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Nonlinear states of the screw dynamo
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The self-excitation of magnetic field by a spiral Couette flow between two coaxial cylinders is considered.
We solve numerically the fully nonlinear, three-dimensional magnetohydrodynévittD) equations for
magnetic Prandtl numbei,, (ratio of kinematic viscosity to magnetic diffusivitypetween 0.14 and 10 and
kinematic and magnetic Reynolds numbers up to about 2000. In the initial stage of exponential field growth
(kinematic dynamo regimewe find that the dynamo switches from one distinct regime to another as the radial
width drg of the magnetic field distribution becomes smaller than the separation of the field maximum from
the flow boundary. The saturation of magnetic field growth is due to a reduction in the velocity shear resulting
mainly from the azimuthally and axially averaged part of the Lorentz force, which agrees with an asymptotic
result for the limit of P,<1. In the parameter regime considered, the magnetic energy decreases with kine-
matic Reynolds number as R¥¥* which is approximately as predicted by the nonlinear asymptotic theory
(~Re™Y). However, when the velocity field is maintained by a volume fdrather than by viscous strédhe
dependence of magnetic energy on the kinematic Reynolds number is much weaker.
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[. INTRODUCTION Other possible sites for screw dynamo action are astro-
physical jets[13] where a helical flow capable of dynamo
The screw dynamo is a system where magnetic field isction can arise from the axial ejection of plasma from a
generated by thé@aminap flow of an electrically neutral, but rotating accretion disg14].

conducting fluid with helical streamlines, i.e., A discussion of the screw dynamo in a broader context of
slow dynamos was presented by Sowatd]. Gilbert and
u=(0rQ,u,), (1 Ponty[16] generalized the idea of the screw dynamo to cer-

tain nonaxisymmetric flows and Porgy al.[17] applied this
in cylindrical polar coordinatesr(¢,z), with ) andu, the  approach to hydrodynamically unstable Ekman layers.
a.ngular and axial velocities, respectively. It is one of thg In the present paper, we explore nonlinear states of the
simplest dynamo systems known and the most symmetrigcrey dynamo in the spiral Couette flow of a viscous fluid
one in the sense that the flow can be steady and uniform iggqyveen two coaxial cylinders. Both the screw dynamo itself
the azimuthal and axial directions. As first shown by Lortz 51 the flow are simple enough to allow detailed analysis of
[1,2] and Ponomarenkf8], such a flow can generate mag- the nonlinear behavior, a rare feature among MHD dynamo

netic f|eld§ via dynamq action, 1.e., W'.thOUt any externalsystems. In particular, this allows one to assess many of the
electromotive forces. Since the magnetic Reynolds number’ ~ . - .

. Y : empirical and heuristic arguments often applied to more
required for magnetic field generation by the screw dynama

is relatively low, this type of flow has been used in a series o]comp_llcated dynamo system;, such as the rgleyance of the
laboratory dynamo experiments in Rige.g., Refs.[4,5]) marglnally stable linear solution for the dgscrlptlon of non-
which have recently achieved magnetic field growth anoll_near states, gnd to understand the nonlinear states in con-
saturatior6,7]. There are further plans to perform a dynamo Siderable detail. _ _ _
experiment based on a simildbut time-dependentflow The plan of the paper is as follows. We briefly review
[8,9]. Dynamo action of this type can also occur in the cool-Previous studies of the screw dynamo in Sec. Il, and then
ing systems of fast breeder reactft8]. A related successful describe our model in Sec. Ill. Our results are presented in
dynamo experiment is the Karlsruhe liquid sodium facility Sec. IV A for the (kinematio stage of exponential growth
[11,12, which involves an ensemble of spiral flows. Sinceand in Sec. IV B for saturated, nonlinear states. The results
the magnetic Reynolds numbers achievable in laboratorgre summarized in Sec. V.

flows are never very high, it is important to understand quan-

titatively the excitation properties of the system and to pre-

dict measurable characteristics of the dynamo including the Il. THE SCREW DYNAMO
strength, location and time dependence of the magnetic field _ . _ _ _
in the nonlinear regime. The kinematic behavior of the screw dynamo, including

that in the spiral Couette flow, is well explored using both
asymptotic analysi$18—22 and numerical modelin§23—

*Electronic address: Wolfgang.Dobler@kis.uni-freiburg.de 26]. Consider a time-independent velocity fielt) where

TElectronic address: Anvar.Shukurov@ncl.ac.uk both the angular and axial velocity are functions of cylindri-
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Blegdamsvej 17, DK-2100 Copenhagén @enmark. the magnetic field is governed by the induction equation
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JB The oscillation frequency of a mode localizedratr is
o = VX(uXB=7VXB), (2)  dominated by the advection term
supplemented with appropriate boundary conditions. Here w=—mQ(ry) —Kuy(ro) + O(R-1?),

is the magnetic diffusivity, which is related to the electrical

conductivity o of the medium asy=1/(no0). At the kine-

matic stage, when the magnetic field is weak enougtan  for a continuous flow wittm, k=0(1).

be considered fixed and independenBofhe magnetic field The critical magnetic Reynolds numbd&{<", above
can then grow exponentially provided the magnetic Reynoldsvhich y>0, depends on the radial velocity profile and is
number is above a certain critical vallR”, and Eq.(2)  about 20 or largef4,5,25,26. The field concentrates in a
becomes an eigenvalue problem. The field is necessarilgylindrical shell of width sr=0(R, " (for Ry>1) for a
nonaxisymmetric(in accordance with Cowling’s theorem, continuous velocity field 18] and 5r=O(R;]1’3) for a dis-
e.g., Ref.[27]) and, due to the symmetry of the flow, is a continuous velocity profilg3], providedm, k=0(1). At dis-
superposition of eigenmodes given in cylindrical polar coor-tances fromr larger thanér, advective distortion of the

dinates by nonaxisymmetric magnetic field cannot be balanced by local
R _ dynamo action. Therefore the magnetic field must be weaker
Bi(r,p,z,t)=Bj(r)e' Mk =y o 7, (3)  than in the resonance shell arourgland decays exponen-

. . tially in (r —ry)2. Gilbert[19] has obtained asymptotic solu-
wherem andk are the azimuthal and axial wave numbers,tions for the fastest modey, k= O(RY) for continuous, and
respectively, and m, k=0O(RY? for discontinuous velocity fields.

The nonlinear behavior of the screw dynamo has been
studied only recently in a paper by Bassom and Gil(i2gi,
who have carried out an asymptotic analysis of the nonlinear
case in the limit ReR>1, where Re is the kinematic Rey-
nolds number. This implies a small magnetic Prandtl number,

ing in a conducting medium, thus giving rise to a discontinu-Pm=Rm/Re<1. The basic idea of their approach is that the
ous velocity profile, later modell5,18,19 apply to more overall eff_ect of the magnetic field on the flow is dominated
realistic, continuous velocity fields like the spiral Couette—PY the azimuthally and axially averaged Lorentz force. The

Poiseuille flow, of which the spiral Couette flow used in the XPonential growth of the kinematic stage is saturated via a
present paper is a special case. reduction in the velocity shear in the vicinity ofr g where

The coupling of the radial and azimuthal components c,1d_ynamo action is most efficie_nt. In the asymptotic Iimit con-
Eqg. (2), required for the magnetic field to grow0), oc- sidered, 'Fhe velocity shear is fully sgppress{&ui a given
curs via the diffusion term and is thus proportionahtosee ~ @Symptotic Of‘f/?rby magnetic forces in a shell of a radial
Eqgs.(AL) and(A2). Therefore, the growth rate of any given Width ~O(R;"*). Outside the shell, where the magnetic
magnetic eigenmodg.e., for fixedm andk) tends to zero as field is weaker, magnetic diffusion and stretching balance
n— 0. The scaling of the growth rate with the magnetic Rey_each other to maintain the magnetic field against ohmic de-
nolds numberR,,= 7! depends on the flow properties. In €&y At still larger distances fromy, shear dominates and

the asymptotic limitR,>1, y=0(R-"? for a continuous the magnetic field is weak as at the kinematic stage. The
steady-state field strengtBgg in the spiral Couette flow is

estimated a$29]

A=vytiw

is the eigenvalue, withy the growth rate and the oscilla-
tion frequency of the magnetic field.
While Ponomarenk¢3] discussed a rigid cylinder mov-

velocity field[18], whereasy= O(Rr;m) for a discontinuous
velocity field[3,28]. The eigenfunction has a maximum at a
radius r, where the advection terrmQ(r)+ku,(r) [see

Egs. (A1) and (A2) in Appendix A] has an extremum in, B§S

thus minimizing destruction of the magnetic structure by the 100 U? =O(Ry°Re™), (6)
r-dependent advection. This implies thigtsatisfies
mQ' (rq) +ku,(rg)=0, (40  whereU is a characteristic value of the velocity and,

denotes the vacuum magnetic permeability. As we argue be-
where primes denote the derivative with respect.tdn a low, the scaling with Re is sensitive to the nature of the
discontinuous flow, the eigenfunction is localized at the dis-driving force and arises in E§6) because the flow is driven
continuity) Modes with different ratiok/m are localized at by viscous forces.
different radii. An additional necessary condition for the ex- Nunezet al. [30] have performed classical perturbation
istence of growing modes, which is due[ti®], requires that analysis close to the dynamo threshold for a system which is
based on Ponomarenko’s discontinuous dynamo mi@&jel
but assuming the interior of the cylinder to contain fluid of
) fixed viscosity. For this sufficiently different system, they
also find the asymptotic scalirgf—~Re %, while no conclu-
is satisfied atr =r,. This is always the case for the spiral sions on the asymptotic dependence R can be drawn
Couette flow. from such a model.

dIn|Q’/u|
dinr

036311-2



NONLINEAR STATES OF THE SCREW DYNAMO

Ly

FIG. 1. Geometrical configuration of the simulations. The outer
cylinder rotates at angular velocifQ,, while the inner cylinder

moves in the axial direction at spe®d, .

Ill. THE MODEL

A. Spiral Couette flow

The geometry of our model is shown in Fig. 1. The con-
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u_ 1V +2aurivy +1XB 10
Dt o P E( u+3Vv.u e (10)
De
ﬁ——QV-U, (11

complemented by an isothermal equation of statec?p,
with constant speed of sourw}. Here, the magnetic flux
densityB and electric current densityare given byB=V
XA, noj=V XB; we denote withD/Dt=4d/dt+ (u-V) the
advective derivativeyu is the dynamical viscosityassumed
constank. Below we refer to the Reynolds number based on
the average kinematic viscosity=u/p.

Equation(9) implies the gauge

7V -A+®=0, (12)

where® is the electrostatic potential, related to the electric
field E by E= —V® —dA/dt. This gauge proved to be most
convenient for numerical purposes. Equatid@s—(11) are
written for compressible fluids, but our choice of parameters
makes compressibility insignificant since the speed of sound
is a factor of 2 larger than the maximum fluid velocity, which
results in a density contrast f12%.

We use an explicit finite-difference scheme of sixth order
in space and third order in time described, e.g., in R5].

ducting fluid is confined in the gaR;<r <R, between two  The velocity field outside the fluid shell, i.e., forxR; and

coaxial cylinders that move with axial velociti#g, andW,
and rotate with angular velociti€?, and(),, respectively.
We choose&);=W,=0; the resulting flow then trivially sat-
isfies Rayleigh's stability criterion(),R5>Q,R? [31]. The
magneto-rotational instability of the Couette flow is dis-
cussed in Refs[32-34; our flow is stable with respect to

r>R,, is prescribed and fixed, with=(0,0W,) in r<R,
andu=(0,Q,r,0) inr>R,. We embed the cylinders into a
Cartesian box and solve Eq®)—(11) on a Cartesian mesh
in order to avoid a coordinate singularity on the axis and to
retain the applicability of the code to different geometries.
The magnetic diffusivityn is assumed to be constant for

this instability becausdQ/dr>0.

r<R,—36x (with 6x the mesh sizeg i.e., the inner cylinder

In the absence of a magnetic field, viscosity causes thBas the same electric conductivity as the fluid, byt
fluid between the cylinders to adjust itself to the spiral Cou-SmMoothly decreases to zero Ry—36x<r<R,. Thus, the

ette velocity profile

R2 R
Q<C>=cl<1—r—§), u=C,In=7,
where
c._ QR c_ W,
"RZ-R?" Y2 In(R,/Ry)’

last term in Eq(9) is only relevant close to the outer bound-
ary of the fluid. The outer cylinder is assumed to be magneti-
cally impenetrable, which confines the magnetic field to the
regionr<R,. This would best be achieved with a perfect
conductor at =R, but this corresponds to an infinite mag-
netic Reynolds number, the numerical implementation of
which leads to fundamental difficulties. Therefore we use the
stronger requiremendA=0 for r=R, instead. We demon-
strate in Sec. IV A that our results are consistent with those
obtained with a perfectly conducting outer cylinder since the

The velocity profile(7), driven by the viscous stress, adjusts magnetic field tends to concentrate close to the inner radius

itself over the viscous relaxation time

(Ry—Ry)?

Tvise™ — 7, -

B. Basic equations

R, and thus the outer boundary condition only weakly affects
the solution. We have counterchecked our results with a
modified magnetic condition, where the vector potential is
“softly” set to zero in the regionr>R, by means of an
additional relaxation terms- A/ 75 in the induction equation
(9), and we only report results that are not qualitatively af-
fected by this change.

The equations we solve are the MHD equations for the In all three directions, periodic boundary conditions are

vector potentialA, the velocityu, and the density:

IA
—C=UXBH7AA+(V-A)V 7,

assumed, which are imposed on the faces of the computa-
tional box. The horizontal boundary conditions are not actu-
ally important, since both the fluid and the magnetic field are
confined tar <R,. In the axial directior{the z direction, the
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0.03F Figure 2 shows how the quantizationlofiue to the finite
value ofL, affects the dynamo system. We show the depen-
0.02¢ dence of the kinematic growth rateon the continuous wave
numberk, obtained by solving the eigenvalue probléfi)—
°'°1g (A2) as described in Sec. IVA, and indicate the quantized
=~ valuesk,, which occur in our simulations. While the maxi-
g 0'005 ' mum growth rate can be up to 40% larger than the maximum
0.01 rate measured &, (Model 1d, the optimal values ok do
TR not differ much fromk,. Thus, our choice of., does not
0 025 impose unrealistically small vertical scales on the magnetic
Y field.
-0.03¢ : 3
0 1 2 3 4 5 C. Parameters

kR
? The dynamo and hydrodynamical properties of the system

FIG. 2. Kinematic growth rate vs vertical wave numbek for ~ are characterized by two nondimensional quantities, the ki-
Models 1f(--+), 1la(—), 1g (—=-), 1h(----), and 1i(—--—--). The  nematic and magnetic Reynolds numbers, which are defined
first two wave numberg,, k, allowed byL,=4 are indicated by as
vertical arrows.

Re=UR,/v, R,=UR,/7, (14

assumption of periodicity introduces a maximum wavelength , . o _
L, (the vertical size of the boxand leads to a quantization of Where U= (Rx(2,)“+Wj is a characteristic velocity. The
the vertical wave numbes to ratio of the two Reynolds numbers is the magnetic Prandtl

number
kn=2mn/L,, (13

Pn=Rn/Re. (15
with integern, for solutions that are harmonic i To assess
the role of this quantization, we have carried out one numeriWe introduce a reference radit and a reference angular
cal experiment with a four times larger lendth= 16, which  velocity Q04 such thatR,=1.2R, and (,=1.3Q,, i.e., the
introduces additional modes, which can have valudsfofir ~ radial extent of the system and the revolution time are of
times closer to each other. The result was qualitatively quit@rder unity when measured in unitsRf and 14, respec-
similar to our other models. The only significant differencetively. In the following, we will measure length in units of
was that the system now had two modes with diffeferiiut R, time in units of 1)y, and velocity in units ofRy(,
very similar growth rates, which introduced a relatively slow without explicitly indicating this in the text.
drift of energy from one mode to the other. We will not The parameter range investigated here is indicated in
discuss this simulation in the following, but rather focus onTable I. Parameters that remain constant for all the simula-
the case of one fixed value b&f, to ensure the comparability tions are the cylinder radiiR,=0.3 andR,=1.2), and the
of the different models. size of the computational box:,=4 for the vertical size,

TABLE I. Parameters of the numerical simulations discussed in the text. For allRya€).3,R,=1.2,L,=4, Q,=0, andW,=0. The
values of Wy, Q,, v, and 5 different from those of Model 1a are highlighted in boldface. The mesh has equal spacings in all three
dimensionsox= dy= 6z in all models except Model 1i, wher@y = 5x= 6z/2. Lengths are measured in unitsR{, angular velocities in
Q, viscosity and diffusivity inR(z)QO, and velocities iRy .

Model A Q, v 7 U U max Re Rm Pm X
la 1.0 1.3 X102 7x10°8 1.85 1.56 111 318 2.9 0.033
1b 1.0 1.3 7x1072 7x10°83 1.85 1.55 31.8 318 10 0.067
1c 1.0 1.3 1x1072 7x1078 1.85 1.55 222 318 1.4 0.067
1d 1.0 1.3 2.5x1072 7x10°3 1.85 1.55 889 318 3.6 0.033
le 1.0 1.3 1x1072 7x10°8 1.85 1.55 2220 318 0.14 0.017
1f 1.0 1.3 21072 8x 1073 1.85 1.55 111 278 25 0.067
1g 1.0 1.3 X102 4x107°° 1.85 1.55 111 555 5.0 0.067
1h 1.0 1.3 X102 2x107°8 1.85 1.56 111 1110 10 0.033
1i 1.0 1.3 21072 1x1072 1.85 1.56 111 2220 20 0.017
2a 0.5 1.3 2x 1072 4x10°3 1.64 1.55 98 491 5.0 0.033
2b 0.5 1.3 1x1072 4x107°8 1.64 1.55 197 491 25 0.067
2c 0.5 1.3 7x1072 4x10°8 1.64 1.55 197 491 18 0.067
2d 0.5 1.3 2x 1072 2x1078 1.64 1.55 98 984 10 0.033
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0.010p Appendix B. The models are further subdividdda-1i,
[ 2a—0 according to the values afand # in order to explore
S the effects of varying magnetic and kinematic Reynolds
R numbers. Most of our models ha¥g,>1, except Model 1d
= (Pn~0.36) and Model 1eR,=0.14).
IV. RESULTS
A. Kinematic regime
0.001 The velocity profile(7) can be considered as fixed, and
Eq. (2) as linear inB, as long as the magnetic stress is weak
compared to the viscous stress,
—1.22F ' ' . B2 - u
—_—
] Mo Ro—Ry’
-1.24 Equations for the resulting kinematic dynamo problem are
given in Appendix A. As discussed in Sec. Il, they represent
) a one-dimensional eigenvalue problem which is relatively
°<3” -1.26 straightforward to solve numerically. For Models 1 and 2 we
12815 /o i
7 '
; \
10° 10° 10% 10°
R. )
_ _ _ & 0.001f
FIG. 3. Kinematic growth rater and frequencyo in Model 1 for =
the modem=1, k=k; (the dominant modeas a function of the
magnetic Reynolds number, obtained from the one-dimensional ei-
genvalue problem described in Sec. IV A. Dotted lines show the
dependenciesy<R;,'® and y=R, "2 in the upper panel anda(
- const)xR,;,”2 in the lower panel. The asymptotic solution given in
Appendix A is shown as dashed lines. Results from the three- 102
dimensional simulations are labeled according to the grid spacing:
8x=0.13 (+), 0.067 (¢), 0.033 (), and 0.017(*). The insets
show radial magnetic energy profiles in the domairé<R, for
Rn=2X10° (top) and R,=2X 10° (bottom); the region occupied F
by the inner cylinder is shaded. The generation threshold for this
configuration isR{®?~218. -1.06
andL,=L,=2(R,+36,) for the horizontal dimensions. The 3
numerical resolution is either 4242x 60 (corresponding to -1.07F
8x~0.067) or 78X 78x 120 grid points x~0.033) except QN :
for Model 1i where the higher resolution of 14444x 120 % 1 08E
(6x~0.017) was used. R
For the parameters used, the viscous relaxation (8nes :
in the range 1-80 for the models discussed below. For com-  _4 ggF/
parison, the growth time of the magnetic field is greater than f
about 43 for the models presented, and the turnover time is :
27T/|QZ_Ql|%48 . ! ! ! L
Models 1 and 2 differ in the value &, and have there- 18 10° 10; 10° 0°
fore different velocity profiles. This results in different dy- "
namo efficiencies, for exampl&®{”=218 in Model 1 and FIG. 4. As in Fig. 3, but for Model 2. The critical magnetic

R(N=384 in Model 2. Another important distinction is the Reynolds number i®{¢)~384.
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position of the magnetic field maximumy: In Model 1, the
magnetic field is localized closer to the inner cylinder than in
Model 2 (see, e.g., the insets in Figs. 3 and 4 or Fig. 12 in
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weak random magnetic field. After the initial transients have
died away, exponential growth of magnetic energy is estab-
lished, corresponding to the fastest growing mode.

Figure 3a) shows the magnetic field structure for Model
1h. The level surfaces ¢B| have the form of two helical flux
tubes of opposite field orientation, which corresponds to an
azimuthal wave numben=1. The vertical wave number of
the solution shown i&=2mx/L,= /2. This mode is excited
in all the models of Table I. However, additional higher
modes are excited in Models 1h, 1i, and 2d, whBg is
larger (see Table ).

Both the flow and the magnetic field are strongly helical,
the two helicities being of opposite sidthe streamlines are

@) right-handed spirals, while the magnetic field lines form left-
handed helices as can be seen in Fig.Since the screw

FIG. 5. Three-dimensional representation of the magnetic fielddynamo mechanism relies on diffusion, the approximate con-
in Model 1h.(a) t=200 (end of the kinematic stage(b) t=912  servation of magnetic helicity in highly conducting media,
(the saturated stateShown are surfaces whelB| is 0.65 of the ~ which leads to serious difficulties in mean-field dynamo
maximum and magnetic field vectors. The vertical component otheory[36,37), does not lead to any problem here.
the field has opposite sign in the two flux tubes shawrmde m
=1). The azimuthal and axial variations of the field are harmonic at
the kinematic stagéa) and flattened in the saturated stéte (see B. Nonlinear simulations
also Fig. 6.

After a phase of exponential growth, magnetic energy lev-
els off at a certain saturation value. The corresponding mag-
netic energy density is comparable (fout smaller thapthe
ichkinetic energy density in the sheared flow, as can be seen

are given in Ref[21] and are also reproduced in Appendix A from Table I, whEre we compare the maximum magnetic
(dashed lines in Figs. 3 and.4The insets show the radial flux density to VoU? and the magnetic energy
profile of magnetic energy for two values Bf, . =30U?V, whereV=L,m(R5—R?) is the fluid volume. The
The growth ratey becomes positive aR,=R{", first ~ location and width of the magnetic energy maximum are
quickly increases witlR,,, and then decreases as expecteccharacterized by
for a slow dynamd15,28. For the continuous velocity pro- _ _ N 112
file (7), the analytic theory predicts an asymptotic decrease rg=(r)e2  reg=((r—rg)%e:, (17)
y=R,Y? (Appendix A), and this scaling is indeed reached
for very large values oR,,. However, while the growth rate ) )
for Mo)(;el g(Fig. 4) agrénes well with the asym%totic result Where (f)ge=[B?dV/[B*dV is the magnetic-energy
(dashed the agreement is not so good f&,=<2000 in weighted volume average. These quantities are similag to
Model 1 (Fig. 3. Moreover, the latter model shows a tran- &1d o1 of the kinematic theory.
sient approximate scaling~ R '>. Incidentally, this scal-
ing is close to that for a flow with discontinuous radial pro- 04F — T T T T T T T T T
file [3,19. i 1
The difference can be explained as follows. For moderate
magnetic Reynolds numbers, the field has noticeable strengt 0.2
at the boundary of the inner cylinder in the flow of Model 1
(see inset in the top frame of Fig.).3Therefore, the £
asymptotic theory is inapplicable as it is based on the as-g o0.0F
sumption that the magnetic field is concentrated far from the >
boundaries =R; andr=R,. However, the radial width of i
the field distribution decreases wiR,, and eventually the -0.2
field at r=R; becomes negligiblésee inset in the bottom i
frame of Fig. 3, and the scaling/~R_.*?is recovered. On I ]
the other hand, the field is always small near the boundaries -04p- ., . . , . ., ., , ., ,  , 7 . 4
in Model 2 (see insets in Fig. 4 and so the scalingy 0.0 0.2 04 0.6 0.8 1.0
~R;,,® does not occur.
We have also explored the linear stage of magnetic field FiG. 6. Magnetic field structure in the saturation regime. Shown
evolution using the three-dimensional code in order to assess, as a function of, the vertical fieldB, along a vertical line at
its performance. A discussion of the numerical aspects i8=0.48 for Models 1f, 1a, 1g, 1h, and R,, grows monotonically
given in Appendix B. We initialize the simulations with a along this sequence.

show in Figs. 3 and 4 the dependence of the growth yate
and frequencyw on the magnetic Reynolds numbesolid

2

B
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TABLE Il. Magnetic field properties in the models of Table I. Numbers in parentheses refer to the kinematic stage, all other quantities
are for the saturated state. Shown are the growthyated oscillation frequency of the leading mode; the maximum saturated magnetic
field strengthB,,and magnetic enerdy,4in the flow region, both normalized to the corresponding kinetic quantities; and the position and
width of the magnetic field distribution in radiusg and érg. The last column lists the growing modes in the form,kL,/(27)], L,
=4, ordered by decreasing growth rate. The results for Models 1h, 1i, and 2d refer (tb thenode only. Growth rates and oscillation
frequencies are measured in units(df, lengths inR,. A long dash stands for quantities not calculated.

Bros  Emag
Model y w Jou? Ein Mg Srg (m, 2k/ )

la (0.0160 —2.03(—1.959 0.33 0.015 0.490.47) 0.17(0.16 (1,1
1b (0.0149  —2.014(—1.957 0.51 0.034 0.480.47) 0.17(0.16 (1,1
1lc (0.0149  —2.037(—1.957 0.24 0.008 0.480.47) 0.17(0.16 (1,1
1d (0.0149  —2.045(—1.957 0.14 0.002 0.5@0.47) 0.17(0.16 (1,1
le (0.0149 —2.051(—1.957 0.08 0.0009 0.510.47) 0.17(0.17 (1,1
1f (0.0089 —2.014(—1.976 0.25 0.008 0.480.47) 0.17(0.19 (1,1
1g (0.0232 —2.028(—1.935 0.42 0.024 0.470.47 0.15(0.14 (1,1
1h (0.0176 —2.012(-1.9) 0.47 0.030 0.470.46 0.13(0.12 (1,1, (1,2
1 (—) -1.981 (—) 0.55 0.035 0.46 (—) 011 (—) (1,2,(1,D, (2,3, (2D, (2,2
2a (0.0023  —1.459(—1.47) 0.17 0.006 0.630.66) 0.18(0.18 (1,1
2b (0.0039 —1.459(1.473 0.23 0.10 0.650.67) 0.21(0.20 (1,1
2c (0.0039 —1.506(—1.489 0.48 0.41 0.630.66 0.20(0.20 (1,1
2d (0.0072 —1.506(—1.467 0.29 0.01 0.610.66 0.17(0.19» (1,1, (1,2

1. Spatial structure of the magnetic field predicts harmonic profiles in the saturated state. The differ-

Figure 6 shows the vertical profiles of the magnetic field®nNce may be due to the fact that hétg> 1, whereas Bas-
in the saturated regime for various magnetic Reynolds numsom and Gilbert assunté,<1. The sensitivity of the solu-
bers. The vertical component of the magnetic field is plottedion to the value of the magnetic Prandtl numigérthis is
as a function oz close to the radius where the field concen-the true reason for the differencis striking.
trates. Note that the antisymmetry of the curve with respect As can be seen in Fig. 7, the nonlinear distortion of the
to the middle of the box indicates that only Fourier compo-magnetic field distribution is only prominent in the azimuthal
nents with odd vertical wave numbers are excited, which ca@nd axial profiles, but not much in the radial profile. We also
be understood from the structure of the nonlinear terms irote from Table Il that in all the models the radial widihg
Eqgs.(9)—(11). The profile in the saturated state is flattened inOf the magnetic energy distribution in the nonlinear stage is
comparison to thékinematio eigenmode and this effect be- not significantly larger than that in the kinematic stage. In
comes more pronounced &n increases. The f|attening of Model 1h, for example, the radial width of the eigenfunction
the maxima in botlz and ¢ can also be seen in Fig. 5, where is org~0.12 during the linear stage and 0.13 at saturation.
the level surfacéB|=0.65B| .y is shown toward the end of These numbers hardly differ and are very closestofrom
the linear phaséFig. 5a)] and in the saturated staffig.  the asymptotic theory, which equatis=R,0(R,,"%=0.11
5(b)]. for a discontinuous velocity profile andr=R,0(R;,
The strongly anharmonic profil&{z) found for largeR,,  =0.20 for a smooth profile. In all our simulations, the radial
do not occur in Bassom and Gilberf29] theory, which  width of the magnetic field distribution in both linear and

1.0F g 1.0 .
08f . 08 .
0.6F ] 0.6 ]

L 1

Y 04 - i . Y 04 ]

[ a ]
02| ! . 0.2 .
0.0L J . ‘ . 0.0 . . . .
00 02 04 06 08 10 12 00 02 04 06 08 10 12
r r

FIG. 7. Radial magnetic field profile in the saturated regime for Model@efi: P,,=20) and le(right: P,=0.14. Shown is the
vertically averaged magnetic energy density as a functian(dbts and the corresponding profile at the kinematic dynamo stdashegl
The maximum of B2), is normalized to one; the radius is measured in unitRgf
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: their radial profile is quite similar to that of the kinematic
0.010F eigenfunction(see Fig. 7.
. 0.000 (. 2. Nonlinear distortion of the velocity field
) : Figure 8 shows the radial velocity profiles for the satu-
—0.010F rated phase of Model 1a where the scatter of the data points
: is due to their different positions ip andz The radial ve-
: locity fluctuates around zero and is dynamically unimportant
‘°'°2%; (even more so as perturbations in the radial velocity can be
’ i balanced by the pressure gradjetiowever, the azimuthal
and axial velocities exhibit systematic deviations from their
20 ' ' ' | ] Couette profiles so that the velocity shear is reduced in the
; o ] region where the magnetic field concentrates. It is especially
108 Ve ] clear in the case ofi, [Fig. 8(c)] that the spatial scatter is
0.8F /’ ] smaller than the mean variation, so the distortion of the ve-
e o6k ’l' E locity field is axially symmetric and independent nto a
; f ] first approximation. To justify this we demonstrate in Fig. 10
043 ﬂ E that the radial profiles of the averaged Lorentz force are in
02f f 7 close correspondence with the deviations of the respective
ool . meieans e eie 3 velocity components of Fig. 8 from the Couette profile. This
00 02 04 06 08 10 1 is compatible with the scenario of Bassom and Gillp2€,
r where, in the limit of infinite kinematic and magnetic Rey-
R
08f AT .
L \\ ]
06 \\ .
& F ]
0.4f \ .
02F \N ]
5 ]
0.0-— """" LR A £oint b Al ek Ak roitnoT l\'S
00 02 04 06 08 10 12
r
FIG. 8. Radial, azimuthal, and vertical velocity components as ' r
functions of radius in the saturated stage for Model 1a at a resolu-
tion 5x=0.033. Note the different ranges on the ordinate in the 120 ' ' ' ' —]
panels: the variation afi, is much smaller than that af, or u,. b ]
The shear in botlw(r) andu,(r) is reduced in comparison to that 10F ]
in the Couette profilei(© of Eq. (7), which is shown as a continu- 08F
ous gray line. The location of the inner cylinder is marked in gray. ¢ o5l
The scatter of the data points arises from their different positions in ’
¢ andz Velocities are measured in units Bf(),, angular veloci- 04F
ties in units ofQ), and radius in units oR, . (In units ofU andR,, 02k
the valueu,=0.01 corresponds to 0.0084 and w=1.2 corre- -

sponds to 0.78/R,, for example).

nonlinear states are very close to each other and also close to
that predicted by the asymptotic theory for the kinematic
dynamo. This is at variance with the nonlinear asymptotics
of Bassom and Gilbef9] that predict the development of a
“core” region in the radial profile of magnetic field with a
width of orderO(R,,¥*%=0.5 in Model 1i. A possible rea-
son for this discrepancy might be that our models have too
small values oR,, (2220 in Model 1i and 984 in Model 2d

for the asymptotic regime of Bassom and Gilbert to apply,
even though the linear asymptotics are already accurate. It is
more plausible, however, that solutions with moderate mag-
netic Prandtl number do not develop tRe,**° core and
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0.08 larger than that of the Lorentz fordsee Fig. 10 This hap-
0.06 pens because the flow adjusts itself to two separate Couette
N profiles at both ends of the radial range where the Lorentz
"o 0.04 force has distorted it, and so a localized magnetic field does
g affect the flow throughout the domain. It can be expected
y 002 that a flow profile driven by a volume force will be distorted

less in regions where magnetic field is weak; our results con-
firm this expectation.

The screw dynamo can be interpreted in terms of the
mean-fielda{) dynamo[15,16], the () term being as usual
the shear terntB,dQ)/dr [see Eq.(A2)]. The « effect is
identified with a part of the diffusion term, and the corre-

0.05
sponding term in the induction equation has the form
0.00
AN 2 9
,~0.05 —n2 Em B, (18
Q
g -0.10 . - .
. [see also Eq(Al1)]. Since the differential operator acting on
-0.15 B, is obviously not influenced by the magnetic field
-0.20 strength, thex effect cannot be affected by the growing mag-

0.0

0.2

0.4

0.6

r

0.8

1.0

1.2

netic field and saturation is fully due f@ quenching. This is
opposite to one of the standard scenarios for mean-field dy-

FIG. 10. Vertically averaged components of the Lorentz aCCE|-namos(a guenching, where the magnetic field has little in-

erationF =] X B/¢ as a function of radius for Model 1a. Note that flyence on the angular velocity and saturation is considered

the effects of magnetic torques on the inner cylingtaded areain {5 pe caused by the partial suppression of theffect by
Fig. 10 are ignored in our model and its velocity remains fixed. magnetic fields.

Velocities are measured in units &y()y, angular velocities in
units of )y, and radius in units oRy. F,, is measured in units of
ROQS. (In units of U andR,, the valueF ,,=0.05 corresponds to
0.018J%/R,, for example).

3. Scaling of magnetic energy with Re and,R

Figure 11 shows the magnetic energy in the saturated state
as a function of the kinematic and magnetic Reynolds num-
nolds numbers, the saturation of dynamo action is mainiyoers. We also show the asymptotic scalings of Bassom and
due to the vertically and azimuthally averaged part of theGilbert [29]. There is clearly some agreement between the
Lorentz force. As the magnetic Reynolds number is in-numerical and asymptotic results although the asymptotic so-
creased, the relative distortion of the velocity field, and inlution has been obtained fé?,,<1, whereas the numerical
particular the reduction of velocity shear, are getting morgesults refer mostly to the casg,>1. We believe that the
pronounced; this can be seen in Fig. 9, where we show theeason for the rough agreement is related to the fact that, in
same profiles as in Fig. 8, but for a seven times larger valuboth cases, the magnetic feedback affects mainly the axisym-
of Ry,. metric flow profile, as was seen in Fig. 8.

The radial width of the region where the velocity field is ~ As expected(at least for weakly supercritical solutions
distorted away from the original Couette profile is muchthe steady-state magnetic field stren@k, increases with

+
~ + - -
\\ + P
AN . R .- ™
N * + ,n} -
mﬁ 0.010F SO - ;;5 P x
E S. TR ] - *
\éo N . Re 0% \%‘) -7
S Y K
\\ *
\\ *
0.001 Re™ "~ . 0.01 i
£ S *
100 1000 100 1000
Re Rm

FIG. 11. Magnetic energy in the saturated state vs the kinematic and magnetic Reynolds numbers for Models 1aE}iglBft; as
a function of Re for Models 1b, 1a, 1c, 1d, and (asterisks The crosses refer to a model with volume forciisge Sec. IV B B Right:
Emag/ Exin @s a function oR, for Models 1f, 1a, 1g, 1h, and 1i. The dashed lines show the asymptotic power laws giver(&; Ete dotted
line is a least-squares power-law fit and corresponds to a depenEgggeRe’o-s“.
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magnetic Reynolds number. On the other hand, the saturatedearly much weaker than in the case of viscous driiag
field strengthB, decreases with Re in a flow driven by vis- power-law fit to the points shown has an exponent of about
cous stresses because it becomes easier for the magnetic fiel@.41). In the inviscid limit Re—« the magnetic energy
to modify the velocity field in a given cylindrical shell as Re must eventually become independent of viscosity, and so we
increasegowing to the weaker viscous coupling of fluid at anticipate that the dependence marked with crosses has a
different radi), and so a weaker magnetic field is needed tohorizontal asymptote.
achieve a local reduction in shear sufficient to halt the field Another reason why the dependen@& is not directly
growth. As we discuss below, this behavior is characteristi@pplicable to laboratory and astrophysical dynamos is that
of a flow driven by viscous stresses rather than by a voluméhe corresponding flows are turbulent. In that case the gen-
force. eration of magnetic field on the scale of the mean flow can
The scaling of magnetic energy with Re is slightly shal-be accompanied by the so-called “fluctuation dynamo” pro-
lower than predicted by Bassom and Gilbert and has an exducing small-scale magnetic fields, which eventually achieve
ponent close to-0.84 rather than-1. Similarly, the growth  energy equipartition with the turbulence. For small magnetic
of magnetic energy witlR,,, is slower tharRﬁ,’5 at the values Prandtl number, however, the dynamo is only weakly super-
of R, explored here. The most plausible reason for theseritical and only large scales can be excited. Thus, the screw
disagreements is the difference in magnetic Prandtl numbedynamo effect is expected to work, but it is now controlled
and, possibly, also the fact that the magnetic field distributiorby the effective values of Re and,, based on turbulent
is still not narrow compared to the gap wid®—R, for the  diffusivities. We conjecture that this could still be qualita-
magnetic Reynolds numbers we were able to consider.  tively true in the nonlinear phase of field evolution. Since the
Taken at face value, the dependenceBgf on Re dis- turbulent values of Re an,, can be quite moderate, even
cussed above implies that the resulting magnetic field will béhe scaling(6) would not lead to physically uninteresting
negligible wherever Rel. However, in most real systems magnetic fields. It can be expected, however, that the turbu-
the flow will be driven by nonviscous forces. These are preslence in the Couette flow, being generated mainly in turbu-
sure and inertial forces in the dynamo experiments of Rigdent boundary layers near the flow boundaries, will be very
and Perm. In the case of astrophysical jets, acceleration aildhomogeneous and this can affect the theory discussed here.
collimation of the flow can be due to an external magneticOn the other hand, the reduction in the effective magnetic
field (axisymmetric to the first approximation, then the screwReynolds number due to turbulence has to be only moderate
dynamo can generate an additional nonaxisymmetric maggince one need®,,= Rﬁ,f’) for any sort of dynamo action.
netic field. In these cases the kinematic Reynolds numbeAssuming that turbulent magnetic and kinetic Reynolds
will not play such a prominent role in the system a@Bgdis  numbers have similar orders of magnitude=f&;,, and that
expected to be independent of Re forsRie RI®=1(?, the resulting magnetic energy density will be
To verify this idea, we have carried out further numericalabout 10% of the kinetic energy density even with the scal-
simulations for the parameters of Models 1b, 1a, 1c, and 1dng (6).

but with an additional volume force We note in this connection that the maximum radial mag-
netic field component measured in the Riga dynamo experi-

u—u©® 19 ment[7] is about 6 mT, while the equipartition field strength

T (19 would be~0.5 T. B, and B, being about five times larger

thanB, in the kinematic casfF. Stefani(private communi-

on the right-hand side of the equation of motidi®). Here  cation], one gets a ratide y,g/ Eyijn~=5x% 103, This is two
u(®© denotes the spiral Couette profil@) and 7 is the time  orders of magnitude larger thRﬁfSRe*1510*5 and clearly
scale over which the flow adjusts itself to the Couette profileimplies that the scalin¢g), which is based on the assumption
With our choicer=1, we haver=< 7y, where the viscous of a viscously driven, laminar flow, cannot be directly ap-
time 7,5 varies in the range 1-80, cf. E{S). Thus, the plied to flows in laboratory experiments.
Couette flow profile is now maintained on a dynamical time  All our experiments were carried out for angular velocity
scale rather than by viscosity if Re0. Q) increasing outwards and, for the boundary conditions and

We show in Fig. 11 by crosses the resulting dependencparameters considered, the flow was found to be hydrody-
of the steady-state magnetic energy on Re; the dependenceniamically stable in the sense that the Lorentz force led to

"o FIG. 12. Radial field structure
0.8[ in the kinematic regime as ob-
tained from a three-dimensional
A 08] simulation at a resolution ofx
NR‘; [ =0.033 (doty and from solving
041 the one-dimensional Eq.(Al)
[ with R;=0.28 (solid). (a) Model
02 1a; (b) Model 2a. The maximum
ook , , of (B?), is normalized to one: the
00 02 . radius is measured in units &.
r r
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relatively small deviations from the unperturbed Couette pro- | . do . 1
file (7). An interesting question is that of dynamo actionina AB,+i(mQ+ku,)B,=r B+ o
spiral Couette flow unstable with respect to the magneto- m
rotational instability, i.e., for angular velocity decreasing out- (A2)
wards. Flows of this type, although for vanishing vertical

" : . . where
velocities of the two cylinders, are currently discussed in
connection with experimental investigations of the magneto-
rotational instability[32—34. If the flow is hydrodynami- D= Ei( d
cally stable(angular momentum increasing outwards cer- r
tain magnetic field is necessary to obtain regular Taylor
columns; however, these columns involve a helical velocityis a self-adjoint, Laplace-type differential operator, anib

field and are themselves capable of dynamo act®fl.  the eigenvalue. The vertical compondt can be obtained
Thus, the magnetic field can play the role of a “catalyst,” from the solenoidality condition,

destabilizing the system and at the same time regenerating it
by the resulting instability; this mechanism has been demon- A

1d im . «
strated to occur in accretion disk38,39. T a(rBr)Jr TB<P+ikBZ=O. (A4)

m2+1 )
2 —k (A3)

V. CONCLUSIONS Second-order asymptotic analysi®r R,,—) for the

The numerical calculations performed here have reveale@Piral Couette flow7) has been presented in Reffs8,21]. It
a new intermediate asymptotic regime in the kinematic screds convenient to define the magnetic Reynolds number as
dynamo where, in a certain range Rf,, the magnetic field
eigenfunction is large enough at the flow boundary so that ~ RZR3 |AQ)| |Q(r)|r3
the standard asymptotic solutions are inapplicable and the m= R%—Rﬁ 7 2= 7 (AS)
growth rate of the magnetic field scales as O(R,,*3).

This dependence is typical of a discontinuous velocity pro- C I .
file. The standard asymptotic scaling= O(Rr;”z), is only here, which is different from the definitiofi4) used in the

- body of thi . The radiug, where th tic field
recovered at significantly larger values Bf, where the ocly o1 'his paper. 1ne radiiry, where the magnetic ie

; . ; . ._goncentrates, is given by
eigenfunction becomes narrow enough in radius as to satisfy

the assumptions of the asymptotic theory.
We have confirmed the result of Bassom and Gil2éf fo=RiR, \/In Ro—InRy \/_ mAQ

that saturation of screw dynamo action occurs via a reduction R5—R3 2 kAW (A6)
in the velocity shear produced by the axisymmetric part of

the Lorentz force. We have shown that this also applies to thg 4 the field can only be growing if

case of large magnetic Prandtl numbé&g. However, the

radial profile of the nonlinear solution is very similar to the mAQ

marginally stable eigenmode for the nonlinearly modified ve- T (A7)
locity field. This is different from the nonlinear asymptotics kAW

of Bassom and Gilbert, which predicts a plateau in the radial
dependence. It is possible that such a plateau can only occwhereAQ=Q,—Q; andAW=W,—W;,.
at values of the magnetic Prandtl number much smaller than 14 second order in the small paramelsr/?, the eigen-
what we have been able to achieve in the present work, byfa|ye ) of the fastest growing mode is givéim dimensional
we have not detected any tendency towards its developmem."ts) by
at P,=0.14, the smallest value explored here.

We have demonstrated that the scaling of the steady-state

T o . . > 0.40 P sy P 3
magnetic field with kinematic Reynolds number is sensitive e | | \:'.:::'Q\ :
ivi 3 TR RRRRRNRNN

to the nature of the forces driving the flow. 0305/ |/ | | = | = Lo pma s \\’Q :
g/ / 7/ / 2 -IE NAIATATA ::‘E

E WEIAYAS J

APPENDIX A: ONE-DIMENSIONAL KINEMATIC » 0'205/ p / SRR
DYNAMO PROBLEM 151 S D AR SR ANEE

o0 |+ | || :

- . : . 3 1 O KW T

In cylindrical coordinatesr(,¢,z), the kinematic dynamo 7 ‘( IEEEEEEER N
roblem for given steady velocity fiel®, rQ(r), u,(r)], is 0.00E N EARTLE
P g y y fiel (1), ua(1)] 04 -02 0.0 02 0.4

given by the following nondimensionalized set of equations
for the two amplitude®, , B, [cf. Eq. (3)]:

X

FIG. 13. Representation of the inner cylindehadeglon a Car-
1 2 tesian mesh fovx=0.067 (left) and x=0.033(right). Overlayed
AB, +i(mQ+ku,)B, :_[ DB, — I_TB¢] , (A1) are the ci_rcles of effective radii{®" and_ arrows representing the
Rm r velocity field. All lengths are measured in unitsR§.
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TABLE Ill. Accuracy of the three-dimensional code, illustrated for Model 1a using various resolutionghe effective inner radius
R{*M is defined in the text. Growth rate, frequency, localization radius, and width of the magnetic field distribution are given for Model 1a
at different resolutiongtop half. The lower half of the table shows the accurate values obtained by solving the one-dimensional problem
(A1), (A2) for three different values dR;. Lengths are measured in unitsR§, growth rates and oscillation frequencies in unitshf.

Model R{e™ y ) rs Srg
la (6x=0.067) 0.291 0.0144 —1.969 0.467 0.162
la (6x=0.033) 0.301 0.0160 —1.957 0.478 0.160
la (6x=0.017) 0.300 0.0162 —1.952 0.483 0.161
theory (R, =0.28) 0.0140 ~1.971 0.468 0.158
theory (R, =0.29) 0.0154 ~1.961 0.478 0.159
theory (R, =0.30) 0.0167 ~1.951 0.488 0.160

_ 7 1 resolution runs of Models 1a and 2a at a time when the
A +i[mQ(ro) +Kkuy(ro)]= 2 (v2—1)VIm[(1+oqi) R exponential growth has well established itself. Magnetic en-
0 ergy concentrates in a cylindrical shell of radiys and of
17 half-width érg, defined in Eq.(17). For Model 1a[Fig.
+(3—6—ﬁ— kzré) 12(a)], we findrg=0.48 andsrz=0.16 (see also Table I
For comparison, we have overplotted the profile obtained
from the one-dimensional model.
+O("IQ;11’2)}, (A8) Figure 12 shows good agreement between the three-
dimensional and one-dimensional simulations everywhere
except close to the outer boundary. FefR,, the magnetic
where o;=sgnkAW) denotes the sign okAW. As »  €nergy in th_e three-dime_nsion_al simulation _s;moothly turns to
«R-%, the leading-order term on the right-hand side iszero, while in the one-_dlm_ens_n_)nal calculation the tangenﬂal
o 13 \yhen measured in the unit/R components oB remain significant for Model 2a. This is
2 due to the different boundary conditions udéd=0 vs per-
To the leading order iR, the magnetic field amplitudes fectly conducting and the close agreement of growth rates
B are given by and eigenfunctions gives us reason to believe that these are
not influenced by this localized deviation.
In Table 1ll, we compare the eigenvaluesind the spatial
+O(ﬁ;]1’2), parameters g and org of the magnetic field for the three-
dimensional simulations with those from the one-
(A9) dimensional model for different numerical resolutions. While
the high-resolution simulation has only an error of about 5%
. . - 5 in the growth ratey, and 0.3% in the frequenay, the lower-
B,=05(1+04i) \/78¢R,;1/2+ O(R;]l), (A10) resolution run yields errors of 18% and 0.9%, respectively.
The main source of inaccuracy is the angular discretization
of the inner cylinder boundary as illustrated in Fig. 13. If we
define an effective inner radilR*™ as the radius of a circle
enclosing the same area as the shaded cells in Fig. 13, then
R{¥M~0.29 for the lower-resolution run. For an inner radius
of 0.29, the one-dimensional model yields a growth rate that
where o, = sgnA(). is considerably lower and closer to what is observed in the
lower-resolution rur(see Table II). This adjustment oR{*™
results in better agreement of rg, and érg as well.

I§¢=ex;{ (14 04i)V|m R ( _ 0)

2B, +0RM),  (AL1)

APPENDIX B: ACCURACY OF THE NUMERICAL
SCHEME

We assess the accuracy of our three-dimensional simula- ACKNOWLEDGMENTS
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