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The principle of the two-scale dynamo experiment at the Forschungszentrum Karlsruhe is closely related to
that of the Roberts dynamo working with a simple fluid flow which is, with respect to proper Cartesian
coordinatesx, y, and z, periodic inx andy and independent af. A modified Roberts dynamo problem is
considered with a flow more similar to that in the experimental device. Solutions are calculated numerically,
and on this basis an estimate of the excitation condition of the experimental dynamo is given. The modified
Roberts dynamo problem is also considered in the framework of the mean-field dynamo theory, in which the
crucial induction effect of the fluid motion is an anisotropiceffect. Numerical results are given for the
dependence of the mean-field coefficients on the fluid flow rates. The excitation condition of the dynamo is
also discussed within this framework. The behavior of the dynamo in the nonlinear regime, i.e., with backre-
action of the magnetic field on the fluid flow, depends on the effect of the Lorentz force on the flow rates. The
quantities determining this effect are calculated numerically. The results for the mean-field coefficients and the
quantities describing the backreaction provide corrections to earlier results, which were obtained under sim-
plifying assumptions.

DOI: 10.1103/PhysRevE.67.026401 PACS nunier52.65.Kj, 52.75.Fk, 47.65-a

[. INTRODUCTION cells. The real flow in the spin generators deviates from the
Roberts flow in the way indicated in Fig. 3. In each cell there
In the Forschungszentrum Karlsruhe, IMuand Stieglitz  are a central channel and a helical channel around it. In the
have set up an experimental device for the demonstration argimplest approximation, the fluid moves rigidly in each of
investigation of a homogeneous dynamo as it is expected ifhese channels, and it is at rest outside the channels. We
the Earth’s interior or in cosmic bodi¢4]. The experiment relate the word “spin generator flow,” in the following to
ran first time successfully in December 1999, and since thefhis simple flow. In contrast to the Roberts flow the spin
several series of measurements have been carriel®of. generator flow shows discontinuities and vanishes at the mar-
It was the second realization of a homogeneous dynamo ilins of the cells.
the laboratory. Its first run followed only a few weeks after ~ The theory of the dynamo effect in the Karlsruhe device
that of the Riga dynamo experiment, working with a some-has been widely elaborated. Both direct numerical solutions
what different principle, which was pushed forward by Gaili- f the induction equation for the magnetic figli2—1§ as
tis, Lielausis, and co-workefs,7]. well as mean-field theory and solutions of the corresponding
The basic idea of the Karlsruhe experiment was propose@quation§19—24 have been employed. We focus our atten-
in 1975 by Bussg8,9]. It is very similar to an idea discussed
already in 1967 by Galiliti§10]. The essential piece of the I
experimental device, the dynamo module, is a cylindrical
container as shown in Fig. 1, with both radius and height
somewhat less than 1m, through which liquid sodium is
driven by external pumps. By means of a system of channels
with conducting walls, constituting 52 “spin generators,” he-
lical motions are organized. The flow pattern resembles one
of those considered in the theoretical work of Roberts in
1972[11]. This kind of Roberts flow, which proved to be
capable of dynamo action, is sketched in Fig. 2. In a proper
Cartesian co-ordinate system,Y,z), it is periodic inx and
y with the same period length, which we call hera, Dut
independent of. Thex andy components of the velocity can
be described by a stream function proportional to
sin(mx/a)sin(my/a), and thez component is simply propor-
tional to singx/a)sin(wy/a). When speaking of a “cell” of FIG. 1. The dynamo modul@fter Ref[1]). The signs+ and—
the flow, we mean a unit like that given byskx,y=<a. indicate that the fluid moves in the positive or negatiwdirection,
Clearly, the velocity is continuous everywhere, and at leastespectively, in a given spin generatBr=0.85 m,H=0.71 m, and
the x andy components do not vanish at the margins of thea=0.21 m.
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generators and in that sense determined under the condition
that all its surroundings are conducting fluid at rest
[20,22,23,2% An analogous assumption was used in calcu-
lations of the effect of the Lorentz force on the fluid flow
rates in the channels of the spin genera{®2,24. It re-
mained to be clarified which errors result from these assump-
tions.

The main purpose of this paper is therefore the calculation
of the « coefficient and a related coefficient as well as the
quantities determining the effect of the Lorentz force on the
fluid flow rates for an array of spin generators, taking into
account the so far ignored mutual influences of the spin gen-
erators. In Sec. Il the modified Roberts dynamo problem
with the spin generator flow is formulated. In Sec. Il the
numerical method used for solving this problem and the re-
lated problems occurring in the following sections are dis-
cussed. Section IV presents in particular results concerning
the excitation condition for the dynamo with spin generator
flow. In Sec. V various aspects of a mean-field theory of the

FIG. 2. The Roberts flow pattern. The flow directions corre- dynamo experiment are exp|ained and results for the mean
Spond to the situation in the dynamo module if the coordinate SySe|ectromotive force due to the Spin generator flow are given_
tem coincides with that in Fig. 1. Section VI deals with the effect of the Lorentz force on the

flow rates in the channels of the spin generators. Finally, in
tion here on this mean-field approach. In this context measec. VIl some consequences of our findings for the under-
fields are understood as averages over areas in planes petanding of the experimental results are summarized.
pendicular to the axis of the dynamo module covering the Independent of the recent comprehensive accounts of the
cross sections of several cells. The crucial induction effect ofnean-field approach to the Karlsruhe dynamo experiment
the fluid motion is then, with respect to the mean magneti¢22—24, this paper may serve as an introduction to the basic
field, described as an anisotropiceffect. Thea coefficient  idea of the experiment. However, we do not strive to repeat
and related quantities have first been calculated for the Rol&ll important issues discussed in those papers, but we mainly
erts flow[19,20,22,23,2F In the calculations with the spin want to deliver the two supplements mentioned above.
generator flow carried out so far, apart from the case of small
flow rates, a simplifying but not strictly justified assumption Il. FORMULATION OF THE DYNAMO PROBLEM
was used. The contribution of a given spin generator tathe

effect was considered independent of the neighboring spin L€t us first formulate the analog of the Roberts dynamo
problem for the spin generator flow. We consider a magnetic

field B in an infinitely extended homogeneous electrically
Y conducting fluid, which is governed by the induction equa-
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7V?B+VX(uxB)—gB=0, V-B=0, (1)

where » is the magnetic diffusivity of the fluid and its
velocity. The fluid is considered incompressible, Sou
=0. Referring to the Cartesian coordinate systeqy (z)
mentioned above, we focus our attention on the cellxQy
=<a and introduce there cylindrical coordinates4,z) such
that the axig =0 coincides withkx=y=a/2. We define then
the fluid velocityu in this cell by
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u,=0, u,=-—u for O<r<r,

O] ® U,=—or, u,=—(h2mo for ri<rsr, (2

u,=0, u,=0 for r>r,,

FIG. 3. The spin generator flow pattern. As for the flow direc- Whereu andw are constants,; andr, are the radius of the
tions, the remark given with Fig. 2 applies. The fluid outside thecentral channel and the outer radius of the helical channel,
cylindrical regions where flow directions are indicated is at restrespectively, and is the pitch of the helical channel. The
There are no walls between the cells. coupling betweem,, andu, in r,;<r=r, considers the con-
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straint on the flow resulting from the helicoidal walls of the  |f we put B(x,y,t)=B(x,y)exp(pt) with a parametep,

helical channel. The velocity in all space follows from the  for which we have to admit complex values, Et) together
continuation of Ve|0City in the considered cell in the way with the boundary conditions pose an eigenva|ue prob]em
indicated in Flg 3, i.e., with Changes of the flow directionSWith p being the eigenva|ue parameter_ C|ean|¢'epends on
from each cell to the adjacent ones so that the total pattern igC, Vy, andk. The condition Ref)=0 defines for each
again periodic inx andy with the period length @ and  givenk a neutral ling(i.e., a line of marginal stabilifyin the
independent of. VVy diagram, which separates the region\ef andV in

We characterize the magnitudes of the fluid flow through\Nhich growing B are impossib'e from that where they are
the central and helical channels of a spin generator by thgossible.

volumetric flow ratesV. andVy given by
I1l. THE NUMERICAL METHOD

1
_ 2 _ 2_ .2 i . . . .
Ve=mriy, VH_E(rz rohe. 3) In view of the numerical solution of the induction equa-

tion (1) we expres®3 by a vector potentiaf,
We may measure them in units afy, so we introduce the

dimensionless flow ratég. andV,,, B=VXA. (6)

~ ~ Inserting this in Eq(1) and choosingV - A properly, we may
Ve=Vclan, Vy=Vylang. (4 conclude that

We further define magnetic Reynolds numbBfrg: andR, 4 nV2A+uxB—g,A=0. )
for the two channels byR,,c=ur;/7n and Ryu=wr,(rs

—r,)/5. Thus we haveVe=(mr,/a)Ryc and Vy=[(r,  Analogous to Eq(5), we put

+ro)h/2ar; IRy - _ - )

In view of the application of the results for the considered AXY,z,t) =R A(Xy,t)expikz)]. ®)
dynamo problem to the experimental device, we mention]_hen we have
here the numerical values for the radirsand the heightd
of the dynamo module, the lengtlsh, r4, andr, charac-
terizing a spin generator and the magnetic diffusivityof
the fluid: R=0.85m, H=0.71m, a=0.21 m, h=0.19m,  \yherek=ke with e being the unit vector irz direction, and
r,/a=0.25,r,/a=0.5, and»=0.1 nt/s. (More precisely,
the values oR andH apply to the “homogeneous part” of n(V2—k¥)A+uxB—3,A=0, (10)
the dynamo module, i.e., the part without connections be-
tween different spin generators. The value mpfis slightly
higher than that for sodium at 120°C, considering the effec
tive reduction of the magnetic diffusivity by the steel walls

of the channel$ The given data impharn=75.6 ni/s. Fur- 0 period unit—a<x,y<a and adopt periodic boundary

thermore, we have/c=0.78Rnc and Vy=1.35Run, SO conditions. When replacind(x,y,t) by A(x,y)exp(t), we
V¢ andVy are, in fact, magnetic Reynolds numbers. Con-arrive again at an eigenvalue problem wjttas eigenvalue
cerning deviations from the rigid-body motion of the fluid parameter.
assumed here and the role of turbulence, we refer to the more |et us, for example, assume thmis real and consider the
comprehensive representatid®,23. steady casep=0. We may then consider, e.¢/c as eigen-
We are interested in dynamo action of the fluid motion, soyalue parameter whil&/,; and k are given. Modifying the
we are interested in growing solutioBsof Eq. (1) with the  equation resulting from Eq8) by an artificial quenching of
velocity u defined by Eq(2) and the explanations given with \; _ 4nq following up the evolution o, the wanted steady
them. According to some modification of Cowling’s antidy- gqjytions of the original equatiofL0) and thus the relations
namo theorem, growing solutior® independent ofz are betweenV andVy, for givenk andp=0 can be found.
impossible; cf. Ref[26]. We restrict our attention to solu- For the numerical computations, a grid-point scheme was
tions of the form used. They were carried out on a two-dimensional mesh typi-
. _ cally with 60X 60 or 120< 120 points, and some of the re-
B=RgB(x,y,t)expikz)], (®)  sults were checked with 240240 points. Thex andy de-
. rivatives were calculated using sixth-order explicitly finite
whereB is a complex periodic vector field that has again agjfferences, and the equations were stepped forward in time

period length 2 in x andy, andk a nonvanishing real con- ysing a third-order Runge-Kutta scheme.
stant. In this case we may consider E¢®. in the period

interval —a<x,y<a only and adopt periodic boundary con-
ditions. (SolutionsB with larger period lengths, as were in-
vestigated for the Roberts floj27-29, seem to be well Using the described numerical method, soluti@nsf the
possible but are not considered hgre. dynamo problem posed by Eq4), (2), and(5) have been

B=VXA+ikxA, 9)

With a solutionA we can calculatd according to Eq(9)
and finally B according to Eq(6).
In the sense explained above we consider(E@). only in

IV. THE EXCITATION CONDITION OF THE DYNAMO
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Ve [ma/h] _ 1 (a [a
0 100 ~ 200 " 300 F(x,y,2)= —J f F(x+&y+n,z)dédy.  (12)
2.5 4acJ)-al-a
2.0F 1150 We note that the applicability of the Reynolds averaging
15k < rules, which we use in the following, requires thatvaries
1N ©=1.8 ] IOO“E only weakly over distancea in x or y direction. (The fol-
1.0F j lowing applies also with a definition df using averages
oo 150 = over an area corresponding to two cells of#§], but we do
0.5¢ £=0.3 not want to consider this possibility here.
0.0 . . . . 0 We split the magnetic flux densi® and the fluid velocity
0 1 < 3 4 5 u into mean fieldB andu and remaining field8' andu’,
VC J— N
B=B+B’, u=u+u’. (12

FIG. 4. Neutral lines describing steady dynamo states in the

VeV plane for various values of. Clearly, we havai=0, and thereforei=u’.

determined. As in the case of the Roberts fl28,29, the Taking the average of equations(it), we see thaB has
most easily excitable solutions are nonoscillatory, which cor{0 0Pey
responds to reg, and possess a contribution independent of

x andy.

Figure 4 shows the neutral lines in thieVy diagram for
several values of the dimensionless quantitdefined byx
=ak. In view of the Karlsruhe experiment, the case deserves £=uxB' (14)
special interest in which a “half wave” oB fits just to the ’
heightH of the dynamo module, se=ma/H=0.929. The s a mean electromotive force due to the fluid motion.
neutral line for this case can provide us a very rough estimate The determination of for a givenu requires the knowl-

Of the eXCitation Condition Of the Kal’lsruhe dynamo. How- edge ofB’_ Combining Eqs(l) and(13), we eas”y arrive at
ever, this estimate neither takes into account the finite radial

extent of the dynamo module nor realistic conditions at its ,v2B’'+V x (uxB’)’ —4,B'=—V X (uxB),V-B’'=0,
plane boundaries. Let us consider, e.g., the value¥ pf (15)
necessary for self-excitation in the experimental device for

given V.. The values oV, obtained in the experiment as where UXB’)'=uXB’'—uXB’. We conclude from this
well as those found by direct numerical simulations are by ahatB’ is, apart from initial and boundary conditions, deter-
factor of about 2 higher than the values concluded from thenined byu andB and is linear irB. We assume here thBt

neutral curve foic=0.9; see, e.g., Fig. 4in Refsl] and[5], | 5nishes ifB does so(and will comment on this below

\Ij;gri.aztici)nnRo?‘f\.gli]/\,/i?r: Ii/ig. ii inhon(\a/];E/le?]. \-/rvgﬁ terne%?&gﬁ?;htge Thus € too can be understood as a quantity determined by
H c > 4 b : and B only and being linear and homogeneousBn Of

influence of the finite radial extent of the dynamo module on £ at . int i d ti d d i
the excitation condition will be discussed in Sec. V D. It ©OUIS€.& at a given point in space and ime depends no

7V2B+VxXE-39B=0, V-B=0, (13)

where &, defined by

makes the mentioned factor of about 2 plausjble. simply onu andB in this point but also on their behavior in
the neighborhood of this point.
V. THE MEAN-FIELD APPROACH We adopt the assumption often used in mean-field dy-

namo theory thaB varies only weakly in space and time so

The Karlsruhe dynamo experiment has been widely dlsfhatgand its first spatial derivatives in this point are suffi-

cussed in the framework of the mean-field dynamo theory; . R .
see e.g., Ref[30]. Let us first discuss few aspects of the cient to define the behavior @& in the relevant neighbor-

traditional mean-field approach applied to spatially periodid'00d- Theng can be represented in the form
flows and then a slight modification of this approach, which

possesses in one respect a higher degree of generality. We
always assume that the magnetic flux densitis governed where the tensorg;; andb;;, are averaged quantities deter-

by th? induction _equat|oni1) and the fluid velopltyu 'S mined byu. We use here and in the following the notations
specified to be either a Roberts flow or the spin generator - - . .
X1=X, Xo=Y, X3=z and adopt the summation convention.

flow as defined above. Of course, the neglect of contributions & with higher-

order spatial derivatives or with time derivativesB{fwhich

o is in one respect relaxed in Sec. V Bmains to be checked
For each given field#F, we define a mean field by taking  in all applications.

an average over an area corresponding to the cross section of The specific properties of the considered flow patterns

four cells in thex-y plane, allow us to reduce the form & given by Eq.(16) to a more

€i=aij§j+bijkﬁ§j /(“7Xk, (16)

A. The traditional approach
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spc_eqiﬁc one. Due to our definition of averages and the periywe further putu, =u, u, anduuzuuﬁu, whereu, andu are
odicity of the flow patterns ix andy, and its independence factors independent of andy characterizing the magnitudes
?:f| Z tlhe t%%iorsiijt.and ?'Jt'F] a]rc|e mde;;)tendergt oit)t/] andz ¢ u, anduy, andu, andu; fields that are normalized in
early, a 94 " rotation ot the Tlow patiérn about Miaxis as o, ;¢ way. ClearlyB’, is independent oy, andB’ linear
well as a shift by a length along thex or y axes change only . - .
in uj. Thex andy components ofixB’, from whicha, can

the sign ofu so that simultaneous rotation and shift leave b luded f oroducts of fd
unchanged. This is sufficient to conclude thgtandb;;, are ? concluded, are Slfms ot products o compoqentq @
B’, and ofu, andB’|. Thusa, must depend in a homo-

axisymmetric tensors with respect to thexis. Soa;; and i h h
bij contain no other tensorial construction elements than thg€N0Us and linear way an, whereas the dependence on

Kronecker tensow,,, the Levi-Civita tensofe,,,,, and the Y. IS in general more complex. Th!s can be ob;erved from
unit vectore in z direction. The independence of the flow the results for the Roberts flow. In view of the spin generator

pattern ofz requires thae;; andb;j are invariant under the flow, we splitu; into two partsuy, anduy,, of which the first
change of the sign oé. Finally, it can be concluded on the one is nonzero in the central channel and the second one is

basis of Eq(15) that £ has to vanish Bis a homageneous nonzero in the helical channel only. We further introduce the
oo A ) . . di titi duy,. W th lud
field in z direction, which leads ta3;=0. With the specifi- cOesponcing quanttas, andlyz. "e may men concuide

i f db 4ing to th . ¢ | that @, is linear but no longer homogeneousup. Since
cation ofa;; andbij , according fo these requirements, Tela-,, is proportional toV, we find thate, is linear but not
tion (16) turns into

homogeneous iV, whereas it shows a more complex de-
_ _ _ _ pendence oV .
E=—a,[B-(eB)e]-B, VXB—=(B—B.)[e(VXB)]e For small flow rates we may neglect the terms wition
— — the left-hand side of Eq(18). This corresponds to the

—Bsex[V(e-B)+(e V)B], (17 second-order correlation approximation often used in mean-
o field dynamo theory. Then the solutioBs and furthera
where the coefficientst, , 8,, B|, and B; are averaged can be calculated analytically. Starting from the result found
quantities determined by, and independent of, y andz jn this way for the spin generator flof9,20,23 and using

The term withe, describes anv effect, which is extremely  the above findings we conclude that the general form of
anisotropic. It is able to drive electric currents in thandy  reads

directions, but not in the direction. The terms witl8, and
é;'.”ﬁ givetr]icse tot r;che ipt_rodluction Otf' adry;feap-_ftieldfc:igfuiliv@gy v,

ifferent from the original magnetic diffusivity of the flui _ 1
and again anisotropi?:. In corglltrast to them,ythe remaining = azhn[VC¢C(VH/hﬂ)+2VH¢H(VH/h7])] 20
term with B3 is not connected wittV X B but with the sym-
metric part of the gradient tensor Bfand therefore cannot with two functions ¢¢ and ¢y satisfying ¢c(0)= ¢(0)
be interpreted in the sense of a mean-field diffusivity. =1. Note that the argument,/hz is equal to &/h)V,,

In the case of the Roberts flow, the coefficient has  which is in turn equal tow(r,+r;)(r,—r;)/27. Conse-
been determined for arbitrary flow rates, and coefficients likeyuently, it is just some kind of magnetic Reynolds number
B. . B, andp for small flow rateg19,20,22,23,2bAs for  for the rotational motion of the fluid in a helical channel. The
the spin generator flow, only results far have been given functions¢c and ¢, have been calculated analytically under
so far[19,20,22,23,2b a simplifying assumptiorj20,25, which, however, proved

For the determination of, , it is sufficient to consider not to be strictly correct. We will give rigorous results fer
Eqg. (15) for B’, with B specified to be a homogeneous field. ¢c, and ¢y in a more general context in Sec. V C below.

In this case, which implie& X (uxB’)=0, this equation As mentioned, we now make a comment on the assump-
turns into tion that B’ vanishes ifB does so. Investigations with the
Roberts dynamo problem have revealed that nondecaying so-
7V2B'+(B'-V)u—(u-V)B' — 4B’ = _(g v)u, IutionsB of the induction equationl) Whose average over a
cell vanishes are well possib28]. They comcEIe with non-
V.B' =0. (18) decaying solution®’ of Eq. (15) in the caseB=0. These

solutions are, however, always less easily excitable than so-
. e — lutions with nonvanishing averages over a cell. They are
We may again considd’” like B as independent & Let U therefore of no interest in the discussion of the excitation
pu;B/z_B l+,B [ ang U:U¢d+ quV‘?_th 5’ LZIB _(ell B )ﬁ condition for mean magnetic field In that sense the above
andB’ =(e-B’)e andu, andu defined analogously. Then ,qq,mption igalthough not generally trjgat least in the

we find case of the Roberts flow, acceptable for our purposes. Pre-
_ sumably, this applies also for the spin generator flow.
7V?B’' +(B',-V)u,—(u,-V)B', —9B',=—(B-V)u, , In view of the following section, we assume for a moment
thatB does not depend axandy but only onz. In that case
nV?B'|—(u,-V)B' =3B |=—((B+B',)-V)u,. we have VxB=ex[V(e-B)+ (e V)B]=exdB/dz and

(19 therefore Eq(17) turns into
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if both are simultaneously subject to a 90° rotation about the
Z axis, i.e., relation(26) remains unchanged under such a

rotation of £ and B. This means that the tensas; is axi-

Interestingly enough, here the difference in the characters ngmmetric with respect to the axis definedkyThe general

the B, and B3 terms in Eq.(17) is no longer visible. While
there are reasons to assume that the coefficigntand g,

which can be interpreted in the sense of a mean-field diffu

sivity, are never negative, this is no longer true By and
therefore also not fo3. The results for the Roberts flow
show indeed explicitly thaps can take also negative values
[19,22,23.

B. A modified approach

form of a;; that is compatible witfr}; (k) = a;; (— k) is given

by

2Yij(k):<'i\1(|k|)5ij +ay(|kDkik;+iag(|k|) e ki, (27)

with reala,, a,, andas. Together with Eq(26) this leads to
&,=(a;+a,k?)B,. On the other, hand, is equal to the
average ofu,B;—u,B,, and we may conclude fron5)

We now modify the mean-field approach discussed so faghat B; andB; are independent d,. This in turn implies

in view of the case in whiclB does not depend oxandy
but may have an arbitrary dependence ol quantities
like B, B, B’, or €, which depend orz, are represented as
Fourier integrals according to

F(x,y,z,t)=f F(x,y.k,tyexplikz)dk. (22)

The corresponding representation Bfclearly includes an-

satz(5). B depends om, y, k, andt, butB and€ depend only
on k andt. The requirement tha¥(x,y,z,t) is real leads to
F*(x,y,k,t)=F(x,y,—k,t). Relations of this kind apply to
B, B, B’ and&.

Equations(11) to (15) remain valid, whereas Eq$16),
(17), and (21) have to be modified. Clearly, Eqél3) and
(14) are equivalent to

7k?B—ikx &+ 9,B=0, e-B=0, (23)
and
E=uxPB'. (24)
Instead of Eq(15), we have
7(V2—k?)B’ +(V+ik) X (uxB')' — 4B’
=—(V+ik)X(uxB), (V+ik)-B'=0, (25

where XB')’ =uxB’'—uxB’.
Assuming again tha€ is linear and homogeneous By

we conclude that the same appliesétaandgtoo. Therefore
we now have

&i(k,t)=a;;(K)Bj(k,b), (26)
Where&ij is a complex tensor determined by the fluid flow.
Analogous to€ andB, it has to satisfya; (k)= a;;(— k).
From the symmetry properties of the_field we conclude
again that the connection betwe&randB remains the same

a;+a,k?=0. We note the final result fcﬁtij(k) in the form
éij(k):_&l(k)(éij_eiej)+i:é(k)5ijlkl’ (28)

with two real quantitiesr, and3, which are even functions
of k.
From Egs.(26) and (28) we obtain

E(k)=—a, (K[B—(e-B)e]-iB(kkxB.  (29)

Together with Eq(22), this leads to
s(z,t)z—f &, (K){B(k,t)—[e B(k,t)]etexp(ikz)dk—e

J N -
xﬁf B(K)B(k,t)exp(ikz)dk. (30)

This in turn is equivalent to

1 - -
E(zt)=— EJ a (O{B(z+{,H)—[eB(z+{.t)]etdl

1 J ~
- poex— | BB+ LdL, 31
with
alm:f &, (K exx(ike)dk,
B(O)= f B(k)expik{)dk. (32)

Note that botha;, and B are even ing.
Let us now expan&ij (k) as given by Eq(28) in a Taylor
series and truncate it after the second term,

aij(k)=—a, (0)(5;—ee)+ikB(0)eje. (33

The corresponding expansion&fas given by Eq(30) reads
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E=—a,(0)[B—(e-B)e]—B(0)exdB/dz.  (34)

V. [m%/h
0 100 260[ 3({0]400 500

5 T

Comparing this with relatiori21) of the preceding section,
we find

a,=a,(0), B=p0). (35)

Returning again to arbitrark, we define for later pur-
poses a functior(k) by

a(k)=a, (k) +kB(K). (36)

If a(K) is given, we may determine, (k) and 3(k) accord-
ing to

FIG. 5. Contours ofC for k=0.
~ 1. “
a (k)= 5[ak)+a(=k)], C=a,Rly, B=BIn. (40)

1 Now C and 8 show a dependence énwhich we express by
K= —T a(K) — a( —K)1. 3 the one onk=ak.
Alk) Zk[a( )= al=k] 37 Thinking first of the traditional approach, we consider
with k=0. Figure 5 shows contours & in the V-V dia-

Moreover, we have gram, Fig. 6 the functiongc and ¢, from which«, and
thus C can be calculated. These results deviate for lafge
R da(k) significantly from those determined with the simplifying as-
Vy [m®/h
0 100 " 1B66™ 300
C. The parameters defininga effect, etc. 1.0 T T T
L view of the determination of the quantities (k) and 0.8f array of spin ]
B(K), which includes that ofr, and 3, we note that rela- 06k generators h
E)ns like Eq.(21) or EqQ.(29) connectingE with B or € with Y 0'4 s ]
B apply, apart from the explicitly mentioned restrictions, for ) :“}g‘e
arbitrary B. Thus we may take these quantities from calcu- 0.2 generator b
lations carried out for specifiB. 00k

Using the method described in Sec. lll, we have numeri-
cally determined steady solutions of E@.5) for B’ with
givenV¢, Vy, k, and a specifi@ of Beltrami type, satisfy-

ing ex dB/dz=kB. With these solutions we have then cal- . 00 100 200 300
culated the quantitg- B*, that, according to Eq29), has to ' array of
satisfy 0.8f spin generators ]
N N 0.6f :
o p*— _ ~lIR[2 T
£-B*=-alB|?, (39 S g4l ;
R R single spin
with « defined by Eq(36). From the values o& and their 0.2 generator .
dependence ok obtained in this waye, (k), B(k), «, , ool 1
and B8 have been determined. ’
In mean-field models of the Karlsruhe device in the sense 0 1 2 3 4 S
of the traditional approach explained in Sec. V A, the coef- Va

ficient @, occurs in the dimensionless combinatidd FIG. 6. The funci g lculated f  spi
=a, R/7, with R being the radius of the dynamo module, - 6. The functionspc and ¢y, calculated for an array of spin
generators. For comparison, the results of the approximation con-

and the influence of8 can be discussed 'f terms @&  sidering single spin generatofie., ignoring their mutual influ-
= B/ . We generalize the definitions @ and 8 by putting  ence$ are also given.
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Ve [m®/h] mentioned, in view of the experimental device it seems rea-
0 100 ~ 200 = 300 sonable to puk= 7a/H=0.929. Analogous to Fig. 5, which
5 ' T e applies tok=0, Fig. 8 shows contours @ for k=0.9. We
ab see thatC for givenV¢ andVy is slightly higher in the latter
case. The results foB are virtually indistinguishable for
3k both cases.
b:l’.‘
233 D. The excitation condition in mean-field models
We consider first again the traditional approach to mean-
1¢ field theory explained in Sec. V A. Equatiqd3) for B to-
0 gether with relation(17) for £ allows the solutions
0 _
B=By|[ cogkz),+sin(kz),0]exppt),
FIG. 7. Contours of3 for k=0 (calculated as the limitc p=—(n+B)K=a Kk, (41)

—0).

here By is an arbitrary constant. We refer here again to
artesian coordinates and consi#exrs a positive parameter.

region ofV- andVy, which is of interest for the experiment, For thes_e solutior_ls,_we _ha\)@x B=2xkB, l.e., they are of .
Beltrami type. This implies that there are no mean electric

say 0<Vc,Vyy<2, the values oC, ¢¢, and ¢y for givgn currents in thez direction. The solution that corresponds to
Vc andVy are somewhat larger than those obtained with tha{he upper signs can grow i, is sufficiently large. The

assumption. One reason for that might be that_in the case Q:fondition of marginal stability reads, = ( 7+ B)k or, what
an array of spin generators, compared to a single one in & \o same
fluid at rest, the rotational motion in a helical channel expels '

less magnetic flux into regions without fluid motion, where it

sumption mentioned above, according to which the mutu
influence of the spin generators was ignof2@,25. In the

cannot contribute to the effect. Remarkably, in the region C=(1+RB)kR, (42)

0<V¢, V<2, our result foIC agrees very well with the one

derived under the assumption of a Roberts f[@&,23. where C and B3 have to be interpreted as the values for
Figure 7 exhibits contours oB for k=0 in the V:Vy =0. If we relate this to the dynamo module and put

diagram. We already pointed out thatcan take negative = 7/H, we have

values. Here we see thAtbecomes negative for sufficiently
large values oW andVy . Although this happens somewhat C=(1+B)7RI/H. (43)
beyond the region of interest for the experiment, it suggests

that inside this region the positive values@imay be small.  Note that the factoR in conditions(42) and(43) result from
The diffusion term in the mean-field induction equation isthe definition ofC only. In fact, they are independent Bf
proportional ton(1+2). In the investigated region ofc Proceeding to the modified approach to the mean-field
andV,,, this quantity proved always to be positive. theory and replacing relatioi17) for € by Eq.(30), we find

Let us now proceed t&€ and B for x#0. As already formally the same result. Howeves;, and 8 have to be

replaced bya, and 8, andC and B in Egs.(42) and (43
Ve [m®/h] have to be taken fok=ak. Condition (42) interpreted in
0 100 ~ 200 = 300 this sense defines neutral lines in gV, diagram which
' ' have to agree exactly with those shown in Fig. 4. Likewise,
condition (43) defines the special neutral line witlk
=qmalH.

One of the shortcomings of estimates of the self-
excitation condition of the experimental device based on the
solutions of the induction equation used in Sec. IV or,
equivalently, on a relation like Eq43), consists in ignoring
100 the finite radial extent of the dynamo module. We point out

another solution of Eq(13) for B, which has been used for
0 an estimate of the self-excitation condition of the experimen-
0 1 2 3 4 5 tal device considering its finite radial extg@0,23,31. For
1A the sake of simplicity, we assume tt&is given by Eq.(17)
with B8, = 8= pB3=0. We refer to a new cylindrical co-
FIG. 8. Contours ofC for x=0.9. ordinate systemr(¢,z) adjusted to the dynamo module, so

300

200

Vu [ma/h]
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thatr =0 coincides with its axis and=0 with its midplane. = symmetric solution is slightly easier to excite than axisym-

The solution we have in mind reads metric ones[19,21-23. The influence of theB, and B
terms of€ can no longer be expressed Byand there is also
_ oV 9(g?+k?)+p 19 an influence of thgg term. All these influences increase the
B=Bo E’T‘P’_ T 5 (1Y) |exppt), marginal values of [19].

VI. THE EFFECT OF THE LORENTZ FORCE
W =Jo(qr)cogkz), (44) ON THE FLOW RATES

In the theory of the experiment, equations determining the
fluid flow rates in the loops containing the central channels
and in those containing helical channels have been derived
. ! . . S . —>>~  from the balance of the kinetic energy in these loops. The
frggcz(é? tgf ttr?; g)r(lsst klltnﬁé;,-rf]lljsrtf]gt’uttllqoen IS aX|stynt'1rr]n?ttrr|]c W'th_ rate of change of the kinetic energy in a loop is given by the

P i property that theé nor- 5« done by the pumps against the hydraulic resistance and
mal components oV X B vanish both on the cylindrical sur- the |orentz force. For the work done by the Lorentz force
facesqr=z,, wherez, denotes the zeros dp, and onthe ayeraged over a central or a helical channel we write

planeskz= (I + 1/2)7 with integerl. We identify the region <uf>V1 Where(. . > means the average over this chanil,
inside the smallest of these cylindrical surfaces between twgs yolume and the Lorentz force per unit volume,

neighboring planes of that kind with the dynamo module, so

we putg=2z, /R, wherez, is the smallest positive zero a§, f=u 1Y VXB)XB, 47
andk=/H. Then there are no electric currents penetrating

the surface of the dynamo module. The condition of marginawith « being the magnetic permeability of free space.
stability for the so specified solution reads We use agaiiB=B+B’. For all results reported here, we

have assumed tha@ is a homogeneous field and, corre-

spondingly,B’ is also independent af so that Eq.(18) ap-

o ) ] ] - plies. Then alsd is independent of and(- - -) may simply

In the limit H/R—0, this agrees with E(43) if we put 8 pe interpreted as an average over the section of the channel

=0. For finiteH/R, however,C is now always larger than \uith the x-y plane.

the value given by Eq(43) with =0. This can easily be We have calculated the quantiti@s- f)c and(u-f) for a

understood considering that there is now an additional dissieentral and a helical channel analytically in two different

pation of the magnetic field due to its radial gradie@dtas  approximationg22,24. In approximation(i), all contribu-

function of H/R has a minimum atl/R=7/z;. The dynamo tions tof of higher than first order i/ or Vi, were ne-

module was designed so thdtR has just this value. In this glected so that it applies to smalf andV, only. In approxi-

case we have mation (i), arbitraryV: andVy, were admitted, but as in an
earlier calculations of the effect only a single spin genera-

C=2mR/H. (46)  tor surrounded by conducting medium at rest was consid-

ered, i.e., any influence of the neighboring spin generators

In other words, the real radial extent of the dynamo modula5 ignored. We represent the results of both approximations
enlarges the requirements f@, compared to the case of

S : _in the form

infinite extent, by a factor 2. As can be seen from Fig. 5, in

the region ofV: and Vy in which experimental investiga- Vo2

tions have been carried out, say €8.,V,<1.6, this en- (u-fe=— _<_C) B2 ye(Ve Vi),

largement ofC means that if, e.gV¢ is given,Vy grows by 2yc! Sc

a factor between 2.5 and 3.5. We recall here the deviation of

the experimental results from the estimate of the self- V2

excitation condition given in Sec. IV on the basis of Fig. 4, (u-fiu=- 2_<S_) B (Ve Vi)- (48)

which just corresponds to E¢43). In the light of these ex- YHA SH

planations concerning the influence of the radial extent of th¢yere  is the electric conductivity of the fluidye and y, are

dynamo module this deviation is quite plausible. It is actu-gjyen py

ally rather small, which indicates that our reasoning despite a

number of neglected effects does not underestimate the re-

quirements for self-excitation. B (ryt+rp)%+(h/m)?
We also note that the resul#6) is not a completely sat- re=1, yH_Z(r2+r2)+(h/7r)2'

o : o o . 17l

isfying estimate of the self-excitation condition of the experi-

mental device. Apart from the fact that it does not COHSideI’SC and sy are the cross sections of the central and helical

realistic boundary conditions for the dynamo module, it ischannels, and, is the magnetic flux density perpendicular

based on an axisymmetric solution of the equationBor to the axis of the spin generator, i.e., to #hexis. In approxi-

Several investigations have, however, revealed that a nonaxination (i), we haveyc= yy=1. In approximation(ii), ¢

p=—n(q*+k*) *a Kk,

whereq andk are constants and, is the zero-order Bessel

C=m(R/IH)[1+(z;H/7R)?]. (45)

(49
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FIG. 9. The dependence af, and ¢ on V, for Vc=1 and
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has the form ¢{X(Vy)+ P (Vi) Vet ¢i2(Vi)VE  with
#9(0)=1. This can be seen explicitly from the calculations
in the approximatioriii) mentioned above, in which, by the
way, y{2)=0.

We have calculate@t- and sy, numerically on the basis of
Eg. (15) using the method described in Sec. lll. The result is
shown in Fig. 9. Instead of the complete array of spin gen-
erators, we have also considered an array in which fluid mo-
tion occurs only in one out of ¥4 spin generators. The
numerical result obtained for this case agrees very well with
the analytical result of approximatidii) shown in Fig. 9.

For a complete array of spin generators the facgraind
iy in relation(48) are generally larger compared to approxi-
mation(ii). In other words, the Lorentz force is less strongly
reduced by the azimuthal motion of the fluid. This can be
understood by considering that less magnetic flux can be
pushed into regions without fluid motion.

VII. CONCLUSIONS

We have first dealt with a modified Roberts dynamo prob-
lem with a flow pattern resembling that in the Karlsruhe
dynamo module. Based on numerical solutions of this prob-
lem, a self-excitation condition was found. Since in these
calculations neither the finite radial extent of the dynamo
module nor realistic boundary conditions at its plane bound-
aries were taken into account, this self-excitation condition
deviates markedly from that for the experimental device.

V<=2 for an array of spin generators. For comparison the results of A mean-field approach to the modified Roberts dynamo

approximation(ii), which considers a single spin generator only, are
also given.

and ¢ are functions ofVs and Vy satisfying ¢c(Vc,0)
=1 for Vc#0 and ¢yy(Vc,0)=1 for all V¢, varying only
slightly with V- and decaying with growing/y; see also
Fig. 9. The factors/c and ¢ in relation(48) for (u-f) and
(u-fy, describe the reduction of the Lorentz force by the
magnetic flux expulsion out of the moving fluid by its azi-
muthal motion.

We may conclude from the relevant equations tha
(u-fycand(u-f), can again be represented in the fo{#®)
if the complete array of spin generators and arbit\gyand
Vy are taken into account. Only the dependencegotnd
¢y on Ve andVy changes.

Before giving detailed results we make a general state-
ment on these dependences. As in the considerations in trfé‘

paragraph containing Eq18), we may again introduce the
quantitiesB’ , By, u,, uj and use Eq(19). With the same
reasoning as applied there we find that for the spin generat
flow B, is independent ol and B’ linear in V. We
further expres$, andf, defined analogous ®’, andB’,
according to Eq(47) by the components oB’, and B”’,
their derivatives and the componentsBf In this way we
find that({u-f)¢ is a sum of two terms, one proportional to
Vc and the other proportional t‘o!'é. Consequentlyysc has
the form ¢ (Vy) + ¢S V(v Vet with »90)=1. We
further find that(u-f),, is a sum of three terms, one indepen-
dent ofV¢ and the others proportional - andV%, andy

problem is presented. Two slightly different treatments are
considered, assuming as usual only weak variations of the
mean magnetic field in space, or admitting arbitrary varia-
tions in thez direction. The coefficienty, describing thex
effect and a coefficienB connected with derivatives of the
mean magnetic field are calculated for arbitrary fluid flow
rates. The result fot, corrects earlier results obtained in an
approximation that ignores the mutual influences of the spin
generatorg25]. It leads to a much better agreement of the
calculated self-excitation condition with the experimental re-
ults [22,23. We note in passing that in the case of small
low rates our result, although calculated for rigid-body mo-
tions only, applies also for more general flow profiles
[22,23. The result for8 suggests that the enlargement of the
effective magnetic diffusivity by the fluid motion can be par-
tially compensated by another effect of this motion. The
me has been observed in investigations with the Roberts
w [29]. This could be one of the reasons why the results
calculated under idealizing assumptions, in particular ignor-
'rpg the effect of the mean-field diffusivity, deviate only little
rom the experimental resul{23].

In the framework of the mean-field approach, we have
also given an estimate of the excitation condition which con-
siders the finite radial extent of the dynamo module. It shows
that the real extent enhances the critical valu€oivhich is
a dimensionless measure af, , by a factor 2. In other
words, if in the region oV andVy, in which experimental
investigations have been carried out is fixed, V has to
be larger by a factor between 2.5 and 3.5. If the excitation
condition is corrected in this way it does not underestimate

026401-10
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the requirements for self-excitation. rected by factors between 0.8 and 0.9; for more details see
We have also calculated the effect of the Lorentz force orthe note added in proof in Refi24].

the fluid flow rates in the channels of a spin generator. Again
our result corrects a former one obtained in the approxima-
tion already mentioned, which ignores the mutual influences
of the spin generatof®2,23. The braking effect of the Lor-
entz force proves to be stronger than predicted by the former The results reported in this paper were obtained during
calculations. This means in particular that estimates of thstays of K.-H.R. at NORDITA. He is grateful for their
saturation field strengths given so f&2,24] have to be cor- hospitality.
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