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Nonlinear states of the screw dynamo

Wolfgang Dobler,* Anvar Shukurov,† and Axel Brandenburg‡
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~Received 28 May 2001; published 21 February 2002!

The self-excitation of magnetic field by a spiral Couette flow between two coaxial cylinders is considered.
We solve numerically the fully nonlinear, three-dimensional magnetohydrodynamic~MHD! equations for
magnetic Prandtl numbersPm ~ratio of kinematic viscosity to magnetic diffusivity! between 0.14 and 10 and
kinematic and magnetic Reynolds numbers up to about 2000. In the initial stage of exponential field growth
~kinematic dynamo regime!, we find that the dynamo switches from one distinct regime to another as the radial
width dr B of the magnetic field distribution becomes smaller than the separation of the field maximum from
the flow boundary. The saturation of magnetic field growth is due to a reduction in the velocity shear resulting
mainly from the azimuthally and axially averaged part of the Lorentz force, which agrees with an asymptotic
result for the limit ofPm!1. In the parameter regime considered, the magnetic energy decreases with kine-
matic Reynolds number as Re20.84, which is approximately as predicted by the nonlinear asymptotic theory
(;Re21). However, when the velocity field is maintained by a volume force~rather than by viscous stress! the
dependence of magnetic energy on the kinematic Reynolds number is much weaker.

DOI: 10.1103/PhysRevE.65.036311 PACS number~s!: 47.65.1a, 07.55.Db, 95.30.Qd, 98.58.Fd
t

he
tr

rtz
g-
a
b
m
o

n
o

ol
l
ity
ce
to
an
re
th

fie

tro-
o

a

t of

er-

the
id
elf
of

mo
the

ore
f the
n-
con-

w
en
in

ults

ng
th

ri-
it
I. INTRODUCTION

The screw dynamo is a system where magnetic field
generated by the~laminar! flow of an electrically neutral, bu
conducting fluid with helical streamlines, i.e.,

u5~0,rV,uz!, ~1!

in cylindrical polar coordinates (r ,w,z), with V and uz the
angular and axial velocities, respectively. It is one of t
simplest dynamo systems known and the most symme
one in the sense that the flow can be steady and uniform
the azimuthal and axial directions. As first shown by Lo
@1,2# and Ponomarenko@3#, such a flow can generate ma
netic fields via dynamo action, i.e., without any extern
electromotive forces. Since the magnetic Reynolds num
required for magnetic field generation by the screw dyna
is relatively low, this type of flow has been used in a series
laboratory dynamo experiments in Riga~e.g., Refs.@4,5#!
which have recently achieved magnetic field growth a
saturation@6,7#. There are further plans to perform a dynam
experiment based on a similar~but time-dependent! flow
@8,9#. Dynamo action of this type can also occur in the co
ing systems of fast breeder reactors@10#. A related successfu
dynamo experiment is the Karlsruhe liquid sodium facil
@11,12#, which involves an ensemble of spiral flows. Sin
the magnetic Reynolds numbers achievable in labora
flows are never very high, it is important to understand qu
titatively the excitation properties of the system and to p
dict measurable characteristics of the dynamo including
strength, location and time dependence of the magnetic
in the nonlinear regime.
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Other possible sites for screw dynamo action are as
physical jets@13# where a helical flow capable of dynam
action can arise from the axial ejection of plasma from
rotating accretion disc@14#.

A discussion of the screw dynamo in a broader contex
slow dynamos was presented by Soward@15#. Gilbert and
Ponty@16# generalized the idea of the screw dynamo to c
tain nonaxisymmetric flows and Pontyet al. @17# applied this
approach to hydrodynamically unstable Ekman layers.

In the present paper, we explore nonlinear states of
screw dynamo in the spiral Couette flow of a viscous flu
between two coaxial cylinders. Both the screw dynamo its
and the flow are simple enough to allow detailed analysis
the nonlinear behavior, a rare feature among MHD dyna
systems. In particular, this allows one to assess many of
empirical and heuristic arguments often applied to m
complicated dynamo systems, such as the relevance o
marginally stable linear solution for the description of no
linear states, and to understand the nonlinear states in
siderable detail.

The plan of the paper is as follows. We briefly revie
previous studies of the screw dynamo in Sec. II, and th
describe our model in Sec. III. Our results are presented
Sec. IV A for the ~kinematic! stage of exponential growth
and in Sec. IV B for saturated, nonlinear states. The res
are summarized in Sec. V.

II. THE SCREW DYNAMO

The kinematic behavior of the screw dynamo, includi
that in the spiral Couette flow, is well explored using bo
asymptotic analysis@18–22# and numerical modeling@23–
26#. Consider a time-independent velocity field~1! where
both the angular and axial velocity are functions of cylind
cal radius alone,V5V(r ) anduz5uz(r ). The evolution of
the magnetic fieldB is governed by the induction equation

a,
©2002 The American Physical Society11-1
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]B

]t
5“3~u3B2h“3B!, ~2!

supplemented with appropriate boundary conditions. Herh
is the magnetic diffusivity, which is related to the electric
conductivitys of the medium ash51/(m0s). At the kine-
matic stage, when the magnetic field is weak enough,u can
be considered fixed and independent ofB. The magnetic field
can then grow exponentially provided the magnetic Reyno
number is above a certain critical valueRm

(cr) , and Eq.~2!
becomes an eigenvalue problem. The field is necess
nonaxisymmetric~in accordance with Cowling’s theorem
e.g., Ref.@27#! and, due to the symmetry of the flow, is
superposition of eigenmodes given in cylindrical polar co
dinates by

Bj~r ,w,z,t !5B̂j~r !ei ~mw1kz!1lt, j 5r ,w,z, ~3!

wherem and k are the azimuthal and axial wave numbe
respectively, and

l5g1 iv

is the eigenvalue, withg the growth rate andv the oscilla-
tion frequency of the magnetic field.

While Ponomarenko@3# discussed a rigid cylinder mov
ing in a conducting medium, thus giving rise to a discontin
ous velocity profile, later models@15,18,19# apply to more
realistic, continuous velocity fields like the spiral Couett
Poiseuille flow, of which the spiral Couette flow used in t
present paper is a special case.

The coupling of the radial and azimuthal components
Eq. ~2!, required for the magnetic field to grow (g.0), oc-
curs via the diffusion term and is thus proportional toh, see
Eqs.~A1! and~A2!. Therefore, the growth rate of any give
magnetic eigenmode~i.e., for fixedm andk! tends to zero as
h→0. The scaling of the growth rate with the magnetic Re
nolds numberRm}h21 depends on the flow properties. I
the asymptotic limitRm@1, g5O(Rm

21/2) for a continuous
velocity field@18#, whereasg5O(Rm

21/3) for a discontinuous
velocity field @3,28#. The eigenfunction has a maximum at
radius r 0 where the advection termmV(r )1kuz(r ) @see
Eqs. ~A1! and ~A2! in Appendix A# has an extremum inr,
thus minimizing destruction of the magnetic structure by
r-dependent advection. This implies thatr 0 satisfies

mV8~r 0!1kuz8~r 0!50, ~4!

where primes denote the derivative with respect tor. ~In a
discontinuous flow, the eigenfunction is localized at the d
continuity.! Modes with different ratiosk/m are localized at
different radii. An additional necessary condition for the e
istence of growing modes, which is due to@19#, requires that

Ud lnuV8/uz8u
d ln r

U,4 ~5!

is satisfied atr 5r 0 . This is always the case for the spir
Couette flow.
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The oscillation frequency of a mode localized atr 5r 0 is
dominated by the advection term

v52mV~r 0!2kuz~r 0!1O~Rm
21/2!,

for a continuous flow withm, k5O(1).
The critical magnetic Reynolds numberRm

(cr) , above
which g.0, depends on the radial velocity profile and
about 20 or larger@4,5,25,26#. The field concentrates in a
cylindrical shell of widthdr 5O(Rm

21/4) ~for Rm@1! for a
continuous velocity field@18# and dr 5O(Rm

21/3) for a dis-
continuous velocity profile@3#, providedm, k5O(1). At dis-
tances fromr 0 larger thandr , advective distortion of the
nonaxisymmetric magnetic field cannot be balanced by lo
dynamo action. Therefore the magnetic field must be wea
than in the resonance shell aroundr 0 and decays exponen
tially in ( r 2r 0)2. Gilbert @19# has obtained asymptotic solu
tions for the fastest mode,m, k5O(Rm

1/3) for continuous, and
m, k5O(Rm

1/2) for discontinuous velocity fields.
The nonlinear behavior of the screw dynamo has b

studied only recently in a paper by Bassom and Gilbert@29#,
who have carried out an asymptotic analysis of the nonlin
case in the limit Re@Rm@1, where Re is the kinematic Rey
nolds number. This implies a small magnetic Prandtl numb
Pm[Rm /Re!1. The basic idea of their approach is that t
overall effect of the magnetic field on the flow is dominat
by the azimuthally and axially averaged Lorentz force. T
exponential growth of the kinematic stage is saturated v
reduction in the velocity shear in the vicinity ofr 5r 0 where
dynamo action is most efficient. In the asymptotic limit co
sidered, the velocity shear is fully suppressed~to a given
asymptotic order! by magnetic forces in a shell of a radia
width ;O(Rm

21/10). Outside the shell, where the magne
field is weaker, magnetic diffusion and stretching balan
each other to maintain the magnetic field against ohmic
cay. At still larger distances fromr 0 , shear dominates an
the magnetic field is weak as at the kinematic stage. T
steady-state field strengthBss in the spiral Couette flow is
estimated as@29#

Bss
2

m0%U2 5O~Rm
2/5Re21!, ~6!

where U is a characteristic value of the velocity andm0
denotes the vacuum magnetic permeability. As we argue
low, the scaling with Re is sensitive to the nature of t
driving force and arises in Eq.~6! because the flow is driven
by viscous forces.

Nunez et al. @30# have performed classical perturbatio
analysis close to the dynamo threshold for a system whic
based on Ponomarenko’s discontinuous dynamo model@3#,
but assuming the interior of the cylinder to contain fluid
fixed viscosity. For this sufficiently different system, the
also find the asymptotic scalingBss

2 ;Re21, while no conclu-
sions on the asymptotic dependence onRm can be drawn
from such a model.
1-2
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III. THE MODEL

A. Spiral Couette flow

The geometry of our model is shown in Fig. 1. The co
ducting fluid is confined in the gapR1,r ,R2 between two
coaxial cylinders that move with axial velocitiesW1 andW2
and rotate with angular velocitiesV1 andV2 , respectively.
We chooseV15W250; the resulting flow then trivially sat
isfies Rayleigh’s stability criterion,V2R2

2.V1R1
2 @31#. The

magneto-rotational instability of the Couette flow is d
cussed in Refs.@32–34#; our flow is stable with respect to
this instability becausedV/dr.0.

In the absence of a magnetic field, viscosity causes
fluid between the cylinders to adjust itself to the spiral Co
ette velocity profile

V~C!5C1S 12
R1

2

r 2 D , uz
~C!5C2 ln

R2

r
, ~7!

where

C15
V2R2

2

R2
22R1

2 , C25
W1

ln~R2 /R1!
.

The velocity profile~7!, driven by the viscous stress, adjus
itself over the viscous relaxation time

tvisc'
~R22R1!2

p2n
. ~8!

B. Basic equations

The equations we solve are the MHD equations for
vector potentialA, the velocityu, and the density%:

]A

]t
5u3B1hDA1~“•A!“h, ~9!

FIG. 1. Geometrical configuration of the simulations. The ou
cylinder rotates at angular velocityV2 , while the inner cylinder
moves in the axial direction at speedW1 .
03631
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%
~Du1 1

3““•u!1
j3B

%
, ~10!

D%

Dt
52%“•u, ~11!

complemented by an isothermal equation of state,p5cs
2%,

with constant speed of soundcs . Here, the magnetic flux
densityB and electric current densityj are given byB5“

3A, m0j5“3B; we denote withD/Dt[]/]t1(u•“) the
advective derivative;m is the dynamical viscosity~assumed
constant!. Below we refer to the Reynolds number based
the average kinematic viscosity,n5m/%̄.

Equation~9! implies the gauge

h“•A1F50, ~12!

whereF is the electrostatic potential, related to the elect
field E by E52¹F2]A/]t. This gauge proved to be mos
convenient for numerical purposes. Equations~9!–~11! are
written for compressible fluids, but our choice of paramet
makes compressibility insignificant since the speed of so
is a factor of 2 larger than the maximum fluid velocity, whic
results in a density contrast of<12%.

We use an explicit finite-difference scheme of sixth ord
in space and third order in time described, e.g., in Ref.@35#.
The velocity field outside the fluid shell, i.e., forr ,R1 and
r .R2 , is prescribed and fixed, withu5(0,0,W1) in r ,R1
andu5(0,V2r ,0) in r .R2 . We embed the cylinders into
Cartesian box and solve Eqs.~9!–~11! on a Cartesian mesh
in order to avoid a coordinate singularity on the axis and
retain the applicability of the code to different geometries

The magnetic diffusivityh is assumed to be constant fo
r ,R223dx ~with dx the mesh size!, i.e., the inner cylinder
has the same electric conductivity as the fluid, buth
smoothly decreases to zero inR223dx,r ,R2 . Thus, the
last term in Eq.~9! is only relevant close to the outer boun
ary of the fluid. The outer cylinder is assumed to be magn
cally impenetrable, which confines the magnetic field to
region r ,R2 . This would best be achieved with a perfe
conductor atr>R2 , but this corresponds to an infinite mag
netic Reynolds number, the numerical implementation
which leads to fundamental difficulties. Therefore we use
stronger requirementA50 for r>R2 instead. We demon-
strate in Sec. IV A that our results are consistent with tho
obtained with a perfectly conducting outer cylinder since
magnetic field tends to concentrate close to the inner ra
R1 and thus the outer boundary condition only weakly affe
the solution. We have counterchecked our results with
modified magnetic condition, where the vector potential
‘‘softly’’ set to zero in the regionr .R2 by means of an
additional relaxation term,2A/tA in the induction equation
~9!, and we only report results that are not qualitatively
fected by this change.

In all three directions, periodic boundary conditions a
assumed, which are imposed on the faces of the comp
tional box. The horizontal boundary conditions are not ac
ally important, since both the fluid and the magnetic field a
confined tor ,R2 . In the axial direction~thez direction!, the

r

1-3
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assumption of periodicity introduces a maximum wavelen
Lz ~the vertical size of the box! and leads to a quantization o
the vertical wave numberk to

kn52pn/Lz , ~13!

with integern, for solutions that are harmonic inz. To assess
the role of this quantization, we have carried out one num
cal experiment with a four times larger lengthLz516, which
introduces additional modes, which can have values ofk four
times closer to each other. The result was qualitatively q
similar to our other models. The only significant differen
was that the system now had two modes with differentk, but
very similar growth rates, which introduced a relatively slo
drift of energy from one mode to the other. We will n
discuss this simulation in the following, but rather focus
the case of one fixed value ofLz to ensure the comparabilit
of the different models.

FIG. 2. Kinematic growth rateg vs vertical wave numberk for
Models 1f~¯!, 1a ~—!, 1g ~––!, 1h ~–•–•!, and 1i~–¯–¯!. The
first two wave numbersk1 , k2 allowed byLz54 are indicated by
vertical arrows.
03631
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Figure 2 shows how the quantization ofk due to the finite
value ofLz affects the dynamo system. We show the dep
dence of the kinematic growth rateg on the continuous wave
numberk, obtained by solving the eigenvalue problem~A1!–
~A2! as described in Sec. IV A, and indicate the quantiz
valueskn which occur in our simulations. While the max
mum growth rate can be up to 40% larger than the maxim
rate measured atkn ~Model 1d!, the optimal values ofk do
not differ much fromk1 . Thus, our choice ofLz does not
impose unrealistically small vertical scales on the magn
field.

C. Parameters

The dynamo and hydrodynamical properties of the sys
are characterized by two nondimensional quantities, the
nematic and magnetic Reynolds numbers, which are defi
as

Re5UR2 /n, Rm5UR2 /h, ~14!

where U5A(R2V2)21W1
2 is a characteristic velocity. The

ratio of the two Reynolds numbers is the magnetic Pran
number

Pm5Rm /Re. ~15!

We introduce a reference radiusR0 and a reference angula
velocity V0 such thatR251.2R0 and V251.3V0 , i.e., the
radial extent of the system and the revolution time are
order unity when measured in units ofR0 and 1/V0 , respec-
tively. In the following, we will measure length in units o
R0 , time in units of 1/V0 , and velocity in units ofR0V0 ,
without explicitly indicating this in the text.

The parameter range investigated here is indicated
Table I. Parameters that remain constant for all the simu
tions are the cylinder radii~R150.3 andR251.2!, and the
size of the computational box:Lz54 for the vertical size,
l three

TABLE I. Parameters of the numerical simulations discussed in the text. For all runs,R150.3,R251.2,Lz54, V150, andW250. The

values ofW1 , V2 , n, and h different from those of Model 1a are highlighted in boldface. The mesh has equal spacings in al
dimensions,dx5dy5dz in all models except Model 1i, wheredy5dx5dz/2. Lengths are measured in units ofR0 , angular velocities in
V0 , viscosity and diffusivity inR0

2V0 , and velocities inR0V0 .

Model W1 V2 n h U Umax Re Rm Pm dx

1a 1.0 1.3 231022 731023 1.85 1.56 111 318 2.9 0.033
1b 1.0 1.3 7310À2 731023 1.85 1.55 31.8 318 10 0.067
1c 1.0 1.3 1310À2 731023 1.85 1.55 222 318 1.4 0.067
1d 1.0 1.3 2.5310À3 731023 1.85 1.55 889 318 3.6 0.033
1e 1.0 1.3 1310À3 731023 1.85 1.55 2220 318 0.14 0.017
1f 1.0 1.3 231022 8310À3 1.85 1.55 111 278 2.5 0.067
1g 1.0 1.3 231022 4310À3 1.85 1.55 111 555 5.0 0.067
1h 1.0 1.3 231022 2310À3 1.85 1.56 111 1110 10 0.033
1i 1.0 1.3 231022 1310À3 1.85 1.56 111 2220 20 0.017

2a 0.5 1.3 231022 4310À3 1.64 1.55 98 491 5.0 0.033
2b 0.5 1.3 1310À2 4310À3 1.64 1.55 197 491 2.5 0.067
2c 0.5 1.3 7310À2 4310À3 1.64 1.55 197 491 18 0.067
2d 0.5 1.3 231022 2310À3 1.64 1.55 98 984 10 0.033
1-4
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andLx5Ly52(R213dx) for the horizontal dimensions. Th
numerical resolution is either 42342360 ~corresponding to
dx'0.067! or 783783120 grid points (dx'0.033) except
for Model 1i where the higher resolution of 14431443120
(dx'0.017) was used.

For the parameters used, the viscous relaxation time~8! is
in the range 1–80 for the models discussed below. For c
parison, the growth time of the magnetic field is greater th
about 43 for the models presented, and the turnover tim
2p/uV22V1u'4.8.

Models 1 and 2 differ in the value ofW1 and have there-
fore different velocity profiles. This results in different dy
namo efficiencies, for example,Rm

(cr)5218 in Model 1 and
Rm

(cr)5384 in Model 2. Another important distinction is th

FIG. 3. Kinematic growth rateg and frequencyv in Model 1 for
the modem51, k5k1 ~the dominant mode! as a function of the
magnetic Reynolds number, obtained from the one-dimensiona
genvalue problem described in Sec. IV A. Dotted lines show
dependenciesg}Rm

21/3 and g}Rm
21/2 in the upper panel and (v

2const)}Rm
21/2 in the lower panel. The asymptotic solution given

Appendix A is shown as dashed lines. Results from the thr
dimensional simulations are labeled according to the grid spac
dx50.13 ~1!, 0.067 ~L!, 0.033 ~h!, and 0.017~* !. The insets
show radial magnetic energy profiles in the domain 0,r ,R2 for
Rm523103 ~top! and Rm523105 ~bottom!; the region occupied
by the inner cylinder is shaded. The generation threshold for
configuration isRm

(cr)'218.
03631
-
n
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position of the magnetic field maximum,r 0 : In Model 1, the
magnetic field is localized closer to the inner cylinder than
Model 2 ~see, e.g., the insets in Figs. 3 and 4 or Fig. 12
Appendix B!. The models are further subdivided~1a–1i,
2a–d! according to the values ofn andh in order to explore
the effects of varying magnetic and kinematic Reyno
numbers. Most of our models havePm.1, except Model 1d
(Pm'0.36) and Model 1e (Pm50.14).

IV. RESULTS

A. Kinematic regime

The velocity profile~7! can be considered as fixed, an
Eq. ~2! as linear inB, as long as the magnetic stress is we
compared to the viscous stress,

B2

m0
!%n

U

R22R1
. ~16!

Equations for the resulting kinematic dynamo problem
given in Appendix A. As discussed in Sec. II, they repres
a one-dimensional eigenvalue problem which is relativ
straightforward to solve numerically. For Models 1 and 2 w

i-
e

-
g:

is

FIG. 4. As in Fig. 3, but for Model 2. The critical magneti
Reynolds number isRm

(cr)'384.
1-5
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show in Figs. 3 and 4 the dependence of the growth rag
and frequencyv on the magnetic Reynolds number~solid
lines! and compare them to the asymptotic formulas, wh
are given in Ref.@21# and are also reproduced in Appendix
~dashed lines in Figs. 3 and 4!. The insets show the radia
profile of magnetic energy for two values ofRm .

The growth rateg becomes positive atRm5Rm
(cr) , first

quickly increases withRm , and then decreases as expec
for a slow dynamo@15,28#. For the continuous velocity pro
file ~7!, the analytic theory predicts an asymptotic decre
g}Rm

21/2 ~Appendix A!, and this scaling is indeed reache
for very large values ofRm . However, while the growth rate
for Model 2 ~Fig. 4! agrees well with the asymptotic resu
~dashed!, the agreement is not so good forRm&2000 in
Model 1 ~Fig. 3!. Moreover, the latter model shows a tra
sient approximate scalingg;Rm

21/3. Incidentally, this scal-
ing is close to that for a flow with discontinuous radial pr
file @3,19#.

The difference can be explained as follows. For moder
magnetic Reynolds numbers, the field has noticeable stre
at the boundary of the inner cylinder in the flow of Model
~see inset in the top frame of Fig. 3!. Therefore, the
asymptotic theory is inapplicable as it is based on the
sumption that the magnetic field is concentrated far from
boundariesr 5R1 and r 5R2 . However, the radial width of
the field distribution decreases withRm and eventually the
field at r 5R1 becomes negligible~see inset in the bottom
frame of Fig. 3!, and the scalingg;Rm

21/2 is recovered. On
the other hand, the field is always small near the bounda
in Model 2 ~see insets in Fig. 4!, and so the scalingg
;Rm

21/3 does not occur.
We have also explored the linear stage of magnetic fi

evolution using the three-dimensional code in order to as
its performance. A discussion of the numerical aspects
given in Appendix B. We initialize the simulations with

FIG. 5. Three-dimensional representation of the magnetic fi
in Model 1h. ~a! t5200 ~end of the kinematic stage!; ~b! t5912
~the saturated state!. Shown are surfaces whereuBu is 0.65 of the
maximum and magnetic field vectors. The vertical componen
the field has opposite sign in the two flux tubes shown~modem
51!. The azimuthal and axial variations of the field are harmonic
the kinematic stage~a! and flattened in the saturated state~b! ~see
also Fig. 6!.
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weak random magnetic field. After the initial transients ha
died away, exponential growth of magnetic energy is est
lished, corresponding to the fastest growing mode.

Figure 5~a! shows the magnetic field structure for Mod
1h. The level surfaces ofuBu have the form of two helical flux
tubes of opposite field orientation, which corresponds to
azimuthal wave numberm51. The vertical wave number o
the solution shown isk52p/Lz5p/2. This mode is excited
in all the models of Table I. However, additional high
modes are excited in Models 1h, 1i, and 2d, whereRm is
larger ~see Table II!.

Both the flow and the magnetic field are strongly helic
the two helicities being of opposite sign~the streamlines are
right-handed spirals, while the magnetic field lines form le
handed helices as can be seen in Fig. 5!. Since the screw
dynamo mechanism relies on diffusion, the approximate c
servation of magnetic helicity in highly conducting medi
which leads to serious difficulties in mean-field dynam
theory @36,37#, does not lead to any problem here.

B. Nonlinear simulations

After a phase of exponential growth, magnetic energy l
els off at a certain saturation value. The corresponding m
netic energy density is comparable to~but smaller than! the
kinetic energy density in the sheared flow, as can be s
from Table II, where we compare the maximum magne
flux density to A%̄U2, and the magnetic energy toEkin

5 1
2 %̄U2V, whereV5Lzp(R2

22R1
2) is the fluid volume. The

location and width of the magnetic energy maximum a
characterized by

r B5^r &B2, dr B5^~r 2r B!2&B2
1/2, ~17!

where ^ f &B25* f B2dV/*B2dV is the magnetic-energy
weighted volume average. These quantities are similar tor 0
anddr of the kinematic theory.

ld

f

t

FIG. 6. Magnetic field structure in the saturation regime. Sho
is, as a function ofz, the vertical fieldBz along a vertical line at
r 50.48 for Models 1f, 1a, 1g, 1h, and 1i:Rm grows monotonically
along this sequence.
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TABLE II. Magnetic field properties in the models of Table I. Numbers in parentheses refer to the kinematic stage, all other qu
are for the saturated state. Shown are the growth rateg and oscillation frequencyv of the leading mode; the maximum saturated magne
field strengthBmax and magnetic energyEmagin the flow region, both normalized to the corresponding kinetic quantities; and the positio
width of the magnetic field distribution in radius,r B and dr B . The last column lists the growing modes in the form@m,kLz /(2p)#, Lz

54, ordered by decreasing growth rate. The results for Models 1h, 1i, and 2d refer to the~1,1! mode only. Growth rates and oscillatio
frequencies are measured in units ofV0 , lengths inR0 . A long dash stands for quantities not calculated.

Model g v

Bmax

A%̄U2

Emag

Ekin r B dr B (m,2k/p)

1a ~0.0160! 22.03 ~21.957! 0.33 0.015 0.49~0.47! 0.17 ~0.16! ~1,1!
1b ~0.0144! 22.014~21.957! 0.51 0.034 0.48~0.47! 0.17 ~0.16! ~1,1!
1c ~0.0144! 22.037~21.957! 0.24 0.008 0.48~0.47! 0.17 ~0.16! ~1,1!
1d ~0.0144! 22.045~21.957! 0.14 0.002 0.50~0.47! 0.17 ~0.16! ~1,1!
1e ~0.0144! 22.051~21.957! 0.08 0.0009 0.51~0.47! 0.17 ~0.17! ~1,1!
1f ~0.0087! 22.014~21.976! 0.25 0.008 0.48~0.47! 0.17 ~0.17! ~1,1!
1g ~0.0232! 22.028~21.935! 0.42 0.024 0.47~0.47! 0.15 ~0.14! ~1,1!
1h ~0.0176! 22.012~21.91! 0.47 0.030 0.47~0.46! 0.13 ~0.12! ~1,1!, ~1,2!
1i ~—! 21.981 ~—! 0.55 0.035 0.46 ~—! 0.11 ~—! ~1,2!, ~1,1!, ~2,3!, ~2,1!, ~2,2!

2a ~0.0023! 21.459~21.471! 0.17 0.006 0.63~0.66! 0.18 ~0.18! ~1,1!
2b ~0.0039! 21.459~1.473! 0.23 0.10 0.65~0.67! 0.21 ~0.20! ~1,1!
2c ~0.0039! 21.506~21.488! 0.48 0.41 0.63~0.66! 0.20 ~0.20! ~1,1!
2d ~0.0071! 21.506~21.467! 0.29 0.01 0.61~0.66! 0.17 ~0.17! ~1,1!, ~1,2!
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1. Spatial structure of the magnetic field

Figure 6 shows the vertical profiles of the magnetic fie
in the saturated regime for various magnetic Reynolds n
bers. The vertical component of the magnetic field is plot
as a function ofz close to the radius where the field conce
trates. Note that the antisymmetry of the curve with resp
to the middle of the box indicates that only Fourier comp
nents with odd vertical wave numbers are excited, which
be understood from the structure of the nonlinear terms
Eqs.~9!–~11!. The profile in the saturated state is flattened
comparison to the~kinematic! eigenmode and this effect be
comes more pronounced asRm increases. The flattening o
the maxima in bothz andw can also be seen in Fig. 5, whe
the level surfaceuBu50.65uBumax is shown toward the end o
the linear phase@Fig. 5~a!# and in the saturated state@Fig.
5~b!#.

The strongly anharmonic profilesB(z) found for largeRm
do not occur in Bassom and Gilbert’s@29# theory, which
03631
-
d
-
ct
-
n

in

predicts harmonic profiles in the saturated state. The dif
ence may be due to the fact that herePm.1, whereas Bas-
som and Gilbert assumePm!1. The sensitivity of the solu-
tion to the value of the magnetic Prandtl number~if this is
the true reason for the difference! is striking.

As can be seen in Fig. 7, the nonlinear distortion of t
magnetic field distribution is only prominent in the azimuth
and axial profiles, but not much in the radial profile. We a
note from Table II that in all the models the radial widthdr B
of the magnetic energy distribution in the nonlinear stage
not significantly larger than that in the kinematic stage.
Model 1h, for example, the radial width of the eigenfuncti
is dr B'0.12 during the linear stage and 0.13 at saturati
These numbers hardly differ and are very close todr from
the asymptotic theory, which equalsdr 5R2O(Rm

21/3).0.11
for a discontinuous velocity profile anddr 5R2O(Rm

21/4)
.0.20 for a smooth profile. In all our simulations, the rad
width of the magnetic field distribution in both linear an
FIG. 7. Radial magnetic field profile in the saturated regime for Models 1i~left: Pm520! and 1e~right: Pm50.14!. Shown is the
vertically averaged magnetic energy density as a function ofr ~dots! and the corresponding profile at the kinematic dynamo stage~dashed!.
The maximum of̂ B2&z is normalized to one; the radius is measured in units ofR0 .
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DOBLER, SHUKUROV, AND BRANDENBURG PHYSICAL REVIEW E65 036311
nonlinear states are very close to each other and also clo
that predicted by the asymptotic theory for the kinema
dynamo. This is at variance with the nonlinear asympto
of Bassom and Gilbert@29# that predict the development of
‘‘core’’ region in the radial profile of magnetic field with a
width of orderO(Rm

21/10).0.5 in Model 1i. A possible rea
son for this discrepancy might be that our models have
small values ofRm ~2220 in Model 1i and 984 in Model 2d!
for the asymptotic regime of Bassom and Gilbert to app
even though the linear asymptotics are already accurate.
more plausible, however, that solutions with moderate m
netic Prandtl number do not develop theRm

21/10 core and

FIG. 8. Radial, azimuthal, and vertical velocity components
functions of radius in the saturated stage for Model 1a at a res
tion dx50.033. Note the different ranges on the ordinate in
panels: the variation ofur is much smaller than that ofuw or uz .
The shear in bothv(r ) anduz(r ) is reduced in comparison to tha
in the Couette profileu(C) of Eq. ~7!, which is shown as a continu
ous gray line. The location of the inner cylinder is marked in gr
The scatter of the data points arises from their different position
w andz. Velocities are measured in units ofR0V0 , angular veloci-
ties in units ofV0 and radius in units ofR0 . ~In units ofU andR2 ,
the valueur50.01 corresponds to 0.0054U, and v51.2 corre-
sponds to 0.78U/R2 , for example.!
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their radial profile is quite similar to that of the kinemat
eigenfunction~see Fig. 7!.

2. Nonlinear distortion of the velocity field

Figure 8 shows the radial velocity profiles for the sa
rated phase of Model 1a where the scatter of the data po
is due to their different positions inw andz. The radial ve-
locity fluctuates around zero and is dynamically unimport
~even more so as perturbations in the radial velocity can
balanced by the pressure gradient!. However, the azimutha
and axial velocities exhibit systematic deviations from th
Couette profiles so that the velocity shear is reduced in
region where the magnetic field concentrates. It is especi
clear in the case ofuz @Fig. 8~c!# that the spatial scatter i
smaller than the mean variation, so the distortion of the
locity field is axially symmetric and independent ofz to a
first approximation. To justify this we demonstrate in Fig.
that the radial profiles of the averaged Lorentz force are
close correspondence with the deviations of the respec
velocity components of Fig. 8 from the Couette profile. Th
is compatible with the scenario of Bassom and Gilbert@29#,
where, in the limit of infinite kinematic and magnetic Re

s
u-
e

.
in

FIG. 9. As Fig. 8, but for Model 1i.
1-8



in
th
in
in

or
th
lu

is
ch

ette
ntz
oes
ted
d
on-

the
l

e-

n
ld
g-

dy-
-
red

tate
m-
and
the
so-
l

t, in
ym-

e
at

d

f

NONLINEAR STATES OF THE SCREW DYNAMO PHYSICAL REVIEW E65 036311
nolds numbers, the saturation of dynamo action is ma
due to the vertically and azimuthally averaged part of
Lorentz force. As the magnetic Reynolds number is
creased, the relative distortion of the velocity field, and
particular the reduction of velocity shear, are getting m
pronounced; this can be seen in Fig. 9, where we show
same profiles as in Fig. 8, but for a seven times larger va
of Rm .

The radial width of the region where the velocity field
distorted away from the original Couette profile is mu

FIG. 10. Vertically averaged components of the Lorentz acc
erationFLor5 j3B/% as a function of radius for Model 1a. Note th
the effects of magnetic torques on the inner cylinder~shaded area in
Fig. 10! are ignored in our model and its velocity remains fixe
Velocities are measured in units ofR0V0 , angular velocities in
units of V0, and radius in units ofR0 . FLor is measured in units o
R0V0

2. ~In units of U andR2 , the valueFLor50.05 corresponds to
0.018U2/R2 , for example.!
03631
ly
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larger than that of the Lorentz force~see Fig. 10!. This hap-
pens because the flow adjusts itself to two separate Cou
profiles at both ends of the radial range where the Lore
force has distorted it, and so a localized magnetic field d
affect the flow throughout the domain. It can be expec
that a flow profile driven by a volume force will be distorte
less in regions where magnetic field is weak; our results c
firm this expectation.

The screw dynamo can be interpreted in terms of
mean-fieldaV dynamo@15,16#, the V term being as usua
the shear termrBrdV/dr @see Eq.~A2!#. The a effect is
identified with a part of the diffusion term, and the corr
sponding term in the induction equation has the form

2h
2

r 2

]

]w
Bw ~18!

@see also Eq.~A1!#. Since the differential operator acting o
Bw is obviously not influenced by the magnetic fie
strength, thea effect cannot be affected by the growing ma
netic field and saturation is fully due toV quenching. This is
opposite to one of the standard scenarios for mean-field
namos~a quenching!, where the magnetic field has little in
fluence on the angular velocity and saturation is conside
to be caused by the partial suppression of thea effect by
magnetic fields.

3. Scaling of magnetic energy with Re and Rm

Figure 11 shows the magnetic energy in the saturated s
as a function of the kinematic and magnetic Reynolds nu
bers. We also show the asymptotic scalings of Bassom
Gilbert @29#. There is clearly some agreement between
numerical and asymptotic results although the asymptotic
lution has been obtained forPm!1, whereas the numerica
results refer mostly to the casePm.1. We believe that the
reason for the rough agreement is related to the fact tha
both cases, the magnetic feedback affects mainly the axis
metric flow profile, as was seen in Fig. 8.

As expected~at least for weakly supercritical solutions!
the steady-state magnetic field strengthBss increases with

l-

.

FIG. 11. Magnetic energy in the saturated state vs the kinematic and magnetic Reynolds numbers for Models 1a–1i. Left:Emag/Ekin as
a function of Re for Models 1b, 1a, 1c, 1d, and 1e~asterisks!. The crosses refer to a model with volume forcing~see Sec. IV B 3!. Right:
Emag/Ekin as a function ofRm for Models 1f, 1a, 1g, 1h, and 1i. The dashed lines show the asymptotic power laws given in Eq.~6!; the dotted
line is a least-squares power-law fit and corresponds to a dependenceEmag}Re20.84.
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DOBLER, SHUKUROV, AND BRANDENBURG PHYSICAL REVIEW E65 036311
magnetic Reynolds number. On the other hand, the satur
field strengthBss decreases with Re in a flow driven by vi
cous stresses because it becomes easier for the magnetic
to modify the velocity field in a given cylindrical shell as R
increases~owing to the weaker viscous coupling of fluid
different radii!, and so a weaker magnetic field is needed
achieve a local reduction in shear sufficient to halt the fi
growth. As we discuss below, this behavior is characteri
of a flow driven by viscous stresses rather than by a volu
force.

The scaling of magnetic energy with Re is slightly sh
lower than predicted by Bassom and Gilbert and has an
ponent close to20.84 rather than21. Similarly, the growth
of magnetic energy withRm is slower thanRm

2/5 at the values
of Rm explored here. The most plausible reason for th
disagreements is the difference in magnetic Prandtl num
and, possibly, also the fact that the magnetic field distribut
is still not narrow compared to the gap widthR2–R1 for the
magnetic Reynolds numbers we were able to consider.

Taken at face value, the dependence ofBss on Re dis-
cussed above implies that the resulting magnetic field will
negligible wherever Re@1. However, in most real system
the flow will be driven by nonviscous forces. These are pr
sure and inertial forces in the dynamo experiments of R
and Perm. In the case of astrophysical jets, acceleration
collimation of the flow can be due to an external magne
field ~axisymmetric to the first approximation, then the scr
dynamo can generate an additional nonaxisymmetric m
netic field!. In these cases the kinematic Reynolds num
will not play such a prominent role in the system andBss is
expected to be independent of Re for Re@1.

To verify this idea, we have carried out further numeric
simulations for the parameters of Models 1b, 1a, 1c, and
but with an additional volume force

u2u~C!

t
~19!

on the right-hand side of the equation of motion~10!. Here
u(C) denotes the spiral Couette profile~7! and t is the time
scale over which the flow adjusts itself to the Couette profi
With our choicet51, we havet&tvisc, where the viscous
time tvisc varies in the range 1–80, cf. Eq.~8!. Thus, the
Couette flow profile is now maintained on a dynamical tim
scale rather than by viscosity if Re@30.

We show in Fig. 11 by crosses the resulting depende
of the steady-state magnetic energy on Re; the dependen
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clearly much weaker than in the case of viscous driving~a
power-law fit to the points shown has an exponent of ab
20.41!. In the inviscid limit Re→` the magnetic energy
must eventually become independent of viscosity, and so
anticipate that the dependence marked with crosses h
horizontal asymptote.

Another reason why the dependence~6! is not directly
applicable to laboratory and astrophysical dynamos is
the corresponding flows are turbulent. In that case the g
eration of magnetic field on the scale of the mean flow c
be accompanied by the so-called ‘‘fluctuation dynamo’’ pr
ducing small-scale magnetic fields, which eventually achie
energy equipartition with the turbulence. For small magne
Prandtl number, however, the dynamo is only weakly sup
critical and only large scales can be excited. Thus, the sc
dynamo effect is expected to work, but it is now controll
by the effective values of Re andRm based on turbulen
diffusivities. We conjecture that this could still be qualit
tively true in the nonlinear phase of field evolution. Since t
turbulent values of Re andRm can be quite moderate, eve
the scaling~6! would not lead to physically uninterestin
magnetic fields. It can be expected, however, that the tur
lence in the Couette flow, being generated mainly in turb
lent boundary layers near the flow boundaries, will be ve
inhomogeneous and this can affect the theory discussed h
On the other hand, the reduction in the effective magne
Reynolds number due to turbulence has to be only mode
since one needsRm>Rm

(cr) for any sort of dynamo action
Assuming that turbulent magnetic and kinetic Reyno
numbers have similar orders of magnitude, Re.Rm, and that
Rm

(cr).102, the resulting magnetic energy density will b
about 10% of the kinetic energy density even with the sc
ing ~6!.

We note in this connection that the maximum radial ma
netic field component measured in the Riga dynamo exp
ment@7# is about 6 mT, while the equipartition field streng
would be'0.5 T. Bw and Bz being about five times large
thanBr in the kinematic case@F. Stefani~private communi-
cation!#, one gets a ratioEmag/Ekin'531023. This is two
orders of magnitude larger thanRm

2/5Re21&1025 and clearly
implies that the scaling~6!, which is based on the assumptio
of a viscously driven, laminar flow, cannot be directly a
plied to flows in laboratory experiments.

All our experiments were carried out for angular veloc
V increasing outwards and, for the boundary conditions a
parameters considered, the flow was found to be hydro
namically stable in the sense that the Lorentz force led
-
l

FIG. 12. Radial field structure
in the kinematic regime as ob
tained from a three-dimensiona
simulation at a resolution ofdx
50.033 ~dots! and from solving
the one-dimensional Eq.~A1!
with R150.28 ~solid!. ~a! Model
1a; ~b! Model 2a. The maximum
of ^B2&z is normalized to one: the
radius is measured in units ofR0 .
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NONLINEAR STATES OF THE SCREW DYNAMO PHYSICAL REVIEW E65 036311
relatively small deviations from the unperturbed Couette p
file ~7!. An interesting question is that of dynamo action in
spiral Couette flow unstable with respect to the magne
rotational instability, i.e., for angular velocity decreasing o
wards. Flows of this type, although for vanishing vertic
velocities of the two cylinders, are currently discussed
connection with experimental investigations of the magne
rotational instability@32–34#. If the flow is hydrodynami-
cally stable~angular momentum increasing outwards!, a cer-
tain magnetic field is necessary to obtain regular Tay
columns; however, these columns involve a helical veloc
field and are themselves capable of dynamo action@34#.
Thus, the magnetic field can play the role of a ‘‘catalys
destabilizing the system and at the same time regenerati
by the resulting instability; this mechanism has been dem
strated to occur in accretion disks@38,39#.

V. CONCLUSIONS

The numerical calculations performed here have revea
a new intermediate asymptotic regime in the kinematic sc
dynamo where, in a certain range ofRm , the magnetic field
eigenfunction is large enough at the flow boundary so t
the standard asymptotic solutions are inapplicable and
growth rate of the magnetic field scales asg5O(Rm

21/3).
This dependence is typical of a discontinuous velocity p
file. The standard asymptotic scaling,g5O(Rm

21/2), is only
recovered at significantly larger values ofRm where the
eigenfunction becomes narrow enough in radius as to sa
the assumptions of the asymptotic theory.

We have confirmed the result of Bassom and Gilbert@29#
that saturation of screw dynamo action occurs via a reduc
in the velocity shear produced by the axisymmetric part
the Lorentz force. We have shown that this also applies to
case of large magnetic Prandtl numbersPm . However, the
radial profile of the nonlinear solution is very similar to th
marginally stable eigenmode for the nonlinearly modified
locity field. This is different from the nonlinear asymptotic
of Bassom and Gilbert, which predicts a plateau in the ra
dependence. It is possible that such a plateau can only o
at values of the magnetic Prandtl number much smaller t
what we have been able to achieve in the present work,
we have not detected any tendency towards its developm
at Pm50.14, the smallest value explored here.

We have demonstrated that the scaling of the steady-s
magnetic field with kinematic Reynolds number is sensit
to the nature of the forces driving the flow.

APPENDIX A: ONE-DIMENSIONAL KINEMATIC
DYNAMO PROBLEM

In cylindrical coordinates (r ,w,z), the kinematic dynamo
problem for given steady velocity field@0, rV(r ), uz(r )#, is
given by the following nondimensionalized set of equatio
for the two amplitudesB̂r , B̂w @cf. Eq. ~3!#:

lB̂r1 i ~mV1kuz!B̂r5
1

Rm
H D̂B̂r2

2im

r 2 B̂wJ , ~A1!
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lB̂w1 i ~mV1kuz!B̂w5r
dV

dr
B̂r1

1

Rm
H D̂B̂w1

2im

r 2 B̂r J ,

~A2!

where

D̂5
1

r

d

dr S r
d

dr D2
m211

r 2 2k2 ~A3!

is a self-adjoint, Laplace-type differential operator, andl is
the eigenvalue. The vertical componentBz can be obtained
from the solenoidality condition,

1

r

d

dr
~rB̂r !1

im

r
B̂w1 ikB̂z50. ~A4!

Second-order asymptotic analysis~for Rm→`! for the
spiral Couette flow~7! has been presented in Refs.@18,21#. It
is convenient to define the magnetic Reynolds number a

R̃m5
R1

2R2
2

R2
22R1

2

uDVu
h

2[
uV8~r !ur 3

h
~A5!

here, which is different from the definition~14! used in the
body of this paper. The radiusr 0 , where the magnetic field
concentrates, is given by

r 05R1R2Aln R22 ln R1

R2
22R1

2 A22
mDV

kDW
~A6!

and the field can only be growing if

mDV

kDW
,0, ~A7!

whereDV5V22V1 andDW5W22W1 .
To second order in the small parameterR̃m

21/2, the eigen-
valuel of the fastest growing mode is given~in dimensional
units! by

FIG. 13. Representation of the inner cylinder~shaded! on a Car-
tesian mesh fordx50.067~left! anddx50.033~right!. Overlayed
are the circles of effective radiusR1

(eff) , and arrows representing th
velocity field. All lengths are measured in units ofR0 .
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TABLE III. Accuracy of the three-dimensional code, illustrated for Model 1a using various resolutionsdx. The effective inner radius
R1

(eff) is defined in the text. Growth rate, frequency, localization radius, and width of the magnetic field distribution are given for Mo
at different resolutions~top half!. The lower half of the table shows the accurate values obtained by solving the one-dimensional p
~A1!, ~A2! for three different values ofR1 . Lengths are measured in units ofR0 , growth rates and oscillation frequencies in units ofV0 .

Model R1
(eff) g v r B dr B

1a (dx50.067) 0.291 0.0144 21.969 0.467 0.162
1a (dx50.033) 0.301 0.0160 21.957 0.478 0.160
1a (dx50.017) 0.300 0.0162 21.952 0.483 0.161

theory (R150.28) 0.0140 21.971 0.468 0.158
theory (R150.29) 0.0154 21.961 0.478 0.159
theory (R150.30) 0.0167 21.951 0.488 0.160
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l1 i @mV~r 0!1kuz~r 0!#5
h

r 0
2 H ~&21!Aumu~11s1i !R̃m

1/2

1S 17

36
2&2k2r 0

2D
1O~R̃m

21/2!J , ~A8!

where s15sgn(kDW) denotes the sign ofkDW. As h
}R̃m

21, the leading-order term on the right-hand side

O(R̃m
21/2) when measured in the unitsU/R2 .

To the leading order inR̃m , the magnetic field amplitude
B̂ are given by

B̂w5expF2~11s1i !AumuR̃m

~r 2r 0!2

2r 0
2 G1O~R̃m

21/2!,

~A9!

B̂r5s2~11s1i !Aumu
2

B̂wR̃m
21/21O~R̃m

21!, ~A10!

B̂z52
m

k S 1

r
1&

r 2r 0

r 0
2 D B̂w1O~R̃m

21/2!, ~A11!

wheres25sgnDV.

APPENDIX B: ACCURACY OF THE NUMERICAL
SCHEME

We assess the accuracy of our three-dimensional sim
tions and the implementation of the boundary conditions
comparing solutions obtained with the three-dimensio
code in the kinematic regime with those from the cor
sponding one-dimensional eigenvalue problem.

The radial dependence of the~vertically averaged! mag-
netic energy density is shown in Fig. 12 for the hig
03631
la-
y
l

-

resolution runs of Models 1a and 2a at a time when
exponential growth has well established itself. Magnetic
ergy concentrates in a cylindrical shell of radiusr B and of
half-width dr B , defined in Eq.~17!. For Model 1a@Fig.
12~a!#, we find r B50.48 anddr B50.16 ~see also Table III!.
For comparison, we have overplotted the profile obtain
from the one-dimensional model.

Figure 12 shows good agreement between the th
dimensional and one-dimensional simulations everywh
except close to the outer boundary. Forr'R2 , the magnetic
energy in the three-dimensional simulation smoothly turns
zero, while in the one-dimensional calculation the tangen
components ofB remain significant for Model 2a. This is
due to the different boundary conditions used~A50 vs per-
fectly conducting! and the close agreement of growth rat
and eigenfunctions gives us reason to believe that these
not influenced by this localized deviation.

In Table III, we compare the eigenvaluesl and the spatial
parametersr B and dr B of the magnetic field for the three
dimensional simulations with those from the on
dimensional model for different numerical resolutions. Wh
the high-resolution simulation has only an error of about 5
in the growth rateg, and 0.3% in the frequencyv, the lower-
resolution run yields errors of 18% and 0.9%, respective
The main source of inaccuracy is the angular discretiza
of the inner cylinder boundary as illustrated in Fig. 13. If w
define an effective inner radiusR1

(eff) as the radius of a circle
enclosing the same area as the shaded cells in Fig. 13,
R1

(eff)'0.29 for the lower-resolution run. For an inner radi
of 0.29, the one-dimensional model yields a growth rate t
is considerably lower and closer to what is observed in
lower-resolution run~see Table III!. This adjustment ofR1

(eff)

results in better agreement ofv, r B , anddr B as well.
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@12# K.-H. Rädler, E. Apstein, M. Rheinhardt, and M. Schu¨ler, Stud.
Geophys. Geod.42, 224 ~1998!.

@13# A. Shukurov and D. D. Sokoloff, inThe Cosmic Dynamo,
edited by F. Krauseet al., IAU Symposium No. 157~Kluwer,
Dordrecht, 1993!, pp. 367–371.

@14# A. Königl and R. Pudritz, inProtostars and Planets IV, edited
by V. Mannings, A. P. Boss, and S. S. Russell~University of
Arizona Press, Tucson, 2000!, pp. 759–788.

@15# A. M. Soward, Geophys. Astrophys. Fluid Dyn.53, 81 ~1990!.
@16# A. D. Gilbert and Y. Ponty, Geophys. Astrophys. Fluid Dy

93, 55 ~2000!.
@17# Y. Ponty, A. D. Gilbert, and A. M. Soward, J. Fluid Mech.435,

261 ~2001!.
@18# A. Ruzmaikin, D. Sokoloff, and A. Shukurov, J. Fluid Mec

197, 39 ~1988!.
@19# A. D. Gilbert, Geophys. Astrophys. Fluid Dyn.44, 241~1988!.
03631
t
-

.

.

@20# A. D. Gilbert, Ph.D. thesis, University of Cambridge, 1988.
@21# A. A. Ruzmaikin, D. D. Sokoloff, A. A. Solovyov, and A. M.

Shukurov, Magnetohydrodynamics25~1!, 6 ~1989!.
@22# D. D. Sokoloff, A. M. Shukurov, and T. S. Shumkina, Magn

tohydrodynamics25~1!, 1 ~1989!.
@23# A. A. Solovyov, Izv. Akad. Nauk SSSR., Ser. Fiz.64, 40

~1985!.
@24# A. A. Solovyov, Izv. Akad. Nauk SSSR., Ser. Fiz.66, 77

~1987!.
@25# E. A. Lupyan and A. Shukurov, Magnetohydrodynamics28,

234 ~1992!.
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