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Abstract

The usefulness of high-order schemes in astrophysical MHD turbulence simulations is discussed. Simple advection tests of
hat profiles are used to compare schemes of different order. Higher order schemes generally need less explicit diffusion. In
the case of a standing Burgers shock it is shown that the overall accuracy improves as the order of the scheme is increased.
A memory efficient 3-step 2N-RK scheme is used. For cache efficiency, the entire set of equations is solved along pencils in the
yz-plane. The advantage of solving for the magnetic vector potential is highlighted. Finally, results from a simulation of helical
turbulence exhibiting large scale dynamo action are discussed. 2002 Elsevier Science B.V. All rights reserved.

1. Introduction

Hydromagnetic processes play an important role
in many astrophysical systems (e.g., stars, galaxies,
accretion discs). This is because the medium is hot
enough to be partially or fully ionized. Because of the
huge scales involved the medium is usually turbulent,
provided there is an instability (shear, convection) fa-
cilitating the cascading of energy down to small scales.

In turbulence research it has been a long standing
tradition to solve the hydrodynamic equations using
spectral schemes which have the lowest possible
discretization error. Spectral schemes are particularly
useful for incompressible problems where one needs
to solve a Poisson-type equation for the pressure.
However, spectral schemes are no longer optimal in
many astrophysical circumstances where flows are
generally compressible. Lower order spatial derivative
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schemes are generally unacceptable in view of their
low overall accuracy, even when schemes are used
where mass, momentum, and energy are conserved
to machine accuracy. On massively parallel machines,
on the other hand, spectral schemes are difficult to
run efficiently. High order finite difference schemes
are therefore a useful compromise. Such schemes can
yield almost spectral-like accuracy.

Our code uses centered finite differences which
make the adaptation to other problems simple. Since
the code is not written in conservative form, conser-
vation of mass, energy and momentum can be used
to monitor the quality of the solution. A third order
Runge–Kutta scheme with 2N storage [1] is used for
calculating the time advance.

2. Advantages of high-order schemes

Spectral methods are commonly used in almost
all studies of ordinary (usually incompressible) tur-
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bulence. The use of this method is justified mainly
by the high numerical accuracy of spectral schemes.
Alternatively, one may use high-order finite differ-
ences that are faster to compute and that can pos-
sess almost spectral accuracy. In astrophysics, high-
order compact finite differences [2] have been used to
model stellar convection [3,4] and shear flows in ac-
cretion discs [5]. In contrast to explicit finite differ-
ences, compact finite differences [2] have a smaller
coefficient in the leading error, even if both schemes
are of the same order. However, compact schemes are
still nonlocal in the sense that each point affects every
other point, which enhances communication. This is
the main reason why we adoptexplicit centered finite
differences.

In this section we demonstrate, using simple test
problems, some of the advantages of high-order
schemes. The explicit formulae for first and second
derivatives are

f ′
i = (−fi−3 + 9fi−2 − 45fi−1

+ 45fi+1 − 9fi+2 + fi+3
)
/(60δx), (1)

f ′′
i = (

2fi−3 − 27fi−2 + 270fi−1 − 490fi

+ 270fi+1 − 27fi+2 + 2fi+3
)
/(180δx2). (2)

Full details of these schemes, including formulae for
the boundaries, can be found in Ref. [6]. This scheme
was also used in recent applications to the problem
of resistively limited growth in models of stellar
dynamos; see Ref. [7].

It is commonly believed that high-order schemes
lead to Gibbs phenomena and that more viscosity is
needed to damp them out. In fact, the opposite is true
as is demonstrated in Fig. 1 for advection tests and in
Fig. 2 for the stationary Burgers shock.

For the time stepping high-order schemes are nec-
essary in order to reduce the amplitude error of the
scheme and to allow longer time steps. Usually such
schemes require large amounts of memory. However,
there are the memory-effective 2N -schemes that re-
quire only two sets of variables to be held in mem-
ory. Such schemes work for arbitrarily high order, al-
though not all Runge–Kutta schemes can be written as
2N -schemes [1,8]. These schemes work iteratively ac-
cording to the formula

wi = αiwi−1 + δt F (ti−1, ui−1), (3)

ui = ui−1 + βiwi . (4)

For a three-step scheme we havei = 1, . . . ,3. In order
to advance the variableu from u(n) at time t(n) to
u(n+1) at timet(n+1) = t(n) + δh we set in Eq. (4)

u0 = u(n) and u(n+1) = u3, (5)

with u1 andu2 being intermediate steps. In order to
be able to calculate the first step,i = 1, for which
no wi−1 ≡ w0 exists, we have to requireα1 = 0.
Thus, we are left with 5 unknowns,α2, α3, β1,
β2, and β3. Three conditions follow from the fact
that the scheme be third order, so we have to have
two more conditions. One possibility is to choose
the fractional times at which the right hand side is
evaluated, for example (0, 1/3, 2/3) or even (0, 1/2,
1). In the latter case the right hand side is evaluated
twice at the same time. It is therefore some sort of
predictor-corrector scheme. Yet another possibility is

Fig. 1. Advection tests with schemes of different spatial order.
Resulting profile after advecting a step-like function 5 times through
the periodic mesh. The dots on the solid line give the location of
the function values at the computed meshpoints and the dotted line
gives the original profile. For the panels on the right hand side the
diffusion coefficient is too small and the profile shows noticeable
wiggles.δx = 1/60.
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Fig. 2. Burgers shock with schemes of different spatial order and
different values of the viscosity. The solid lines give the analytic
solution. A second order scheme (top row) requires a viscosity of at
least 0.8uδx, whereu is the amplitude of the shock andδx the mesh
spacing. For a sixth-order scheme, a viscosity of 0.6uδx yields good
results, and for a tenth-order scheme a viscosity of 0.5uδx can be
used.

Table 1
Possible coefficients for different 2N -RK3 schemes

Label α2 α3 β1 β2 β3

symmetric −2/3 −1 1/3 1 1/2
predictor/corrector −1/4 −4/3 1/2 2/3 1/2
inhomogeneous −17/32 −32/27 1/4 8/9 3/4
Williamson (1980) −5/9 −153/128 1/3 15/16 8/15

to require that inhomogeneous equations of the form
u̇ = tn with n = 1 and 2 are solved exactly. The
corresponding coefficients are listed in Table 1 and
compared with those given by Williamson [1]. In
practice all of them are about equally good when it
comes to real applications, although we found the first
one in Table 1 (‘symmetric’) marginally better in some
simple test problems where an analytic solution was
known.

3. Implementing magnetic fields

Implementing magnetic fields is relatively straight-
forward. On the one hand, the magnetic field causes
a Lorentz force,J × B, whereB is the flux density,
J = ∇×B/µ0 is the current density, andµ0 is the vac-
uum permeability. On the other hand,B itself evolves
according to the Faraday equation,

∂B
∂t

= −∇ × E, (6)

where the electric fieldE can be expressed in terms
of J using Ohm’s law in the laboratory frame,E =
−u × B + J/σ , whereσ = (ηµ0)

−1 is the electric
conductivity andη is the magnetic diffusivity.

In addition we have to satisfy the condition∇ · B =
0. This is most easily done by solving not forB, but
instead for the magnetic vector potentialA, where
B = ∇ × A. The evolution ofA is governed by the
uncurled form of Eq. (6),

∂A
∂t

= −E − ∇φ, (7)

where φ is the electrostatic potential, which takes
the role of an integration constant which does not
affect the evolution ofB. The choiceφ = 0 is most
advantageous on numerical grounds. (By contrast, the
Coulomb gauge∇ · A = 0, which is very popular
in analytic considerations, would obviously be of no
advantage, since one still has the problem of solving
the solenoidality condition.)

Solving for A instead ofB has significant advan-
tages, even though this involves taking another deriva-
tive. However, the total number of derivatives taken in
the code is essentially the same. In fact, when centered
finite differences are employed, Alfvén waves are bet-
ter resolved whenA is used, because then the system
of equations for one-dimensional Alfvén waves in the
presence of a uniformBx0 field in a medium of con-
stant densityρ0 is reduced to

u̇z = (µ0ρ0)
−1Bx0A

′′
y, Ȧy = Bx0uz, (8)

where a second derivative is taken only once (primes
denotex-derivatives). If, instead, one solves for theBz
field, one has

u̇z = (µ0ρ0)
−1Bx0B

′
z, Ḃz = Bx0u

′
z, (9)

where a first derivative is applied twice, which is
far less accurate at small scales if a centered finite
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difference scheme is used. At the Nyquist frequency,
for example, the first derivative is zero and applying an
additional first derivative gives still zero. By contrast,
taking a second derivative once gives of course not
zero. The use of a staggered mesh would circumvent
this difficulty. However, such an approach introduces
additional complications which hamper the ease with
which the code can be adapted to new problems.

Another advantage of usingA is that it is straight-
forward to evaluate the magnetic helicity,〈A · B〉,
which is a particularly important quantity to monitor in
connection with dynamo and reconnection problems.

The main advantage of solving forA is of course
that one does not need to worry about the solenoidality
of the B-field, even though one may want to employ
irregular meshes or complicated boundary conditions.

4. Cache-efficient coding

Unlike the CRAY computers that dominated su-
percomputing in the 80s and early 90s, all modern
computers have a cache that constitutes a significant
bottleneck for many codes. This is the case if large
three-dimensional arrays are constantly used within
each time step. The advantage of this way of cod-
ing is clearly the conceptual simplicity of the code.
A more cache-efficient way of coding is to calcu-
late an entire time step (or a corresponding substep
in a three-stage 2N Runge–Kutta scheme) only along
a one-dimensional pencil of data within the box. On
Linux and Irix architectures, for example, this leads to
a speed-up by 60%. An additional advantage is a dras-
tic reduction in temporary storage that is needed for
auxiliary variables within each time step.

5. Large scale fields from helical turbulence

Many astrophysical flows are affected by rotation
and gravitational stratification. These two effects can
make the flows helical. In the sun, for example, the
kinetic helicity of the flow is negative in the northern
hemisphere and positive in the southern. It has long
been known that this can lead to the production of
large scale magnetic fields [9].

Recent simulations of helically forced turbulence
have shown that large scale fields are indeed pro-

Fig. 3. Visualization of the magnetic field in a three-dimensional
simulation of helically forced turbulence. The turbulent magnetic
field is modulated by a slowly varying component that is force-free.

duced [10]. These large scale fields are approximately
force-free and of Beltrami type; see Fig. 3. The pro-
totype of a Beltrami field isB ∝ (cosz,sinz,0), and
it is easy to see that for this fieldJ × B = 0, where
J = ∇ × B/µ0 is the current density.

At large scales, force-free Beltrami fields are only
possible in a periodic box, as considered in Ref. [10].
When the box is non-periodic, the large scale field can
still be ‘nearly periodic’. In simulations with so-called
‘pseudo-vacuum’ boundary conditions, for example, a
large scale field of the form

B = (
cos1

2z,sin 1
2z,0

)
cos1

2z (10)

appeared; see Ref. [7]. We now consider the case
of perfectly conducting boundaries. Unlike the case
of pseudo-vacuum boundary conditions, where the
energy of the large scale field was somewhat below the
kinetic energy, with perfectly conducting boundaries
the energy of the large scale field can strongly exceed
the kinetic energy of the turbulence; see Fig. 4.

The resulting super-equipartition of large scale
magnetic energy is primarily a consequence of the fact
that the large scale field is force-free and does not act
back on the flow. Force-free fields are generally helical
and have to obey the equation of magnetic helicity
conservation,

d〈A · B〉/dt = −2ηµ0〈J · B〉. (11)

The precise saturation level is obtained from the fact
that in the steady state the magnetic helicity,〈A ·B〉, is
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Fig. 4. Evolution of magnetic and kinetic energies,EM andEK,
respectively, in a simulation with perfectly conducting boundaries.

constant. This implies that the current helicity,〈J · B〉,
vanishes. Now, splitting the field into large and small
scale components,B = B + b, we have〈J · B〉 =
−〈j · b〉. Assuming that the fields are fully helical at
small and large scales, we haveµ0〈J · B〉 = ∓k1〈B2〉
andµ0〈j ·b〉 = ±kf〈b2〉, wherek1 is the smallest wave
number in the box andkf is the wave number of the
forcing. (Upper/lower signs apply to positive/negative
signs of the helicity of the forcing function.) Due to
non-periodic boundary condition, however, the large
scale field cannot be completely force-free. Therefore,
we allow for an efficiency factorεLS< 1 for the large
scales (LS). Thus, the final balance equation is

εLSk1〈B2〉 = kf〈b2〉, (12)

i.e. the energy of the large scale field exceeds that
of the small scale field by a factorε−1

LS kf/k1. This is
consistent with Fig. 4. Note, for comparison, that for
fully periodic boxes,εLS = 1 and therefore the factor
of superequipartion is onlykf/k1.

The reason why the magnetic energy saturates in
stages is connected with the occurrence of different
patterns of the large scale field: at early times the large
scale field is dominated by a pattern with a relatively
large wave number in one of the two horizontal
directions (the boundaries are in the vertical direction).

Initially, the large scale field has 8 nodal planes, but
then it is reduced to 4 and finally to 2 nodal planes.

Finally, it should be emphasized that we have dis-
cussed here only the details of the saturation behavior.
However, when the field is weak the magnetic field
grows always exponentially on a dynamical time scale
(usually over many orders of magnitude), and is inde-
pendent of magnetic helicity conservation.

6. Conclusions

The use of high-order schemes proved to be a useful
compromise between the cheap, but less accurate low-
order methods and the computationally more expen-
sive spectral schemes. Explicit meshpoint schemes can
readily be implemented on massively parallel archi-
tectures using High Performance Fortran (HPF) or the
Message Passing Interface (MPI). The 2N -schemes of
Williamson [1] are ideal for reducing the amount of
storage while still allowing the temporal order of the
scheme to be high.
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