loss rates due to the source, sink and
wind are defined as

Ṁsource =

∫
qdisc
� dV, Ṁsink =

∫
qstar
� dV, (36)

and

Ṁwind =

∮
�u · dS, (37)

respectively, where the integrals are taken over the full compu-
tational domain or its boundary. About 1/3 of the mass released
goes into the wind and the rest is accreted by the sink, in the
model with τstar = 0.01 and β = 0.1 of Fig. 7. Reducing τstar by
a factor of 2 (as in the model of Fig. 8), only changes the global
accretion parameters by a negligible amount (<∼10%).

The mass loss rate in the wind fluctuates on a time scale of
5 time units, but remains constant on average at about Ṁwind ≈
3, corresponding to 6 × 10−7 M� yr−1, in the models of Figs. 7
and 8. The mass in the disc, Mdisc, remains roughly constant.

The rate at which mass needs to be replenished in the disc,
Ṁsource/Mdisc, is about 0.4. This rate is not controlled by the im-
posed response rate of the mass source, τ−1

disc, which is 25 times
larger. So, the mass source adjusts itself to the disc evolution
and does not directly control the outflow. We show in Fig. 13
trajectories that start in and around the mass injection region.
The spatial distribution of the mass replenishment rate qdisc

�

shown in Fig. 13 indicates that the mass is mainly injected close
to the mass sink, and qdisc

� remains moderate in the outer parts
of the disc. (Note that the reduced effect of the mass sink in
the magnetized flow is due to magnetic shielding rather than to
mass replenishment near the sink – see Sect. 3.2.)

The angular structure of the outflow can be characterized
by the following quantities calculated for a particular spherical
radius, r = 8, for the model of Fig. 6: the azimuthally integrated
normalized radial mass flux density, Ṁ(ϑ)/Mdisc, where

Ṁ(ϑ) = 2πr2�ur sinϑ, Mdisc =

∫
disc
ρ dV, (38)

the azimuthally integrated normalized radial angular momen-
tum flux density, J̇(ϑ)/Jdisc, where

J̇(ϑ) = 2πr2��uϕur sinϑ, Jdisc =

∫
disc
ρ�uϕ dV, (39)

the azimuthally integrated normalized radial magnetic energy
flux (Poynting flux) density, ĖM(ϑ)/EM, where

ĖM(ϑ) = 2πr2 (E × B)r

µ0
sinϑ, EM =

∫
disc

B2

2µ0
dV, (40)

and the azimuthally integrated normalized radial kinetic energy
flux density, ĖK(ϑ)/EK, where

ĖK(ϑ) = 2πr2( 1
2�u

2ur) sinϑ, EK =

∫
disc

1
2ρu

2 dV. (41)

Here, Mdisc, Jdisc, EM and EK are the mass, angular momen-
tum, and magnetic and kinetic energies in the disc. A polar di-
agram showing these distributions is presented in Fig. 14 for
the model of Fig. 6. Note that this is a model without central
mass sink where the flow in the hot, dense cone around the
axis is fast. The fast flow in the hot, dense cone carries most of
the mass and kinetic energy. A significant part of angular mo-
mentum is carried away in the disc plane whilst the magnetic
field is ejected at intermediate angles, where the conical shell
is located.

The radial kinetic and magnetic energy flux densities, in-
tegrated over the whole sphere, are LK ≡

∫ π
0

ĖK(ϑ) dϑ ≈
0.54 Ṁwindc2∗ and LM ≡

∫ π
0

ĖM(ϑ) dϑ ≈ 0.03 Ṁwindc2∗, respec-
tively, where c∗ ≈ 2.8 is the fast magnetosonic speed (with re-
spect to the poloidal field) at the critical surface (where uz = c∗)
on the axis. Thus, Ṁwindc2∗ can be taken as a good indicator of
the kinetic energy loss, and the magnetic energy loss into the
exterior is about 3% of this value. These surface-integrated flux
densities (or luminosities) are, as expected, roughly indepen-
dent of the distance from the central object.
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Fig. 13. Azimuthally integrated mass flux density, represented as a vector 2π��(u�, uz), in the simulation of Fig. 7 with a dipolar magnetic
field and a mass sink at the centre. Shades of grey show the distribution of the mass source in the disc, qdisc

� . The disc boundary is shown with a
white line.

0.00 0.10 0.20 0.30 0.40 0.50
0.00

0.10

0.20

0.30

0.40

0.50
  ·M(ϑ)/Mdisc
  ·J(ϑ)/Jdisc

0.2  ·EM(ϑ)/EM

0.1  ·EK(ϑ)/EK

30o

60o

Fig. 14. Dependence, on polar angle ϑ, of azimuthally integrated radial
mass flux density Ṁ(ϑ) through a sphere r = 8 (solid, normalized by
the disc mass Mdisc ≈ 12), azimuthally integrated radial angular mo-
mentum flux density J̇(ϑ) (dashed-dotted, normalized by the disc an-
gular momentum Jdisc ≈ 4.3), azimuthally integrated radial Poynting
flux density ĖM(ϑ) (divided by 5, dashed, normalized by the magnetic
energy in the disc EM ≈ 0.6), and azimuthally integrated radial kinetic
energy flux density ĖK(ϑ) (divided by 10, dash-3dots, normalized by
the kinetic energy in the disc EK ≈ 9.7), for the model of Fig. 6. The
unit of all the quantities is [t]−1 rad−1.

3.5. Mechanisms of wind acceleration

The magnetized outflows in our models with central mass sink
have a well-pronounced structure, with a fast, cool and low-
density flow in a conical shell, and a slower, hotter and denser
flow near the axis and in the outer parts of the domain. Without
central mass sink, there is a high speed, hot and dense cone
around the axis.

The magnetic field geometry (e.g., Fig. 7) is such that for
� > 0.1, the angle between the disc surface and the field
lines is less than 60◦, reaching ≈ 20◦ at � ≈ 1–1.5, which is
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0.0 0.5 1.0 1.5

1
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l/ldisc,max

Fig. 15. Angular momentum (normalized by the maximum angular
momentum in the disc) for the model with τstar = 0.01 and β = 0.1,
shown in Fig. 7. The maximum value is l/ldisc,max ≈ 2.5. The dashed
line shows the fast magnetosonic surface with respect to the poloidal
field (cf. Fig. 4), the solid line the Alfvén surface where the poloidal
velocity equals the poloidal Alfvén speed, and the dotted line the sonic
surface. Averaged over times t = 130...140.

favourable for magneto-centrifugal acceleration (Blandford &
Payne 1982; Campbell 1999, 2000, 2001). However, the Alfvén
surface is so close to the disc surface in the outer parts of the
disc that acceleration there is mainly due to pressure gradient.
The situation is, however, different in the conical shell con-
taining the fast wind. As can be seen from Fig. 15, the Alfvén
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Fig. 16. The ratio of the poloidal magneto-centrifugal and pressure
forces, |F(mc)

pol |/|F(p)
pol| as defined in Eq. (42), is shown with shades of

grey, with larger values corresponding to lighter shades. The maxi-
mum value is |F(mc)

pol |/|F(p)
pol| ≈ 411. Superimposed are the poloidal mag-

netic field lines. The dashed line shows the fast magnetosonic surface
with respect to the poloidal field (cf. Fig. 4). The parameters are as in
the model of Fig. 7. Averaged over times t = 130...140.

surface is far away from the disc in that region and, on a given
field line, the Alfvén radius is at least a few times larger than the
radius of the footpoint in the disc. This is also seen in simula-
tions of the magneto-centrifugally driven jets of Krasnopolsky
et al. (1999); see their Fig. 4. The lever arm of about 3 is suf-
ficient for magneto-centrifugal driving to dominate. As can be
seen also from Fig. 10, the flow at the polar angle ϑ = 60◦
is mainly accelerated by pressure gradient near the disc sur-
face (where the Alfvén surface is close to the disc surface).
However, acceleration remains efficient out to at least r = 1
within the conical shell at ϑ ≈ 30◦. This can be seen in the
upper and middle panels of Fig. 10 (note that the conical shell
is thinner and at a smaller ϑ in the model with larger entropy
contrast, and so it cannot be seen in this figure, cf. Fig. 9).
These facts strongly indicate that magneto-centrifugal accel-
eration dominates within the conical shell.

Another indicator of magneto-centrifugal acceleration in
the conical shell is the distribution of angular momentum (see
Fig. 15), which is significantly larger in the outer parts of the
conical shell than in the disc, which suggests that the mag-
netic field plays an important rôle in the flow dynamics. We
show in Fig. 16 the ratio of the “magneto-centrifugal force” to
pressure gradient, |F(mc)

pol |/|F(p)
pol|, where the subscript “pol” de-

notes the poloidal components. Here, the “magneto-centrifugal
force” includes all terms in the poloidal equation of motion, ex-
cept for the pressure gradient (but we ignore the viscous term

Fig. 17. The ratio J · B/|J | |B| in the corona for the model with τstar =

0.01 and β = 0.1, shown in Fig. 7. For a force-free magnetic field,
J = CB, this ratio is ±1. Averaged over times t = 130...140.

Fig. 18. As in Fig. 16, but for the model of Fig. 9, i.e. with larger
entropy contrast, β = 0.02. Averaged over times t = 140...240.

and the mass production term, the latter being restricted to the
disc only),

F(mc) = �
(
Ω2� − ∇Φ

)
+ J × B, (42)
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and F(p) = −∇p. The large values of the ratio in the con-
ical shell confirm that magneto-centrifugal driving is domi-
nant there. On the other hand, the pressure gradient is strong
enough in the outer parts of the disc to shift the Alfvén sur-
face close to the disc surface, leading to pressure driving.
This is also discussed in Casse & Ferreira (2000b) who point
out that, although the criterion of Blandford & Payne (1982) is
fulfilled, thermal effects can be strong enough to lead to pres-
sure driving. According to Ferreira (1997), a decrease of the
total poloidal current Ipol = 2π�Bϕ/µ0 along a field line is an-
other indicator of magneto-centrifugal acceleration. We have
compared the poloidal current I(top)

pol at the Alfvén point, or at
the top of our box if the Alfvén point is outside the box, with
the poloidal current I(surf)

pol at the disc surface, and find that out-
side the conical shell this ratio is typically ≥0.8, while along
the field line that leaves the box at (�, z) = (0.6, 1), we get
I(top)
pol /I

(surf)
pol ≈ 0.18, i.e. a strong reduction, which confirms

that magneto-centrifugal acceleration occurs inside the coni-
cal shell. We note, however, that the changing sign of Bϕ and
therefore of Ipol makes this analysis inapplicable in places, and
the distribution of angular momentum (Fig. 15) gives a much
clearer picture.

As further evidence of a significant contribution from
magneto-centrifugal driving in the conical shell, we show in
Fig. 17 that the magnetic field is close to a force-free configu-
ration in regions where angular momentum is enhanced, i.e. in
the conical shell and in the corona surrounding the outer parts
of the disc. These are the regions where the Lorentz force con-
tributes significantly to the flow dynamics, so that the magnetic
field performs work and therefore relaxes to a force-free con-
figuration. The radial variation in the sign of the current helic-
ity J · B is due to a variation in the sign of the azimuthal mag-
netic field and of the current density. Such changes originate
from the disc where they imprint a corresponding variation in
the sign of the angular momentum constant, see Eq. (46). These
variations are then carried along magnetic lines into the corona.
The locations where the azimuthal field reverses are still rela-
tively close to the axis, and there the azimuthal field relative
to the poloidal field is weak compared to regions further away
from the axis.

Pressure driving is more important if the entropy contrast
between the disc and the corona is larger (i.e. β is smaller): the
white conical shell in Fig. 16 indicative of stronger magneto-
centrifugal driving shifts to larger heights for β = 0.02, as
shown in Fig. 18. We note, however, that there are periods when
magneto-centrifugal driving is dominant even in this model
with higher entropy contrast, but pressure driving dominates
in the time averaged picture (at least within our computational
domain).

We show in Fig. 19 the variation of several quantities along
a magnetic field line that has its footpoint at the disc sur-
face at (�, z) = (0.17, 0.15) and lies around the conical shell.
Since this is where magneto-centrifugal driving is still dom-
inant, it is useful to compare Fig. 19 with Fig. 3 of Ouyed
et al. (1997), where a well-collimated magneto-centrifugal jet
is studied. Since our outflow is collimated only weakly within
our computational domain, the quantities are plotted against
height z, rather than z/� as in Ouyed et al. (1997) (z/� is

Fig. 19. Flow parameters as functions of height z, along the field line
with its footpoint at (�fp, zfp) = (0.17, 0.15), for the model of Fig. 7.
Upper left: poloidal Alfvén Mach number, MA ≡ upol/vA,pol (dashed),
and a similar quantity that includes the poloidal Alfvén speed as well
as the sound speed (fast magnetosonic Mach number with respect
to the poloidal field), MFM ≡ upol/(c2

s + v
2
A,pol)

1/2 (dotted) – the two
curves are practically identical; upper right: ratio of toroidal (Btor) and
poloidal (Bpol) magnetic fields; lower left: toroidal velocity utor (solid)
and poloidal velocity upol (dash-3dots), in units of the toroidal velocity
at the footpoint, utor,fp; lower right: density � in units of the density at
the footpoint, �fp. The position of the Alfvén (and fast magnetosonic)
point on the field line is indicated by the vertical line. This figure is
useful to compare with Fig. 3 of Ouyed et al. (1997).

nearly constant along a field line for weakly collimated flows,
whereas approximately z/� ∝ z along a magnetic line for well-
collimated flows). The results are qualitatively similar, with the
main difference that the fast magnetosonic surface in our model
almost coincides with the Alfvén surface in the region around
the conical shell where the outflow is highly supersonic. Since
we include finite diffusivity, the curves in Fig. 19 are smoother
than in Ouyed et al. (1997), who consider ideal MHD. A pe-
culiar feature of the conical shell is that the flow at z <∼ 1 is
sub-Alfvénic but strongly supersonic. The fast magnetosonic
surface is where the poloidal velocity vpol equals the fast mag-
netosonic speed for the direction parallel to the field lines,

v2pol =
1
2

(
c2

s+v
2
A +

√
(c2

s+v
2
A)2 − 4c2

s v
2
A,pol

)
, (43)

with vA,pol the Alfvén speed from the poloidal magnetic field.
This surface has the same overall shape as the fast magne-
tosonic surface with respect to the poloidal field, albeit in some
cases it has a somewhat larger opening angle around the con-
ical shell and is located further away from the disc in regions
where the toroidal Alfvén speed is enhanced.
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3.6. Lagrangian invariants

Axisymmetric ideal magnetized outflows are governed by five
Lagrangian invariants, the flux ratio,

k = �uz/Bz = �u�/B�, (44)

the angular velocity of magnetic field lines,

Ω̃ = �−1(uϕ − kBϕ/�), (45)

the angular momentum constant,

� = �uϕ −�Bϕ/(µ0k), (46)

the Bernoulli constant,

e = 1
2 u2 + h + Φ −�Ω̃Bϕ/(µ0k), (47)

and specific entropy s (which is a prescribed function of posi-
tion in our model). In the steady state, these five quantities are
conserved along field lines, but vary from one magnetic field
line to another (e.g., Pelletier & Pudritz 1992; Mestel 1999),
i.e. depend on the magnetic flux within a magnetic flux sur-
face, 2πa, where a = �Aϕ is the flux function whose contours
represent poloidal field lines.

We show in Fig. 20 scatter plots of k(a), Ω̃(a), �(a), and e(a)
for the model of Fig. 6. Points from the region 0.2 ≤ z <∼ 8
collapse into a single line, confirming that the flow in the
corona is nearly ideal2. This is not surprising since the mag-
netic Reynolds number is much greater than unity in the corona
for the parameters adopted here. For 8 <∼ z ≤ 30, there are de-
partures from perfect MHD; in particular, the angular velocity
of magnetic field lines, Ω̃, is somewhat decreased in the upper
parts of the domain (indicated by the vertical scatter in the data
points). This is plausibly due to the finite magnetic diffusivity
which still allows matter to slightly lag behind the magnetic
field. As this lag accumulates along a stream line, the depar-
tures increase with height z. Since this is a “secular” effect
only, and accumulates with height, we locally still have little
variation of k and Ω̃, which explains why magneto-centrifugal
acceleration can operate quite efficiently.

The corona in our model has (turbulent) magnetic diffu-
sivity comparable to that in the disc. This is consistent with,
e.g., Ouyed & Pudritz (1999) who argue that turbulence should
be significant in coronae of accretion discs. Nevertheless, it
turns out that ideal MHD is a reasonable approximation for the
corona (see Fig. 20), but not for the disc. Therefore, magnetic
diffusivity is physically significant in the disc and insignificant
in the corona (due to different velocity and length scales in-
volved), as in most models of disc outflows (see Ferreira &
Pelletier 1995 for a discussion). Thus, our model confirms this
widely adopted idealization.

2 If we restrict ourselves to 0.2 ≤ z <∼ 8, about 90% of the points
for Ω̃(a) are within ±10% of the line representing z = 4; for the other
three invariants, this percentage is at least 97%. In a larger domain,
0.2 ≤ z <∼ 30, these percentages drop to about 80% for k(a) and 60%
for Ω̃(a); for �(a) and e(a), however, they remain greater than 90%.

Fig. 20. The four Lagrangian invariants k(a), Ω̃(a), �(a), and e(a) as a
function of the flux function a for the model of Fig. 6. All points in
the domain 0 < � < 8, 0.2 ≤ z ≤ 30 are shown (provided 0 < a ≤
0.25). The dots deviating from well-defined curves mostly originate in
8 <∼ z ≤ 30. Note that specific entropy as fifth Lagrangian invariant is
trivially conserved in our model, because entropy is spatially constant
throughout the corona and temporally fixed.

4. Toward more realistic models

The models presented so far have some clear deficiencies when
compared with characteristic features relevant to protostellar
discs. The first deficiency concerns the relative amount of mat-
ter accreted onto the central object compared with what goes
into the wind. A typical figure from the models presented above
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Fig. 21. As in Fig. 7, but with a mass sink at the centre which is five
times larger, r0 = 0.25, and τstar = 0.112. Note the absence of outflows
along the axis and a larger opening angle of the conical shell, which
crosses z = ±1 at � ≈ 1.2. Averaged over times t = 500 . . . 530,
β = 0.1.

was that as much as 30% of all the matter released in the disc
goes into the wind and only about 70% is accreted by the cen-
tral object. Earlier estimates (e.g., Pelletier & Pudritz 1992)
indicate that only about 10% of the matter joins the wind.
Another possible deficiency is the fact that in the models pre-
sented so far the low-temperature region extends all the way to
the stellar surface whilst in reality the cool disc breaks up close
to the star because of the stellar magnetic field. Finally, the
overall temperature of the disc is generally too high compared
with real protostellar discs which are known to have typical
temperatures of about a few thousand Kelvin.

The aim of this section is to assess the significance of vari-
ous improvements in the model related to the above mentioned
characteristics. We consider the effect of each of them sepa-
rately by improving the model step by step.

4.1. A larger sink

As discussed in Sects. 3.1 and 3.2, properties of the outflow,
especially of the nonmagnetic ones, are sensitive to the param-
eters of the central sink. It is clear that a very efficient sink
would completely inhibit the outflow near the axis. On the other
hand, a magnetosphere of the central object can affect the sink
efficiency by channelling the flow along the stellar magnetic
field (Shu et al. 1994; see also Fendt & Elstner 1999, 2000).
Simulating a magnetosphere turned out to be a difficult task
and some preliminary attempts proved unsatisfactory.

Instead, we have considered a model with a geometrically
larger sink, and illustrate it in Fig. 21. Here, r0 = 0.25 in
Eqs. (5) and (23), which is five times larger than the sink used
in our reference model of Fig. 7. The relaxation time of the
sink in Eq. (6), τstar, was rescaled in proportion to the free-fall
time at r0 as τstar � r0/vff ∝ r3/2

0 , which yields τstar = 0.112.
The resulting mass loss rate into the wind is Ṁwind ≈ 0.8,
which corresponds to 1.6 × 10−7 M� yr−1 in dimensional units.
Although this is indeed smaller than the value for the reference
model (6 × 10−7 M� yr−1), the overall mass released from the
disc is also smaller, resulting in a larger fraction of about 40%
of matter that goes into the wind; only about 60% is accreted
by the central object. As we show below, however, larger accre-
tion fractions can more easily be achieved by making the disc
cooler. We conclude that even a sink as large as almost twice
the disc half-thickness does not destroy the outflow outside the
inner cone. However, the outflow along the axis is nearly com-
pletely suppressed.

4.2. Introducing a gap between the disc
and the sink

In real accretion discs around protostars the disc terminates at
some distance away from the star. It would therefore be unreal-
istic to let the disc extend all the way to the centre. Dynamo
action in all our models is restricted to � ≥ 0.2, and now
we introduce an inner disc boundary for the region of low-
ered entropy as well. In Fig. 22 we present such a model where
the ξdisc(r) profile is terminated at � = 0.25. This inner disc
radius affects then not only the region of lowered entropy, but
also the distributions of α, ηt, νt and qdisc

� . The radius of the
mass sink was chosen to be r0 = 0.15, i.e. equal to the disc
semi-thickness. The correspondingly adjusted value of τstar is
0.052. The entropy in the sink is kept as low as that in the disc.

As can be seen from Fig. 22, the gap in the disc translates
directly into a corresponding gap in the resulting outflow pat-
tern. At the same time, however, only about 20% of the released
disc material is accreted by the sink and the rest is ejected
into the wind. A small fraction of the mass that accretes to-
ward the sink reaches the region near the axis at some distance
away from the origin and can then still be ejected as in the
models without the gap. Note that our figures (e.g., Fig. 22)
show the velocity rather than the azimuthally integrated mass
flux density (cf. Fig. 13); the relative magnitude of the latter is
much smaller, and so the mass flux from the sink region is not
significant.

4.3. A cooler disc

We now turn to the discussion of the case with a cooler disc.
Numerical constraints prevent us from making the entropy gra-
dient between disc and corona too steep. Nevertheless, we were
able to reduce the value of β down to 0.005, which is 20 times
smaller than the value used for the reference model in Fig. 7.
The β value for the sink was reduced to 0.02; smaller values
proved numerically difficult.
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Fig. 22. As in Fig. 7, but with a gap between the sink and the disc
with the disc inner radius at � = 0.25. The radius of the stellar mass
sink is three times larger, r0 = 0.15, and τstar = 0.052. Outflow is
absent along field lines passing through the gap. Averaged over times
t = 400 . . . 660, β = 0.1 in both the disc and the sink.

Fig. 23. As in Fig. 22, but with β = 0.005 in the disc and β = 0.02
in the sink. Averaged over times t = 150 . . . 280 when the overall
magnetic activity in the disc is relatively low.

The value of β = 0.005 results in a disc temperature of
3 × 103 K in the outer parts and 1.5 × 104 K in the inner

Fig. 24. As in Fig. 23, but averaged over a period of enhanced mag-
netic activity in the disc, t = 300 . . . 320. A conical shell develops
which crosses z = ±1 at � ≈ 0.6.

parts. As in Sect. 4.2, the disc terminates at an inner radius
of � = 0.25. At � ≈ 0.5, the density in dimensional units is
about 10−9 g cm−3, which is also the order of magnitude found
for protostellar discs. The resulting magnetic field and outflow
geometries are shown in Figs. 23 and 24.

A characteristic feature of models with a cooler disc is a
more vigorous temporal behaviour with prolonged episodes
of reduced overall magnetic activity in the disc during which
the Alfvénic surface is closer to the disc surface, and phases
of enhanced magnetic activity where the Alfvénic surface has
moved further away. Figures 23 and 24 are representative of
these two states. It is notable that the structured outflow of the
type seen in the reference model occurs in states with strong
magnetic field and disappears during periods with weak mag-
netic field.

Another interesting property of the cooler discs is that now
a smaller fraction of matter goes into the wind (10–20%), and
80–90% is accreted by the central object, in a better agreement
with the estimates of Pelletier & Pudritz (1992).

We note in passing that channel flow solutions typical of
two-dimensional simulations of the magneto-rotational insta-
bility (Hawley & Balbus 1991) are generally absent in the sim-
ulations presented here. This is because the magnetic field sat-
urates at a level close to equipartition between magnetic and
thermal energies. The vertical wavelength of the instability can
then exceed the half-thickness of the disc. In some of our simu-
lations, indications of channel flow behaviour still can be seen.
An example is Fig. 23 where the magnetic energy is weak
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Fig. 25. As in Figs. 23 and 24, but with η0 = 2 × 10−5, ηt0 = 4 × 10−5,
cadv
ν = 0.002, and α0 = −0.15. Averaged over times t = 230 . . . 236

(where the magnetic energy is enhanced), αSS = 0.004.

enough so that the magneto-rotational instability is not yet
suppressed.

According to the Shakura–Sunyaev prescription, turbulent
viscosity and magnetic diffusivity are reduced in a cooler disc
because of the smaller sound speed (cf. Eq. (10)). Since in the
corona the dominant contributions to the artificial advection
viscosity νadv come from the poloidal velocity and poloidal
Alfvén speed (and not from the sound speed), cadv

ν has to be
reduced. Here we choose αSS = 0.004 and reduce cadv

ν by
a factor of 10 to cadv

ν = 0.002. Since we do not explicitly
parameterize the turbulent magnetic diffusivity ηt with the
sound speed (cf. Eq. (15)), also ηt0 needs to be decreased, to-
gether with the background diffusivity η0. We choose here val-
ues that are 25 times smaller compared to the previous runs, i.e.
ηt0 = 4 × 10−5 and η0 = 2 × 10−5, which corresponds to α(η)

SS
ranging between 0.001 and 0.007. With this choice of coeffi-
cients, the total viscosity and magnetic diffusivity in the disc
have comparable values of a few times 10−5.

The effect of reduced viscosity and magnetic diffusivity is
shown in Fig. 25. Features characteristic of the channel flow
solution are now present, because the vertical wavelength of
the magneto-rotational instability is here less than the half-
thickness of the disc.

5. Discussion

If the disc dynamo is sufficiently strong, our model develops a
clearly structured outflow which is fast, cool and rarefied within

a conical shell near the rotation axis where most of the angu-
lar momentum and magnetic energy is carried, and is slower,
hotter and denser in the region around the axis as well as in the
outer parts of the domain. The slower outflow is driven mostly
by the entropy contrast between the disc and the corona, but the
faster wind within the conical shell is mostly driven magneto-
centrifugally. Without a central mass sink, the flow near the
axis is faster, but otherwise the flow structure is similar to that
with the sink.

The half-opening angle of the cone with hot, dense gas
around the axis is about 20◦–30◦; this quantity somewhat
changes with model parameters but remains close to that range.
The outflow in our models does not show any signs of col-
limation. It should be noted, however, that not all outflows
from protostellar discs are actually collimated, especially not
at such small distance from the source. An example is the
Becklin–Neugebauer/Kleinmann–Low (BN/KL) region in the
Orion Nebula (Greenhill et al. 1998), which has a conical out-
flow with a half-opening angle of 30◦ out to a distance of 25–
60 AU from its origin. Therefore, collimation within a few AU
(the size of our computational domain) is expected to be only
weak.

The region around the fast, cool and rarefied conical shell
seen in Fig. 7 is similar to the flow structure reported by
Krasnopolsky et al. (1999); see their Fig. 1. In their model,
however, the thin axial jet was caused by an explicit injection
of matter from the inner parts of the disc which was treated
as a boundary. In our reference model the fast outflow is sub-
Alfvénic because of the presence of a relatively strong poloidal
field, whereas in Krasnopolsky et al. (1999) the outflow be-
comes super-Alfvénic at smaller heights. Outside the conical
shell the outflow is mainly pressure driven, even though the
criterion of Blandford & Payne (1982) is fulfilled. However, as
Casse & Ferreira (2000b) pointed out, pressure driven outflows
might dominate over centrifugally driven outflows if thermal
effects are strong enough.

In our model, matter is replenished in the resolved disc in
a self-regulatory manner where and when needed. We believe
that this is an improvement in comparison to the models of
Ouyed & Pudritz (1997a, 1997b, 1999) and Ustyugova et al.
(1995), where mass inflow is prescribed as a boundary condi-
tion at the base of the corona. If we put qdisc

� = 0 in Eqs. (1)
and (7), the disc mass soon drops to low values and the out-
flow ceases. This is qualitatively the same behaviour as in the
models of, e.g., Kudoh et al. (1998).

We should stress the importance of finite magnetic diffusiv-
ity in the disc: although poloidal velocity and poloidal magnetic
field are well aligned in most of the corona, dynamo action in
the disc is only possible in the presence of finite magnetic dif-
fusivity, and the flow can enter the corona only by crossing
magnetic field lines in the disc.

An outflow occurs in the presence of both dipolar and
quadrupolar type magnetic fields, even though fields with dipo-
lar symmetry seem to be more efficient in magneto-centrifugal
driving (cf. von Rekowski et al. 2000). The effects of the mag-
netic parity on the outflow structure deserves further analysis.

The dynamo active accretion disc drives a significant out-
ward Poynting flux in our model. Assuming that this applies
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equally to protostellar and AGN discs, this result could be im-
portant for understanding the origin of seed magnetic fields in
galaxies and galaxy clusters; see Jafelice & Opher (1992) and
Brandenburg (2000) for a discussion. We note, however, that
the pressure of the intracluster gas may prevent the magnetized
plasma from active galactic nuclei to spread over a significant
volume (Goldshmidt & Rephaeli 1994).

Our model can be improved in several respects. In many
systems, both dynamo-generated and external magnetic fields
may be present, so a more comprehensive model should
include both. We used an α2Ω dynamo to parameterize
magnetic field generation in the disc because we have restricted
ourselves to axisymmetric models. As argued by Brandenburg
(1998), dynamo action of turbulence which is driven by the
magneto-rotational instability can be roughly described as an
α2Ω dynamo. But this parameterization can be relaxed in three-
dimensional simulations where one may expect that turbulence
will be generated to drive dynamo action. Such simulations will
be discussed elsewhere (von Rekowski et al. 2002).

Since our model includes angular momentum transport by
both viscous and magnetic stresses, it is natural that the ac-
creted matter is eventually diverted into an outflow near the
axis; this is further facilitated by our prescribed entropy gradi-
ent at the disc surface. We believe that this picture is physically
well motivated (Bell & Lucek 1995), with the only reserva-
tion that we do not incorporate the (more complicated) physics
of coronal heating and disc cooling, but rather parameterize it
with a fixed entropy contrast. We include a mass sink at the
centre which could have prevented the outflow, and indeed the
sink strongly affects nonmagnetized outflows. We have shown,
however, that the magnetic field can efficiently shield the sink
and thereby support a vigorous disc wind.

The assumption of a prescribed entropy distribution is a
useful tool to control the size of the disc and to parameterize
the heating of the disc corona. However, it should be relaxed
as soon as the disc physics can be described more fully. The
energy equation, possibly with radiation transfer, should be in-
cluded. This would lead to a self-consistent entropy distribution
and would admit the deposition of viscous and Ohmic heat in
the outflow. In the simulations by von Rekowski et al. (2002),
entropy is evolved.

We believe that a mass source is a necessary feature of any
model of this kind if one wishes to obtain a steady state. In
the present paper the mass source is distributed throughout the
whole disc to represent replenishment of matter from the mid-
plane of the disc. Alternatively, a mass source could be located
near to or on the domain boundary.
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