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Various approaches to estimate turbulent transport coefficients from numerical simulations of hydromagnetic
turbulence are discussed. A quantitative comparison between the averaged magnetic field obtained from a spe-
cific three-dimensional simulation of a rotating turbulent shear flow in a slab and a simple one-dimensional
alpha–omega dynamo model is given. A direct determination of transport coefficients is attempted by calcu-
lating the correlation matrix of different components of the field and its derivatives. This matrix relates the
electromotive force to physically relevant parameters like the tensor components of the �-effect and the tur-
bulent diffusivity. The �-effect operating on the toroidal field is found to be negative and of similar magnitude
as the value obtained in previous work by correlating the electromotive force with the mean magnetic field.
The turbulent diffusion of the toroidal field is comparable to the kinematic viscosity that was determined ear-
lier by comparing the stress with the shear. However, the turbulent diffusion of the radial field component is
smaller and can even be formally negative. The method is then modified to obtain the spectral dependence of
the turbulent transport coefficients on the wavenumber. There is evidence for nonlocal behaviour in that most
of the response comes from the smallest wavenumbers corresponding to the largest scale possible in the simu-
lation. Again, the turbulent diffusion coefficient for the radial field component is small, or even negative,
which is considered unphysical. However, when the diffusion tensor is assumed to be diagonal the radial com-
ponent of the diffusion tensor is positive, supporting thus the relevance of a nonlocal approach. Finally,
model calculations are presented using nonlocal prescriptions of the �-effect and the turbulent diffusion.
We emphasize that in all cases the electromotive force exhibits a strong stochastic component which make
the �-effect and the turbulent diffusion intrinsically noisy.
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1 INTRODUCTION

In recent years, significant progress has been made in understanding the generation of
large scale magnetic fields by dynamo action. One of the outstanding questions is
whether such large scale dynamos work in the limit of high conductivity and in the
presence of finite amplitude magnetic fields. These questions have so far mostly
been addressed in the framework of fully periodic boxes with external forcing
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(Cattaneo and Vainshtein, 1991; Vainshtein and Cattaneo, 1992; Cattaneo and Hughes,
1996; Brandenburg, 2001, hereafter referred to as B01). Subsequently, concerns have
come up, because periodic boxes have the peculiar property that magnetic helicity is
conserved. In that case the �-effect may well be ’catastrophically’ quenched by finite
amplitude magnetic fields if the magnetic Reynolds number is large (Blackman and
Field, 2000; B01).
Unfortunately, externally forced simulations with non-periodic, open boundaries do

not seem to alleviate the catastrophic quenching problem (Brandenburg and Dobler,
2001, hereafter referred to as BD). This is the reason why there is now an urgent
need to consider simulations of naturally driven turbulence. Apart from convection,
for which the �-effect has been studied extensively (Brandenburg et al., 1990;
Ossendrijver et al., 2001), shear flow turbulence that is driven by the magnetorotational
instability is another important example (Brandenburg et al., 1995, hereafter referred to
as BNST95; Hawley et al., 1996). In the case of naturally driven turbulence, �-effect and
turbulent diffusivity are no longer scalars but tensors, nor are they just coefficients but
integral kernels. The purpose of this paper is to explore these aspects of inhomogeneous
turbulence using three-dimensional simulations.
Simulations relevant to astrophysical bodies or to the Earth that include the effects of

rotation and large scale velocity shear have recently displayed strikingly coherent
spatio-temporal order (Glatzmaier and Roberts, 1995, BNST95). As an example we
reproduce in Fig. 1 a space–time diagram (or butterfly diagram in solar physics) of

FIGURE 1 Horizontally averaged radial and toroidal magnetic fields, Bx and By respectively, as a function
of time and height, as obtained from the fully three-dimensional simulation of BNST96. Time is given in units
of rotational periods, Trot. (No smoothing in z or t is applied.) Dotted contours denote negative values.

320 A. BRANDENBURG AND D. SOKOLOFF



the mean magnetic field of an accretion disc simulation of Brandenburg et al. (1996)
(hereafter referred to as BNST96), which is an extended run of BNST95. In this particu-
lar simulation (Run 0 of BNST96) the symmetry of the magnetic field has been
restricted to even parity, so the computation has been carried out in the upper disc
plane, 0 < z < Lz, where Lz ¼ 2H is the vertical extent of the box, H is the gaussian
scale height of the hydrostatic equilibrium density, and z ¼ 0 corresponds to the
equatorial plane.
It is interesting to note that the spatio-temporal behavior obtained from the

three-dimensional simulations resembles in many ways what has been obtained earlier
using mean-field models. In particular, the magnetic fields of the simulations of
Glatzmaier and Roberts (1995) show magnetic field patterns with basic dipole symme-
try and occasional field reversal, similar to what is seen in mean-field dynamo models
(e.g., Hollerbach et al., 1992; Jones and Wallace, 1992). Of course, the simulations of
Glatzmaier and Roberts (1995) are much more realistic and show additional features
such as the magnetic dipole inclination. However, we are not aware of a detailed
attempt to relate the three-dimensional simulations to mean-field theory. At present
there are no estimates of the relevant �-effect, or even its sign, and whether it is actually
the �-effect that is responsible for the large scale field generation in these simulations.
Other proposals for causing large-scale field generation include, for example, the
incoherent �-effect (Vishniac and Brandenburg, 1997), negative magnetic diffusivity
effects (Zheligovsky et al., 2001), or effects that conserve magnetic helicity explicitly
(Vishniac and Cho, 2001, although there is non-supportive evidence; see Arlt and
Brandenburg, 2001).
The aim of this article is to assess the possible relation between simulations and

mean-field theory using a local simulation of BNST96 that is readily available to us.
This simulation has the advantage of being in cartesian geometry, and one can define
averages that are naturally dependent on just one spatial coordinate (z).
Furthermore, geometrical or boundary effects are not very pronounced in that model.
In the particular process considered by BNST95 an initial magnetic field of suitable

magnitude, but vanishing average (Bx ¼ By ¼ Bz ¼ 0), leads after at least thirty
rotational periods to a self-sustained turbulent state, which is statistically steady and
independent of the detailed initial conditions. This process results from two instabilities,
both with positive feedback. There is the magnetic shearing or Balbus–Hawley (1991)
instability that generates the turbulence and a dynamo instability that regenerates the
magnetic field. The energy that drives the dynamo is constantly being tapped from
the large scale velocity shear.
At first glance it may seem inappropriate to invoke a mean-field description in the

present case which is highly nonlinear and where the turbulence itself is driven by
the dynamo-generated magnetic field. However, we adopt here the view that the
mechanism that leads to the generation of large scale magnetic fields is distinct from
the feedback cycle that leads to the smaller scale magnetic fields driving the turbulence,
which in turn drives the magnetic field. There have been some attempts to model this
feedback cycle using a set of phenomenological equations (Tout and Pringle, 1992;
Regös, 1997), but these models too involve an �-effect that is prescribed in an ad hoc
fashion. Unfortunately, these models do not reproduce a number of features seen in
the simulations (ratio of poloidal to toroidal fields, magnitude of the accretion
torque, role of the Parker instability, and significance of the vertical field.) Also, it
should be emphasized that the large scale field seen in BNST95 is really a consequence
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of vertical stratification. Models without stratification (Hawley et al., 1996) do not
show large scale fields, although the feedback cycle of dynamo-generated turbulence
still works. This confirms that the large scale field generation can indeed be considered
as a process operating on top of the otherwise highly nonlinear feedback cycle leading
to dynamo-generated turbulence. If this is the case, one might be able to describe the
large scale dynamics in terms of averaged equations. This would imply a closure
relation between the nonlinear induction term (the electromotive force) and the mean
magnetic field. It is this relation which is at the center of the present article.
On the one hand, our findings support basic aspects of the mean-field concept. On

the other, when trying to estimate the mean-field transport coefficients (�-effect and
turbulent diffusion) it becomes necessary to go beyond simple parameterizations, to
adopt tensorial and nonlocal forms of closures, and to allow for stochastic effects.
While these results are primarily applicable to local simulations of accretion discs, it
will be interesting to make qualitative comparisons with simulations of other systems
(geodynamo, solar dynamo).
Our parameterization of transport coefficients depends implicitly on the magnetic

field strength, because the data used are from a fully nonlinear calculation. However,
we are not able to investigate this dependence in our present approach, because the
time-averaged level of magnetic field is rather stable in the model. We should however
emphasize that in the present model, where the turbulence is magnetically driven, the
magnetic energy is strong (three times in superequipartition with the turbulent
energy) and that the turbulent transport coefficients are therefore already strongly
affected, and possibly even enhanced, by this strong magnetic field.
Before we begin, we summarize a few important properties of the simulation of

BNST96. The calculation was carried out in a cartesian box where overall rotation,
radial linear shear and vertical density stratification are included. The boundaries in
the toroidal ( y) direction are periodic and in the radial (x) direction sliding periodic
(Hawley et al., 1995), which is periodic with respect to positions that shift in time. At
the top the boundaries are impenetrable and stress free, and the horizontal components
of the magnetic field vanish. At the lower boundary of the box a symmetry condition is
applied.
We consider the horizontally averaged magnetic field components in the two

horizontal directions, Bx and By; see Fig. 1. The averaged vertical field is conserved,
because periodic (or shearing-periodic) boundary conditions are used in the horizontal
directions. Since the averaged vertical field vanishes initially, it vanishes at all times, see
BNST95. We observe the following remarkable properties of the horizontally averaged
field: (i) its sign changes every approximately 15 rotational periods, (ii) at larger heights
the reversals occur somewhat later than at lower heights, and (iii) the toroidal and
radial fields are out of phase by about 3�=4. The latter is more clearly seen in curves
showing the averaged field as a function of time (e.g. Fig. 1c in BNST96). Property
(ii) can be interpreted as a pattern migration away from the equatorial plane at
speed c > 0 (c � 0:024�H). In addition, there are properties related to the symmetry
of the field about the equatorial plane; see Brandenburg (1998) for a discussion of
the dependence on boundary conditions (and the striking agreement with predictions
from simple ��-dynamos).
We begin by discussing the signs and magnitudes of various helicities that are

relevant in connection with the �-effect. We then compare quantitatively a simple
mean field model with the result of the simulations. We also consider the direct
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determination of turbulent transport coefficients allowing for the possibility that the
transport coefficients may depend either on z or on the vertical scale (i.e. the vertical
wavenumber). Finally we present a model with a scale dependent (or nonlocal) formu-
lation of magnetic diffusion and �-effect, as well as a model where strong stochastic
fluctuations are included.

2 MAGNETIC AND KINETIC HELICITIES

In the light of recent results for � and �t in forced turbulence, it is useful to discuss some
relevant properties of the present accretion disc simulations. Firstly, as expected for a
rotating stratified medium, the kinetic helicity is negative in the upper disc plane. In B01
the magnitude of the ratio Keff � x � u=juj2 was found to be equal to the forcing wave-
number, kf . (Here, x ¼ J3 u is vorticity and overbars denote horizontal averaging.)
Applying this to the disc simulations we find the effective forcing wavenumber between
2 and 4 in H � z � 2H, and nearly zero in 0 � z � H; see Fig. 1. These wavenumbers
correspond to a length scale of about 3, which is comparable to the scale of the box.
Thus, one cannot expect to see some of the pronounced features of B01 associated
with an at least modest amount of scale separation.
In B01 the small scale current helicity, jEb, was of the same sign as x � u and of the

same magnitude. (Here, j ¼ J3 b is the small scale current density in units where the
magnetic permeability is unity.) This is not the case in the present simulations. First
of all, jEb is positive near the top of the box in 1:5H � z � 2H, and at most only
about 10% of jx � uj. In 0 � z � 1:5H the small scale current helicity is essentially fluc-
tuating about zero. However, as in B01, there is also here a tendency for the total
current helicity, J � Bþ j � b, to cancel to zero, although not quite, and only near the
top boundary where large scale and small scale current helicities tend to have opposite
signs. This is however different from the model studied by BD, where open boundary
conditions (the same that are used here) were found to yield a modest helicity flux out
of the domain, which offsets the otherwise strict steady state balance between large scale
and small scale current helicities that was found in B01 and also here. In the present
simulations the magnetic helicity flux, F , is however very small; see Fig. 2.
It is somewhat surprising that in the present simulations the resulting magnetic

helicity flux is so weak. This could be related to the fact that here, in contrast to
BD, the turbulence is driven self-consistently by the resulting magnetic field. Near
the boundaries there are relatively sharp gradients in all quantities, which is typical
of boundary layer behaviour, and is unlikely to occur in more realistic cases where
free turbulent exchange and flows through the boundaries can occur.
The fact that the small scale current helicity is positive indicates that � is negative.

The connection between the two is based on a formula given by Keinigs (1983),
� ¼ 	� jEb=jBj2, where � is the microscopic magnetic diffusivity1. Another more
direct estimate for � comes from considering the balance of different induction effects,
�Bþ u3B on the one side and ð�þ �tÞJ on the other. Taking the dot product with B

1We note that the results of B01 are compatible with a version of Keinigs’ formula where �	 �tJJ � BB=jBBj2 is
equal to 	�j � b=jBBj2; see Eq. (48) of B01. However, for the dynamo to be excited, the �t term must always be
slightly smaller than the � term. Therefore, the sign implied for � is not affected by this generalization.
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shows that � ¼ þ�tJ � B=jBj2. Thus, since J � B is found to be negative we again find
that � is negative in the upper disc plane. (The negative sign of J � B is in agreement
with a negative sign of the magnetic helicity H throughout most of the computational
domain; see Fig. 2.)
Perhaps the most convincing explanation for the negative � is that intense parts of a

flux tube contract (to maintain pressure balance along field lines), but are also most
buoyant. If this contraction is stronger than the expansion associated with the rise
into a less dense medium, then � will be negative (Brandenburg, 1998). The same
result was also obtained by Rüdiger and Pipin (2000) under the assumption that the
turbulence is driven primarily by small scale magnetic fields.
Next we compare quantitatively the results of the simulations with a simple

mean-field model. Here the negative sign of � follows directly from the fact that the
dynamo wave is found to migrate away from the disc plane.

3 COMPARISON WITH CONVENTIONAL MEAN FIELD DYNAMOS

In mean-field dynamo theory one uses the averaged induction equation,

@B

@t
¼ =3 ðu3Bþ 	u3 	BÞ, ð1Þ

where overbars denote horizontal averages and the deltas denote fluctuations. Our hori-
zontal averages may be associated with ensemble averages in analytical studies. In
astrophysical bodies with large scale shear, u ¼ uðxÞ, e.g. differential rotation, a mean
component of the magnetic field is generated in the direction of the shear. However,
this only works as long as there is a mechanism replenishing the magnetic field compo-
nent in the cross stream direction. Such a field could arise from the correlation term

FIGURE 2 Vertical dependence of magnetic helicity H ¼ Hm þHf and magnetic helicity flux
F ¼ Fm þ F f , where the subscripts m and f denote the contributions from the mean and fluctuating fields.
Magnetic helicity is normalized by H0 ¼ k	11

R
jBj

2dV, where k1 ¼ �=Lz is the smallest wavenumber in the
vertical direction. The magnetic helicity flux is normalized by F 0 ¼ H0�H, where H ¼ Lz=2 is the density
scale height of the disc.
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	u3 	B, the ’’turbulent’’ electromotive force, which we denote by E. Early work since
the 1960s and 1970s has established the following form for E:

Ei ¼ �ijBj þ �ijk@Bj=@xk ð2Þ

(Roberts and Soward, 1975; Krause and Rädler, 1980; see also Steenbeck et al., 1966
for an early reference, and Parker, 1955 for the original formulation of the idea). In
this representation one assumes that the averaged magnetic field B is smooth so that
higher derivatives in the Taylor expansion (2) do not enter. It is then assumed that
the functional relationship between E and B is local. We return to the applicability
of a local relationship in the next section.
An apparently less general formulation of the diffusion term in Eq. (2) is

Ei ¼ �ijBj 	 ��ijJj, ð3Þ

where diffusion works only via the current density J ¼ =3B (in units where the
magnetic permeability is unity). However, the two cases are here equivalent, because
in Eq. (2) only the index k ¼ z gives a nonvanishing contribution (horizontal derivatives
of horizontal averages vanish in our case!). Therefore, the matrices �ijz and ��ij contain
the same information. In particular,

��xx ��xy
��yx ��yy

� �
¼

�xyz 	�xxz
�yyz 	�yxz

� �
: ð4Þ

The advantage of formulation (3) is that it is straightforward to ensure that turbulent
diffusion does indeed lead to a decrease of magnetic energy. This is the case when the
matrix ��ij is positive definite, i.e. �

�
ijJiJj > 0. A necessary condition for this is �

�
xx > 0

and ��yy > 0. Of particular interest is the case where ��ij is diagonal, i.e. �
�
xy and ��yx

are assumed to vanish. Below we shall consider both representations, (2) and (3) with
��xy ¼ ��yx ¼ 0, and correspondingly we use different notation in the two cases, �ijz
and ��ij, respectively. We emphasize that Eq. (4) does not hold if the off-diagonal com-
ponents of ��ij are put to zero, whilst �ijz is allowed to have all four components different
from zero.
In principle there could be an additional gradient term in the expression for E that

would not affect the evolution of the field, but would modify the fitting procedure
for the transport coefficient. (We are grateful to Rogachevskii and Kleeorin (2001)
who attracted our attention to this possibility.) In the present case where averages
depend only on z, such gradient terms correspond simply to a constant vector, E0;
see, e.g., BD. However, in the present case the horizontal components of E are antisym-
metric about the midplane and have to vanish there. Since the terms on the right hand
side of Eqs. (2) and (3) are also zero on z ¼ 0 we must have E0 ¼ 0.
Now in order that the poloidal field can be replenished it is important to have a non-

vanishing component of �yy. The magnitude of �yy has to be sufficiently large to over-
come the effects of (turbulent) diffusion that arise from �t
ijk, the isotropic part of �ijk.
In BNST95, and later in Brandenburg and Donner, 1997, the value of �yy was

roughly estimated in the following way. It turned out that Ey and By are correlated.
The slope of the least-square fit gives a first estimate for �yy. It was found that �yy is
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negative in the upper disc plane and positive in the lower, and its magnitude was about
0:001�H, where � ¼ 2�=Trot is the local angular velocity and H the gaussian density
scale height of the disc. In these articles no explicit estimate for �t was given, but one
would expect that �t is comparable to the turbulent kinematic viscosity �t, which was
found to be approximately 0:005�H2. The negative sign of � in the upper disc plane
was confirmed independently by Ziegler and Rüdiger (2000), who used a different
code. Their simulations also produced a large scale field. On the other hand, the simu-
lations of Miller and Stone (2000) for a taller box did not show evidence for large scale
dynamo action. It is possible that in their case the effective magnetic Reynolds number
is larger and therefore the time scale after which a large scale field can be established
would be longer. This effect would be even more pronounced if the numerical diffusion
operator has hyper-diffusive properties (Brandenburg and Sarson, 2002).
In writing down the mean field equations for the horizontally averaged fields, we

reiterate that because of periodic boundary conditions in the horizontal directions
the averaged vertical field Bz, remains unchanged, and since Bz ¼ 0 initially, it remains
so for all times. Thus, we have only two equations for the mean fields in the x and y
directions:

@Bx

@t
¼ 	

@Ey

@z
, ð5Þ

@By

@t
¼

@Ex

@z
	 q�Bx: ð6Þ

The effect of molecular diffusion is here subsumed into the definition of E. On the
boundaries we assume

@Bx

@z
¼

@By

@z
¼ 0 on z ¼ 0; Bx ¼ By ¼ 0 on z ¼ Lz: ð7Þ

This is equivalent to the conditions used in the three-dimensional simulations for the
non-averaged magnetic field. The last term in Eq. (6) arises from the local velocity
shear, uyðxÞ ¼ 	q�x. In the present case of keplerian rotation we have q ¼ 3=2; for
estimates of �yy for different values of q see Brandenburg and Donner (1997). The
simplest parameterization that leads to dynamo action, balanced by diffusion, would be

Ex ¼ �t
@By

@z
, ð8Þ

Ey ¼ �yyBy 	 �t
@Bx

@z
: ð9Þ

It is instructive to consider first free wave solutions of the form e�tþikz, ignoring thus the
boundaries. We now assume k > 0. The dispersion relation is

� ¼ ð1� iÞ 34��yyk
�� ��1=2	�tk

2, ð10Þ
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where the two signs are respectively for positive and negative values of �yy. The margin-
ally excited solution (Re � ¼ 0) can be written as

Bx ¼ Asin kðz	 ctÞ, By ¼
ffiffiffi
2

p
A

c

�yy

����
���� sin kðz	 ctÞ �

3

4
�

� �
, ð11Þ

where A is the amplitude (undetermined in linear theory), and c is the wave speed,

c � 	
Im �

k
¼ 	�yy

3�

4k�yy

����
����
1=2

¼ ��tk: ð12Þ

Note here that c > 0 (as seen in the simulations, cf. Fig. 1) requires �yy < 0. This is
consistent with the sign of �yy obtained earlier by means of correlating Ey with By

(BNST95, Brandenburg and Donner, 1997).
In Fig. 3 we present the result of a numerical integration of (5)–(9), where the bound-

aries are now taken into account. We chose

�yy ¼ 	0:001�z, �t ¼ 0:005�H2, ð13Þ

with Lz ¼ 2H, and normalize to � ¼ H ¼ 1, so the rotational period is then Trot ¼ 2�.

FIGURE 3 Horizontally averaged radial (Bx) and toroidal (By) magnetic fields as a function of time (in
rotational periods) and height, z, as obtained from the one-dimensional dynamo model. Dotted contours
denote negative values.
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The model reproduces roughly the average behavior of the magnetic field in the
three-dimensional simulation. Of course, the simulation shows strong fluctuations,
which are not explicitly present in mean-field theory. In the simulations fluctuations
are natural because the flow is turbulent and horizontal averages are only an approx-
imation to ensemble averages. Nevertheless the agreement between the mean-field
model and the turbulence simulation is striking and even quantitative: the cycle
period is 2� 15 rotational periods, the migration speed is positive, although about
three times too fast (c � þ 0:07�H), and the phase difference between Bx and By is
about 3�=4 (Fig. 4). Also the amplitude ratio between Bx and By is similar for the
simulation and the model (about 1/30). Thus, the only major disagreement is in
the migration speed, which is too fast in the model compared to the simulation.
Our estimates of turbulent transport coefficients in Eq. (13) have been purely

phenomenological. What is missing is an analysis of the validity of the expressions
(2) or (3). This will be attempted in the following section.

4 FITTING THE FUNCTIONAL FORM OF E

In this section we attempt a direct determination of turbulent transport coefficients. We
now allow alpha and turbulent diffusivity to be tensors whose components depend
either on z (local approach) or on the vertical scale or wavenumber (nonlocal
approach). In both approaches we also consider the case where ��ij is purely diagonal.

FIGURE 4 Comparison of Bx (dotted lines) and By (solid lines) as functions of time for z ¼ 1 for the
simulation and the model. Note the similarity in the phase shifts between Bx and By in the two cases. In both
panels Bx has been scaled up by a factor of 20. Note that both the model and the simulation have a similar
amplitude ratio between the two fields. The horizontally averaged toroidal magnetic field in the simulation is
given in units of the equipartition value, Beq ¼ h4�
juj2i1=2. The model on the other hand is linear and the
amplitude is therefore undetermined. The field is growing in time, showing that the mean-field dynamo model
is supercritical.
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Here and elsewhere primes on Bi and Ei denote z-derivatives and dots denote time
derivatives. We also drop the overbars on Bx and By, which denote now horizontally
averaged fields.

4.1 A Local Formulation

The underlying turbulence is anisotropic and therefore �-effect and turbulent diffusivity
are really tensors. From (2) we have

Ex ¼ �xxBx þ �xyBy þ �xxzB
0
x þ �xyzB

0
y, ð14Þ

Ey ¼ �yxBx þ �yyBy þ �yxzB
0
x þ �yyzB

0
y: ð15Þ

Since we know E and B at different times we can determine the eight coefficients �ij and
�ijz by forming moments with Bx, By, B

0
x and B 0

y. This gives 2� 4 equations for the
8 unknowns, �ij and �ijz. The reason why the third index on �ijk is always z is because
only the z-derivatives of Bi are nonvanishing. This in turn is because the horizontally
averaged fields are independent of x and y (see previous section).
The full system of equations can be written in the form of two matrix equations,

EðiÞðzÞ ¼ MðzÞCðiÞ
ðzÞ, i ¼ x, y, ð16Þ

with the matrix

M ¼

hBxBxi hBxByi hBxB
0
xi hBxB

0
yi

hByBxi hByByi hByB
0
xi hByB

0
yi

hB 0
xBxi hB 0

xByi hB 0
xB

0
xi hB 0

xB
0
yi

hB 0
yBxi hB 0

yByi hB 0
yB

0
xi hB 0

yB
0
y

0
BB@

1
CCA, ð17Þ

which is the same for both equations (i ¼ 1 and i ¼ 2), and the vectors

EðiÞ ¼

hEiBxi

hEiByi

hEiB
0
xi

hEiB
0
y

0
BB@

1
CCA, CðiÞ

¼

�ix

�iy

�ixz
�iyz

0
BB@

1
CCA: ð18Þ

The averages are taken over time. In Figs. 5 and 6 we show the results respectively
for the coefficients �ij and �ijz as functions of z. We also plot as a solid line a five
point running mean of the data.
Here and below our error bars are a measure of the stability of the fit when only part

of the time series is used. In practice we divide the data set into two parts and calculate
the transport coefficients separately for each subset. The error bars cover then the range
of values obtained by using all or only part of the data. The error bars would probably
shrink if we extended the data set, but some of the noise is due to fluctuations from
cycle to cycle and therefore physical.
Near the top boundary the data points deviate significantly from the relatively

smooth trend seen in the data away from the boundary. Therefore, we consider the
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data near the boundary as uncertain and, when calculating averages and running
means, we ignore all points within four mesh zones near the boundary. The vertically
averaged values of the components of �ij and �ijz are

�ij ¼
0:010 	0:009
0:001 	0:001

� �
�H, �ijz ¼

	0:007 0:003
0:000 0:000

� �
�H2: ð19Þ

Note that �yy ¼ 	0:001�H and �xyz ¼ 0:003�H2, in rough agreement with the results
found earlier from other considerations. However, 	�yxz is at least ten times smaller
and perhaps even negative. This coefficient is responsible for the diffusion of Bx,
i.e., _BBx ¼ � � � 	 �yxzB

00
x . If 	�yxz < 0, this would indicate that some higher order terms

FIGURE 5 The symbols denote the results for �ijðzÞ as obtained by solving (16) and the solid line represents
a five point running mean.

FIGURE 6 The symbols denote the results for �ijzðzÞ as obtained by solving (16) and the solid line
represents a five point running mean. The two horizontal dash–dotted lines give the average values.
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(hopefully with the right sign!) would need to be restored for stabilization. Typically, an
infinite series of further terms could then become important (Dittrich et al., 1984;
Elperin et al., 2000), making this whole approach difficult to use in practice. We address
this difficulty in Sections 4.3 and 4.4 by adopting a nonlocal approach.

4.2 A Local Formulation Using a Diagonal Diffusion Tensor

We now adopt the J-formulation for the diffusion term, i.e. Eq. (3), using a diagonal
diffusion tensor, i.e. ��xy ¼ ��yx ¼ 0. In that case we have to solve two systems of three
(instead of four) equations,

EðiÞðzÞ ¼ MðiÞðzÞCðiÞ
ðzÞ, i ¼ x, y, ð20Þ

where

MðiÞ ¼

hBxBxi hBxByi 	hBxJii

hByBxi hByByi 	hByJii

	hJiBxi 	hJiByi hJiJii

0
@

1
A ð21Þ

is now different for the two equations (i ¼ 1 and i ¼ 2). (Here and below, no summation
over i is implied!) The vectors EðiÞ are given by

EðiÞ ¼

hEiBxi

hEiByi

	hE iJii

0
@

1
A, CðiÞ

¼

�ix

�iy

��ii

0
@

1
A: ð22Þ

Again, the averages are taken over time. In Figs. 7 and 8 we show the results respec-
tively for the coefficients �ij and ��ij as functions of z. We also plot as a solid line a
five point running mean of the data.

FIGURE 7 The symbols denote the results for �ijðzÞ as obtained by solving (20) and the solid line represents
a five point running mean. Here and below the error bars indicate the stability of the fit when only a subset of
the data is used.
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Note that both ��xx and �
�
yy are now positive on average (indicated by the dash-dotted

line). Nevertheless, ��yy, which is responsible for the diffusion of Bx, shows still large
fluctuations and can locally still be negative. Taken at face value, such excursions of
��yy to negative values would cause a catastrophic growth of small-scale structures in
a mean-field model. We note that the relation (4) between the different components
of ��ij and �ijz still holds approximately, even though this relation is no longer strictly
valid if, as in the present case, the fit to the diagonal components of ��ij is obtained
under the restriction that the off-diagonal components vanish.

4.3 A Nonlocal Formulation

We recall that Eq. (2) corresponds really to a Taylor expansion of an underlying
integral kernel in terms of derivatives of delta functions (see, e.g., Hasler et al., 1995;
see also Nicklaus and Stix, 1988). Therefore, we now write Eqs. (14) and (15) as a con-
volution in the form

Ex ¼ �xx � Bx þ �xy � By þ �xxz � B
0
x þ �xyz � B

0
y, ð23Þ

Ey ¼ �yx � Bx þ �yy � By þ �yxz � B
0
x þ �yyz � B

0
y, ð24Þ

where �ijðz, z
0, tÞ and �ijzðz, z

0, tÞ are now integral kernels and the asterisks refer to a
convolution,

�ij � Bj �

Z Lz

0

�ijðz, z
0ÞBjðz

0, tÞ dz 0, ð25Þ

�ijz � B
0
j �

Z Lz

0

�ijzðz, z
0ÞB 0

jðz
0, tÞ dz 0: ð26Þ

We solve for the 8 kernels using Fourier transformation. We introduce

ÊE 0
i ¼

Z Lz

0

E 0
iðzÞ cos kz dz, ð27Þ

FIGURE 8 The symbols denote the results for ��ijðzÞ as obtained by solving (20) and the solid line represents
a five point running mean. The average values are indicated by horizontal dash–dotted lines.
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B̂Bi ¼

Z Lz

0

BiðzÞ cos kz dz, ð28Þ

where

k ¼ kn ¼ ðnþ 1=2Þ�=Lz, n ¼ 0, 1, . . . ð29Þ

Note that we use here the Fourier transform of the derivative of E, which is more easily
obtained from the simulations. We assume that �ijðz, z

0Þ and �ijzðz, z
0Þ have the form

�ijðz, z
0Þ ¼ sin k0z ð2=LzÞ

X
k

sin kz sin kz0 �̂�ijðkÞ, ð30Þ

�ijzðz, z
0Þ ¼ ð2=LzÞ

X
k

sin kz sin kz0 �̂�ijzðkÞ, ð31Þ

where k0 ¼ �=ð2LzÞ. We also need

~BBiðkÞ ¼

Z Lz

0

BiðzÞ sin k0z sin kz dz, ð32Þ

and the corresponding inverse transform in terms of ~BBiðkÞ, namely

BiðzÞ ¼ ð2=LzÞðsin k0zÞ
	1

X
k

sin kz ~BBiðkÞ: ð33Þ

The sin k0z term in (30) ensures that the �-effect is antisymmetric about the equatorial
plane. For example, if �̂�ijðkÞ is independent of k, then the integral in Eq. (25) simply
becomes a multiplication, so �ij � Bj ¼ sin k0z�

ð0Þ
ij BjðzÞ, where �

ð0Þ
ij ¼ �̂�ijðkÞ is a constant,

independent of k. We are now able to write (23) and (24) in the following form

ÊE
0
x ¼ k�̂�xx

~BBx þ k�̂�xy
~BBy 	 k2�̂�xxzB̂Bx 	 k2�̂�xyzB̂By, ð34Þ

ÊE
0
y ¼ k�̂�yx

~BBx þ k�̂�yy
~BBy 	 k2�̂�yxzB̂Bx 	 k2�̂�yyzB̂By: ð35Þ

Again, we can solve for the 8 coefficients �̂�ij and �̂�ijz by computing moments (sepa-
rately for each value of k). We obtain two matrix equations of the form

~EEðiÞðkÞ ¼ ~MMðkÞ ~CCðiÞ
ðkÞ, i ¼ x, y ð36Þ

with the matrix

~MM ¼

h ~BBx
~BBxi h ~BBx

~BByi h ~BBxB̂Bxi h ~BBxB̂Byi

h ~BBy
~BBxi h ~BBy

~BByi h ~BByB̂Bxi h ~BByB̂Byi

hB̂Bx
~BBxi hB̂Bx

~BByi hB̂BxB̂Bxi hB̂BxB̂Byi

hB̂By
~BBxi hB̂By

~BByi hB̂ByB̂Bxi hB̂ByB̂Byi

0
BBB@

1
CCCA, ð37Þ
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which is the same for both equations (i ¼ 1 and i ¼ 2), and the vectors

~EEðiÞ ¼

hÊE
0
i
~BBxi

hÊE
0
i
~BByi

ÊE
0
i B̂Bxi

hÊE
0
i B̂Byi

0
BBBB@

1
CCCCA,

~CCðiÞ
¼

k�̂�ix

k�̂�iy

	k2�̂�ixz
	k2�̂�iyz

0
BBB@

1
CCCA: ð38Þ

The averages are taken over time. In Figs. 9 and 10 we show the results respectively for
the coefficients �̂�ij and �̂�ijz as functions of k. We also plot as a solid line a five point

FIGURE 10 The symbols denote the results for �̂�ijzðkÞ as obtained from (36) and the solid line represents a
five point running mean. Note that the data points for the smallest value of k, k ¼ k0, deviate strongly from
those for k1 and lie outside the plot (�̂�xxzðk0Þ ¼ 0:13�H2, �̂�xyzðk0Þ ¼ 	0:0007�H2, �̂�yxzðk0Þ ¼ 0:04�H2 and
�̂��yyðk0Þ ¼ 0:002�H2).

FIGURE 9 The symbols denote the results for �̂�ijðkÞ as obtained from (36) and the solid line represents a
five point running mean ignoring the point k ¼ k0.

334 A. BRANDENBURG AND D. SOKOLOFF



running mean of the data. On the boundaries the lines go through the original data
points, however.
In the traditional ��-dynamo the ðy, yÞ-component is the most important one.

However, �̂�yyðkÞ shows substantial variations in k, indicating possibly large uncertain-
ties, although �̂�yy is mostly negative and the value for k1 is around 	 0.001, similar to
the value we used in Eq. (13). For the diffusion coefficient �̂�xyz the value for k ¼ k1 is
positive, i.e. stabilizing. Furthermore, the value for k ¼ k1 is much larger than for the
next higher values of k. One possible suggestion would be to assume that �ijzðkÞ was
proportional to k	2. However, this would correspond to diffusion of the algebraic
form _BBi ¼ . . .	 Bi=�

ðiÞ, i.e. without any differential (or integral) operator. Here the
superscript (i ) on � indicates that the decay times are in general different for the x
and y directions. Let us recall, however, that because the eigenvalues of the diffusion
tensor are not all positive our fitting is still not self-consistent.

4.4 A Nonlocal Formulation Using a Diagonal Diffusion Tensor

Like in Section 4.2 we now adopt the formulation (3) using a diagonal diffusion
tensor. We write

ÊE
0
x ¼ k�̂�xx

~BBx þ k�̂�xy
~BBy 	 �̂��xxĴJ

0
x, ð39Þ

ÊE
0
y ¼ k�̂�yx

~BBx þ k�̂�yy
~BBy 	 �̂��yyĴJ

0
y, ð40Þ

where ĴJ 0
x ¼ þ k2B̂By and ĴJ 0

y ¼ 	 k2B̂Bx. Instead of Eq. (36) we have

~EEðiÞðkÞ ¼ ~MMðiÞðkÞ ~CCðiÞ
ðkÞ, i ¼ x, y ð41Þ

with the matrix

~MMðiÞ ¼

h ~BBx
~BBxi h ~BBx

~BByi 	h ~BBxĴJ
0
i i

h ~BBy
~BBxi h ~BBy

~BByi 	h ~BByĴJ
0
i i

	hĴJ 0
i
~BBxi 	hĴJ 0

i
~BByi hĴJ 0

i ĴJ
0
i i:

0
B@

1
CA: ð42Þ

(Again, here and below no summation over i is implied!) The vectors are

~EEðiÞ ¼

hÊE
0
i
~BBxi

hÊE
0
i
~BByi

	hÊE
0
i ĴJ

0
i i

0
B@

1
CA, ~CCðiÞ

¼

k�̂�ix

k�̂�iy

�̂��ii

0
@

1
A: ð43Þ

In Figs. 11 and 12 we show the results respectively for the coefficients �̂�ij and �̂�
�
ij as func-

tions of k. We also plot as a solid line a five point running mean of the data.
Now both �̂��xxðkÞ and �̂�

�
yyðkÞ are positive in the range 19k915. Like in Section 4.2 the

restriction to a purely diagonal magnetic diffusion tensor has helped to make turbulent
diffusion positive definite. For larger values of k, corresponding to smaller scales, the
data are probably no longer reliable. For the smallest value of k, k ¼ k0, the diffusion
coefficient ofBy is negative, corresponding to a destabilization of the field on large scales.
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While this is of course what is seen in the simulation, it is unclear whether this is really
due to a negative diffusion on large scales (like in the Kuramoto–Sivashinsky equation
with negative diffusion and positive hyperdiffusion), or just a natural manifestation of
the �-effect or an inverse cascade. Let us note that the negative diffusion in the largest
scale does not lead to any catastrophic behaviour of the solution. For recent work on
the negative diffusion effect see Zheligovsky et al. (2001).

4.5 Comparative Remarks

In the previous subsections we have seen that �-effect and turbulent diffusion are not
only always tensors, but their components show also systematic spatial variations
and, more importantly, they are dominated by only the smallest wavenumbers. It
does not seem feasible, however, to determine simultaneously spatial variations and
wavenumber dependence. We emphasize that we do not advocate that the model of
Section 4.4 is better than that of Section 4.2 or even Section 3, for example. Instead,
elements of both approaches should preferentially be taken into consideration.

FIGURE 11 The symbols denote the results for �̂�ijðkÞ as obtained from (41)and the solid line represents a
five point running mean ignoring the point k ¼ k0.

FIGURE 12 The symbols denote the results for �̂��ijðkÞ as obtained from (41) and the solid line represents a
five point running mean. Note that the data points for the smallest value of k, k ¼ k0, deviate strongly from
those for k1 and lie outside the plot (�̂�

�
xxðk0Þ ¼ 	 0:004�H2 and �̂��yyðk0Þ ¼ 0:01�H2).

336 A. BRANDENBURG AND D. SOKOLOFF



Generally, we do find, however, that the restriction to only diagonal components of
the ��ijðzÞ or �̂�

�
ijðkÞ tensors is to be preferred. This is because, on physical grounds, these

diagonal components should be positive. If one does allow for off-diagonal compo-
nents, as in Sections 4.1 and 4.3, one finds (as expected) somewhat different results
(	�yxz is different from ��yy, for example) and diffusion of Bx field is then mostly
negative.
We wish to emphasize the importance of simultaneously determining the various

transport coefficients, as we have attempted here. To our knowledge, the only other
time this was done was in B01 where scalar � and �t quenchings have been determined.
In B01, both direct determination and fitting to a model were used to obtain transport
coefficients. Of course, fitting to a model is a much more stable and reliable procedure,
but it is necessarily model dependent and one still has to assess whether or not the
model is actually consistent with the data.
An important complication arises from the fact that the actual electromotive force

contains a strongly fluctuating component which is physical. This affects the results
obtained from a direct determination of transport coefficients and, consequently,
many of the detailed features cannot be physically meaningful. To our knowledge,
dynamo models with nonlocal (wavenumber dependent) transport coefficients were
never considered before. In order to have a preliminary assessment of such models,
and to obtain insight as to which components are crucial, we now consider simple
model calculations with wavenumber dependent transport coefficients.

5 MODEL CALCULATIONS

The direct determination of nonlocal transport coefficients used in Section 4 suggests
that nonlocal effects could be important. In fact, the magnitudes of �̂�ij and �̂��ij tend
to decrease with k. A k	2 dependence of �̂��xx and �̂��yy would cancel the r2 diffusion
operator and would yield a simple (and again local!) 	1=� damping term. The problem
with this type of damping is clear when looking at the dispersion relation (10). For
simplicity we assume a scalar magnetic diffusivity, �̂��xxðkÞ ¼ �̂��yyðkÞ � �̂�tðkÞ, and that
�̂�tðkÞ ¼ ð�k2Þ	1 we have

�ðkÞ ¼ ð1� iÞ 34��̂�yyðkÞk
�� ��1=2	�	1, ð44Þ

so for �̂�yyðkÞ ¼ const, we would have �ðkÞ > 0 for some k > kcrit. In order to prevent
such an ’ultraviolet catastrophe’ we have to require that �̂�yyðkÞ ! 0 for large values
of k. On the other hand, the product �̂�yyðkÞk should reach its maximum for relatively
small values of k, because the simulations (Fig. 1) suggested no systematic high-k
dependence.
Looking at Fig. 11, �̂�yyðkÞ fluctuates essentially about zero, although it does show a

negative peak at k ¼ 3�=4 � 2:4. Although j�̂�xxj is much larger than j�̂�yyj, it is relatively
unimportant because it multiplies Bx, which is small, and �̂�xx only contributes to
generating By field, which is more effectively generated by the shear term. Given that
it is only �̂�yyðkÞ which contributes to ��-type dynamo action, we need to model this
term somehow. We do this by assuming a linear dependence on k for k � 4 of the form

�̂�yyðkÞ ¼ 	0:001ð1	 k=kmaxÞ for k � kmax ¼ 4: ð45Þ
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For �̂�tðkÞ we assume

�̂�tðkÞ ¼ ð�k2Þ	1 with �	1 ¼ 0:01: ð46Þ

The resulting butterfly diagram is quite reasonable; see Fig. 13. The main difference
compared with the local model shown in Fig. 3 is that the dynamo wave migrates
now slower. The fast migration was the main shortcoming of the local model, where
field reversals happened almost simultaneously both at the midplane and at the
upper boundary.
The assumption of a scalar �̂�tðkÞ is made purely for simplicity. For comparison we

have also considered a model with �̂��yyðkÞ ¼ 0:1�̂�
�
xxðkÞ (as suggested by Fig. 12) and

�̂��xxðkÞ ¼ ð�k2Þ	1 with �	1 ¼ 0:01 (as before). In order that the model is still only
marginally excited, we had to reduce �̂�yyðkÞ by a uniform scaling factor of 5. Except
for an increase of the cycle period by about a factor of 2, the resulting butterfly diagram
was almost the same as in (Fig. 13).
Given that (i) this approximation reproduces phenomenology, (ii) is based on a fit to

the actual electromotive force (see Figs. 11 and 12), and (iii) the dissipation is positive
definite, we consider Eqs. (45) and (46) as the most reasonable parameterization if one
wanted to use mean-field theory.
The results for many of the components of the �- and �-tensors are rather noisy.

However, the fact that the obtained values for �yy, �̂�yyðkÞ, and �t and ð�k2Þ	1, are all
of the same sign and of comparable magnitude suggests this is a stable result of the
analysis. This result is also in agreement with what is required for a mean-field
model to work. Firstly, the sign of �̂�yy has to be negative to make the dynamo wave
move with a positive migration speed. Secondly, the magnitude of �̂�yy has to be
around 10	3 so that the dynamo period is around 30 rotational periods. Finally, �t
has to be around 10	2 so that the dynamo is just weakly supercritical.

FIGURE 13 Model with �̂�yyðkÞ ¼ 	0:001ð1	 k=kmaxÞ, k � kmax ¼ 4, �
	1

¼ 0:01.
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6 NOISE IN THE TRANSPORT COEFFICIENTS

The plots for both local and nonlocal approaches show strong fluctuations in the
various transport coefficients. This is caused by strong noise, which is much more
pronounced in the electromotive force than in the resulting mean field. It would
therefore be surprising if the �-effect was really responsible for generating the much
less noisy large scale magnetic field in the simulation. However, it is important to
note that even a completely noisy �-effect with no net component can amplify magnetic
fields (Moffatt, 1978). Furthermore, in the presence of large scale shear it is possible to
generate also a large scale field (Vishniac and Brandenburg, 1997).
Given the high level of noise found in the transport coefficients it is useful to elabo-

rate further on this point. In the following we present a model calculation where the
effect of strong noise is included. We solve Eqs. (5)–(9) and replace Eq. (13) by

�yy ¼ 	0:001�zþ �NN, �t ¼ 0:0055�H2, ð47Þ

where �N is a coefficient and Nðz, tÞ is gaussian noise in z and t, normalized to a
root-mean-square value of unity. The other components of �ij and ��ij are ignored
because we want to examine the effect of noise and take therefore the simplest possible
model that was presented already in Fig. 3. In Fig. 14 we present the result for
�N ¼ 0:01, corresponding to a noise level that exceeds the mean �-effect by a factor
ten or more, especially close to the midplane, where the coherent �-effect vanishes.
The resulting field structure looks rather similar to themean field obtainedby averaging

the data from the original three-dimensional simulations. The noise level exceeds the
mean (coherent) �-effect by more than a factor of ten, which is comparable to or
even larger than what has been suggested in connection with the solar dynamo
(Choudhuri, 1992; Moss et al., 1992; Hoyng et al., 1994; Otmianowska-Mazur,

FIGURE 14 Mean-field calculation with �N ¼ 0:01, �0 ¼ 	0:001, and �0 ¼ 0:005.
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1997). The main point we want to make here is that a high noise level in the
mean-field transport coefficients (Section 4) is quite natural and not simply an indica-
tion of inaccurate measurements.

7 COMMENTS ON NONLINEAR QUENCHING

The issue of magnetic quenching of turbulent transport coefficients has not been
addressed in the present article. One must expect that all components of the � and �
tensors depend on magnetic field strength and field structure. In principle our approach
could be modified to allow for such nonlinearities. The usual assumption is that, if the
turbulent transport coefficients are caused by turbulent convection, for example, � and
�t would decrease with increasing field strength. On the other hand, if the turbulent
transport coefficients are caused by flow fields which themselves are magnetically
driven, for example by magnetic (e.g., Balbus–Hawley and Parker) instabilities, then
� and �t may actually increase with increasing field strength (see Brandenburg, 1997
for a recent discussion on that). There is even some observational evidence for this
somewhat unusual proposal (Brandenburg et al., 1998; Saar and Brandenburg, 1999).
Thus, in addition to allowing � and �t to be scale dependent, one should also allow
for the possibility that � and �t may actually increase with magnetic field strength.
However, these type of behaviours must still be compatible with helicity conservation.
In the case of a fully periodic domain the situation is now fairly well understood. For

example, we know that the correct helicity limited growth of the large scale field can be
reproduced if both � and �t are equally strongly quenched by the mean magnetic field,
B, and the quenching is of the form 1=ð1þ �BjBj

2=B2eqÞ, where Beq is the equipartition
field strength, and the coefficient �B is proportional to the magnetic Reynolds number.
This type of ‘catastrophic’ quenching goes back to the early article by Vainshtein and
Cattaneo (1992), and was confirmed using simulations (Cattaneo and Hughes, 1996),
but it is now clear that this behaviour is primarily a consequence of magnetic helicity
conservation (Blackman and Field, 2000; B01), and independent of the type of non-
linearity (Brandenburg and Subramanian, 2000). Evidence for ‘catastrophic’ �t-quench-
ing was first found by Cattaneo and Vainshtein (1991) using two-dimensional
simulations. Three-dimensional simulations of isotropic helical turbulence in a box
yielded a resistively slow saturation behavior of � which is well described by a fit of
the form jBj2 � 1	 expð	2�k2�tÞ, where � is the microscopic magnetic diffusivity, k
is the wavenumber of the large scale field, and �t is the time after which the small
scale field has saturated. The necessity to obey this fit is sufficiently stringent to exclude
for example cubic quenching behaviour (e.g., Moffatt, 1972; Rüdiger, 1974; Rüdiger
and Kitchatinov, 1993), or quenching of the form 1	 �BjBj

2=B2eq. As was recently
pointed out by Field and Blackman (2002), a type of quenching that satisfies the
magnetic helicity equation exactly and that is therefore also compatible with resistively
limited growth is dynamical quenching (Kleeorin et al., 1995). According to this
description, � and �t are no longer catastrophically quenched. In other words, the
earlier conclusion of B01 is not compulsory because of a degeneracy of the dynamo
equations in the fully helical case.
In a non-periodic domain the situation is quite different, because there is then the

possibility of a magnetic helicity flux out of the domain. This magnetic helicity loss
is associated with a loss of magnetic energy. In the model of BD much of the field

340 A. BRANDENBURG AND D. SOKOLOFF



that was lost through the boundaries was of large scale, which made the large scale
dynamo process less efficient. This corresponds to a less drastic quenching, because
�B is now only proportional to the square root of the magnetic Reynolds number (BD).
The presence of shear affects the saturation results in a different way. Field amplifi-

cation by shear is quite independent of the magnetic helicity effect, but this concerns
only the toroidal field amplification. For the dynamo to work one still needs to generate
poloidal field in order to make use of the shear. Thus, saturation of the large scale field
still occurs on a resistive time scale, but larger field amplitudes are now possible
(Brandenburg et al., 2001). Because of shear, the field evolves in an oscillatory fashion
(as predicted by mean-field ��-dynamo theory; e.g. Moffatt, 1978; Parker, 1979). It is
at present not entirely clear, however, whether the time scale for this oscillation is resis-
tive or dynamical.

8 CONCLUSIONS

In the present article we have demonstrated that the results of the three-dimensional
numerical nonlinear dynamo simulations of BNST95 can be fitted by a mean-field
dynamo model with properly chosen parameterizations of transport coefficients. The
parameterization found from such a fitting procedure is far from that of naive kine-
matic mean-field dynamo theory. In fact, our investigations point toward the possibility
that turbulent transport coefficients might be wavenumber dependent. This possibility
was first explored by Moffatt (1983), who used a renormalization group approach to
obtain differential equations for � and �t as functions of wavenumber. We find that
the strongest contribution to � and �t tends to come from the largest scales in the
system. Unfortunately the scatter in the data is considerable and only data for
the first few wavenumbers seem to be significant. However, simple representations of
the form (45) and (46) seem to reproduce the original data reasonably well (compare
Fig. 13 with Fig. 1). These representations are consistent with fits to the electromotive
force and, more importantly, the corresponding energy dissipation is now positive.
Note that we have restricted the diffusion tensor that multiplies the current to be

diagonal. This restriction means that the turbulent diffusion does not mix x and y com-
ponents of the mean magnetic field. Such kind of ‘cross-talk’ is absent in dynamo
models with short-correlated random velocity fields (Molchanov et al., 1985), although
it may exist in other models (Rädler’s �� J-effect is an example; see Krause and
Rädler, 1980). We note that our estimates for the �-tensor are not significantly modified
when the diffusion tensor is restricted to be diagonal.
Comparing the results of Sections 3 and 4.1–4.4, several similar aspects can be recov-

ered in each case. Firstly, �yy is negative in the upper hemisphere (or disc plane) and its
magnitude, in natural units, is around 10	3 at z � H (see Figs. 5 and 7) or at small wave
numbers (k ¼ k1), i.e. at large scales (see Figs. 9 and 11). Secondly, the turbulent
magnetic diffusivity in the streamwise direction ( y) is such that the corresponding
mean-field dynamo is marginally excited. The turbulent magnetic diffusivity in the
cross-stream direction (x) is however much smaller than in the streamwise direction
(cf. the two panels in Fig. 8). This is again reflected in the nonlocal approach (cf. the
two panels in Fig. 12), but here the diffusion coefficient of Bx is more noisy and, at
the minimum wavenumber k0, the diffusion coefficient of Bx becomes comparable
to that of By, but it stays at least positive. We regard similarities in the results of the
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various approaches as an indication of their robustness (e.g., the values of �yy and ��xx).
On the other hand, dissimilarities and noisy results, as well as large error bars, indicate
that results are not reliable (e.g. ��yy and �̂�

�
yy). Positivity of the diffusion coefficients is an

additional criterion for reliability.
We should stress that we expect realistic transport coefficients to show both height

dependence as well as scale dependence. In addition, the �-effect is a dynamical one
that satisfies an explicitly time-dependent equation (Rogachevskii and Kleeorin,
2001). It is however rather difficult to determine all these aspects simultaneously,
which is why we have looked at each of them separately. Indeed, our goal is therefore
not to distinguish between the various approaches, but rather to present a first assess-
ment of the presence of each of these effects (height dependence, scale dependence), all
of which should be present simultaneously.
We stress that our final model is based on very noisy fits for �yy. We feel that it is

important to acknowledge the reality and physical significance of unsteady and
random transport coefficients and to investigate models with stochastic alpha. Note
also that there are some models showing the possibility of the generation of large
scale magnetic patterns in a flow with a random (incoherent) �-effect (Vishniac and
Brandenburg, 1997). However, in order to reproduce the butterfly (space–time)
diagram obtained from the three-dimensional simulations a coherent (non-noisy)
�-effect must still be present. The present results suggest that the simulations are repro-
duced with a coherent �-effect that is only about 10% of the incoherent �-effect in parts
of the domain.
The idea that only the smallest wavenumbers contribute to the transport coefficients

may well prove to be a reasonable representation for astrophysical dynamos. Already
now there is some evidence for this proposal: so far only models that include the
lowest wavenumber are able to reproduce stellar cycle frequencies that decrease
sufficiently rapidly with increasing rotational frequency (Brandenburg et al., 1998).
By contrast, models with transport coefficients that are independent of wavenumber
(Tobias, 1998) show that the cycle frequency decreases too slowly with increasing
rotational frequency.
Although the present work was motivated by astrophysical and geophysical applica-

tions, the analysis presented here may just as well apply to homogeneous dynamos in the
laboratory such as the Karlsruhe experiment (Stieglitz and Müller, 2001). The results
from these experiments can now accurately be tested against simulations (Tilgner,
2000) and mean-field theory (Rädler et al., 1998). Due to the presence of boundaries,
however, the � and � tensors have to be replaced by integral kernels (Stefani et al.,
2000). One may therefore, expect that the approach explored in the present article to
determine integral kernels for the � and � tensors will soon gain in importance.
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Rüdiger, G. ‘‘The influence of a uniform magnetic field of arbitrary strength on turbulence’’, Astron. Nachr.

295, 275–284 (1974).
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