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Abstract. We present numerical simulations of three-dimensional compressible magnetoconvection in a rotating
rectangular box that represents a section of the solar convection zone. The box contains a convectively unstable
layer, surrounded by stably stratified layers with overshooting convection. The magnetic Reynolds number, Rm,
is chosen subcritical, thus excluding spontaneous growth of the magnetic field through dynamo action, and the
magnetic energy is maintained by introducing a constant magnetic field into the box, once convection has attained
a statistically stationary state. Under the influence of the Coriolis force, the advection of the magnetic field results
in a non-vanishing contribution to the mean electric field, given by 〈u× b〉. From this electric field, we calculate
the α-effect, separately for the stably and the unstably stratified layers, by averaging over time and over suitably
defined volumes. From the variation of α we derive an error estimate, and the dependence of α on rotation and
magnetic field strength is studied. Evidence is found for rotational quenching of the vertical α effect, and for a
monotonic increase of the horizontal α effect with increasing rotation. For Rm ≈ 30, our results for both vertical
and horizontal α effect are consistent with magnetic quenching by a factor [1 + Rm (B0/Beq)2]−1. The signs of
the small-scale current helicity and of the vertical component of α are found to be opposite to those for isotropic
turbulence.
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1. Introduction

Magnetic fields are observed on a wide variety of cosmi-
cal bodies, among which are planets, stars and galaxies.
With the exception of a few types of objects whose mag-
netic fields are thought to be frozen-in relic fields, cosmical
magnetic fields are attributed to dynamo action. Dynamo
theory concerns the generation of magnetic fields in elec-
trically conducting fluids. In stars and planets, dynamo
action is the result of an interplay between convection
and rotation. The present simulations focus on dynamo
action in late-type stars, which are characterized by an
outer convective zone on top of a stably stratified radia-
tive interior. Many late-type stars are magnetically active,
and some exhibit magnetic cycles, as does the Sun.

A successful solar model was first proposed by Parker
(1955) who recognized that shear and helicity cooper-
ate in such a way that the mean magnetic field oscil-
lates in a migratory manner; later Yoshimura (1975) has
shown that the field generally propagates along the sur-
faces of constant angular velocity. Since then, magnetic

Send offprint requests to: M. Stix,
e-mail: stix@kis.uni-freiburg.de

cycles and butterfly diagrams have been produced by
mean-field models using spherical geometry (Steenbeck &
Krause 1969), with depth-dependent magnetic diffusivity
(Roberts & Stix 1972), and with the character of an in-
terface wave at the base of the convection zone (Parker
1993; Charbonneau & MacGregor 1997). As an alternative
to the helical effect of convection (the α effect), the sys-
tematic tilt of flux tubes that become unstable and erupt
to the solar surface has been employed as a regenerative
agent for the mean poloidal field (Leighton 1969; Durney
1995, 1997; Schmitt et al. 1996; Dikpati & Charbonneau
1999), with equal success regarding the existence of Sun-
like cycles and butterfly diagrams. In all cases, however,
the regenerative terms in the mean-field equations were
based either on approximations such as first-order smooth-
ing, or on the limited available knowledge about the be-
havior of magnetic flux tubes in the convection zone; the
review of Stix (2001) summarizes some of the current
problems.

In principle, the problem can be attacked by direct nu-
merical integration of the equations of magnetohydrody-
namics (MHD) for the star’s convection zone (for a review,
see e.g. Nordlund et al. 1994). But severe problems are



714 M. Ossendrijver et al.: α effect: dependence on rotation and magnetic field

encountered. Firstly, a stellar convection zone is a highly
turbulent plasma (Re > 1012), so that the kinetic energy
spectrum encompasses a very wide range of length scales.
If these were all to be resolved, a prohibitive number of
mesh points would be required. Secondly, since the mag-
netic Reynolds number is also large (Rm > 108), a similar
argument holds for the length scales of the magnetic field.
For these reasons three-dimensional MHD simulations of-
ten have been restricted to a rectangular box that rep-
resents only a small section of a stellar convection zone.
In the present work we do this, too. Thirdly, the Prandtl
number, the ratio of the kinematic viscosity to the radia-
tive diffusivity, is very small in the solar convection zone
(Pr ≈ 10−4−10−7), so that the flow can vary on much
smaller scales than the temperature. This is known to have
consequences for the topology and temporal behavior of
convective turbulence (Cattaneo et al. 1991; Brandenburg
et al. 1996; Brummell et al. 1996), but in the present sim-
ulations, we ignore such effects, and set Pr = 1. Fourthly,
the Mach number, Ma = u/cs, decreases with depth in the
solar convection zone from about 0.1 in the photosphere
to less than 0.001 near the base. The corresponding high
sound speed in the lower convection zone necessitates the
use of very small time steps in order to fulfill the CFL
condition for compressible hydrodynamics (∆t < ∆x/cs),
while it is often desirable to continue simulations for at
least several convective turnover times. One possibility to
circumvent this problem is to adopt the anelastic approx-
imation whereby sound waves are excluded, so that larger
time steps can be used (Ogura & Charney 1962; Lantz &
Fan 1999). Here we maintain full compressibility, and at-
tain a mean Mach number of the order 0.1; in a subsequent
paper we shall study effects of a smaller Mach number.

Brandenburg et al. (1990) extended a 3D hydrodynam-
ical code to the case of magnetoconvection, including the
effect of rotation. Subsequently, a spontaneous dynamo
instability was observed in the simulations (Nordlund
et al. 1992; Brandenburg et al. 1996). Recent simulations
of isotropically forced helical turbulence (Brandenburg
2001) have verified the existence of large scale dynamo
action, and it was possible to identify this as the re-
sult of an α effect (in the sense of a non-local inverse
cascade). However, the large scale field generated pos-
sesses magnetic helicity and, since for closed or periodic
boundaries the magnetic helicity can change only resis-
tively, the growth of the large scale field is slowed down
as the magnetic Reynolds number increases. This trans-
lates inevitably to a magnetic-Reynolds-number depen-
dent α effect and turbulent magnetic diffusivity, as sug-
gested by Vainshtein & Cattaneo (1992). The argument of
Vainshtein & Cattaneo is however only phenomenological,
not based upon the fundamental concept of magnetic he-
licity conservation, and hence their conclusion that strong
large-scale fields are impossible is not borne out by the
simulations of Brandenburg (2001). Furthermore, in that
paper it was shown that the α obtained by imposing a
magnetic field is indeed a reasonable approximation to
the α that results naturally even if no field is imposed.

In the present simulations we do not calculate box dy-
namos, but rather concentrate on the dynamo coefficients
that occur in mean-field theory. Therefore, all simulations
are performed with an imposed magnetic field, and the
magnetic Reynolds number is chosen subcritical, so that
the magnetic field is not self-sustained. We think that
progress in stellar dynamo theory can be made through
a combination of exact MHD simulation and mean-field
dynamo theory. Furthermore, the existence of systematic,
large-scale magnetic fields and stellar cycles with peri-
ods far in excess of convective time scales suggests that
a mean-field description is possible in some form. Also, we
argue that mean-field theory (in the wide sense that in-
cludes the above-mentioned models such as Leighton’s) is
the only current model that reproduces large-scale mag-
netic fields and cycles, including such an outstanding fea-
ture as the solar butterfly diagram, even though the di-
verse approximations made for calculating the dynamo co-
efficients may not be valid under stellar conditions. The
case of self-excited dynamo action would of course be
very interesting too, especially in view of the question of
whether α-quenching depends on the magnetic Reynolds
number, as suggested by Vainshtein & Cattaneo (1992).
However, we postpone this until a later study, partly be-
cause the measurement of the dynamo coefficients in the
presence of a large-scale field that is different from the
imposed one is less straightforward.

The present investigation is limited to the regime
where the coefficients are determined directly by the flow,
and we do not address the question of whether the large-
scale magnetic field of late-type stars is in fact generated
by such an ordinary α effect in the convection zone, or
by a magnetic instability in an underlying stably strat-
ified layer (e.g., Brandenburg & Schmitt 1998). We do
include a stably stratified layer with overshooting convec-
tion, but its main purpose here is to provide realistic con-
ditions for the flow in the unstable region. In most runs,
the strength of the imposed field is set to a value which
amounts to typically 2% of the equipartition field with re-
spect to the kinetic energy density. During the subsequent
evolution the field strength also remains small compared
to the equipartition value. Furthermore we shall explore
the influence of the imposed magnetic field by increas-
ing its strength up to values somewhat in excess of the
equipartition value. Therefore the results may have rele-
vance for the solar convection zone, where the magnetic
field is no stronger than the equipartition value. The α ef-
fect produced in the galactic gas by supernova explosions
has been calculated by Ziegler et al. (1996), in a similar
spirit as in the present work.

The relevance of the transport coefficients for mean-
field dynamo theory becomes clear from the equation for
the mean magnetic field,

∂〈B〉
∂t

= ∇×
[
〈U〉×〈B〉+ 〈u×b〉 − η∇×〈B〉

]
, (1)

where 〈B〉 is the mean magnetic field, 〈U〉 is the mean
flow, u = U − 〈U〉 is the fluctuating component of the
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flow, and 〈u × b〉 is a contribution to the mean elec-
tric field, sometimes referred to as the electromotive force.
The dynamo coefficients appear in an expansion of this
mean electric field in terms of spatial derivatives of the
mean magnetic field. In general they can be represented
as kernels of an integral equation (Brandenburg & Sokoloff
2001). In the simplest case, the coefficients are treated as
local tensors, which leads to

〈u× b〉i = αij〈Bj〉+ βijk∇j〈Bk〉+ · · · . (2)

The first term in the expansion is the α effect. The alpha
tensor is a pseudo tensor that exists only in non mirror-
symmetric flows, as they occur in stellar convection. For
the solar dynamo, the main significance of the α effect lies
in generating the poloidal mean magnetic field, which is
achieved predominantly by αφφ. Toroidal fields are gener-
ated by the strong differential rotation that exists in the
tachocline near the base of the solar convection zone. In
other solar-type stars and fully convective stars though,
differential rotation could be weak (Küker & Stix 2001),
so that the dynamo becomes of the α2-type. In that case,
other components of the alpha tensor, such as αrr, are
important for maintaining the toroidal magnetic field.

The remainder of the paper is structured as follows.
After introducing the model and the equations, we focus
on the dependence of α on rotation. In the following sec-
tion, effects of the strength and orientation of the imposed
field are studied. In the final section, a discussion of the
results is presented.

2. The model

The model used in the simulations is the same as that of
Brandenburg et al. (1996). The simulation domain con-
sists of a rectangular box which is defined on a Cartesian
grid, with x and y denoting the two horizontal coordinates
(corresponding to latitude and longitude in spherical co-
ordinates), and z denoting depth, respectively (Fig. 1). In
most cases, convectively stable layers are included below
and above the unstable layer. The upper layer (region 1) is
stabilized by a cooling term in the energy equation, which
leads to an almost isothermal, highly stable stratification.
The lower stable layer (region 3) represents an overshoot
zone, whose thickness is chosen such that overshooting
plumes do not reach the lower impenetrable boundary.
The box rotates about an axis Ω, that makes an angle θ
with the z-axis. Hence θ = 0 corresponds to a situation
where the box is located at the south pole of the Sun. In
the present paper we treat only this special case.

The governing equations are those describing magnetic
induction, mass continuity, and the balance of momentum
and energy:

∂B

∂t
= ∇×(U×B) + η∇2B, (3)

dρ
dt

= −ρ∇·U , (4)

ρ
dU
dt

= −∇p+ ρg + J×B − 2ρΩ×U + 2ν∇·ρS, (5)
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Fig. 1. Geometry of the simulation domain. The layer bound-
aries are at z1 = −0.15, z2 = 0, z3 = 1, and z4 = 2.85, except
for run 10 that has no stable regions, so that z1 = z2 = 0 and
z3 = z4 = 1. The horizontal extent is 4.

ρ
de
dt

= −p∇·U +∇·κ∇e+ 2νρS2 + µ0ηJ
2 +Q, (6)

where J = ∇×B/µ0 is the current density, η is the mag-
netic diffusivity, ν is the kinematic viscosity, γ = Cp/CV
is the adiabatic index, and κ is the radiative conductiv-
ity. In all simulations, η and ν are taken constant, and κ
is a prescribed function of depth. The stress tensor S is
given by

Sij =
1
2

(
∂Ui
∂xj

+
∂Uj
∂xi

)
− 1

3
δij∇·U , (7)

and S2 stands for
∑
ij S2

ij . The equation of state is that of
an ideal gas, i.e.,

p = (γ − 1)ρe. (8)

The term Q, given by

Q = −σ0f(z) (e− e1) , (9)

represents cooling or heating, depending on whether the
internal energy density exceeds e1 or falls below it, respec-
tively; σ0 represents the cooling/heating rate. The depth-
dependent function f ensures that Q is non-vanishing only
in region 1, and f(z2) = 0. The inclusion of this term leads
to the presence of a highly stable, thin overshoot layer,
thereby providing a realistic upper boundary condition for
the convection zone. In the horizontal directions, periodic
boundary conditions are imposed. The upper and lower
boundaries of the domain are impenetrable and stress-free,
and the horizontal components of the magnetic field vari-
ation are set to zero. At the lower boundary, the energy
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flux is prescribed, and at the top boundary the internal
energy (which is proportional to the temperature) is fixed.

z = z1, z4


∂ux
∂z

=
∂uy
∂z

= uz = 0 ,

Bx = B0x ,

By = B0y ,

z = z1 e = e1 ,

z = z4
de
dz

=
(de

dz

)
4
·

(10)

In the actual runs we set B0y = 0; B0x is either 0 or the
imposed horizontal field.

All quantities are made dimensionless by setting

d = ρ0 = g = µ0 = Cp = 1 , (11)

where ρ0 is the initial density at a depth z = z3, the
bottom of the unstable layer. Thus length is expressed in
terms of d = z3 − z2, the thickness of the convectively
unstable zone (region 2). It follows that time is measured
in terms of

√
d/g, velocity in terms of

√
gd, the magnetic

field strength in terms of
√
µ0ρ0gd, and entropy in terms

of Cp.
On several occasions we shall consider the energy bal-

ance, which is governed by a conservation law,

∂(ρetot)
∂t

= −
∑
i

∇·F i +Q , (12)

where etot = e + |u|2/2 + |B|2/2µ0ρ is the total specific
energy, and the fluxes, F i, are given by

F conv = γρeu, (13)
F kin = ρ|u|2u/2, (14)
F rad = −κ∇e , (15)
F visc = −2νρ S : u, (16)
F em = E×B/µ0. (17)

Apart from the geometry, boundary conditions, and ini-
tial conditions, solutions are governed by the following 10
independent dimensionless parameters. The Prandtl num-
ber and the magnetic Prandtl number are defined as

Pr = ν/χ0 , Pm = ν/η, (18)

where χ0 = κ2/γρ0 denotes a reference value of the ther-
mometric (radiative) diffusivity for region 2. The param-
eter ξ0 determines the pressure scale height at the top of
the box, ξ0 = Hp(z1)/d:

ξ0 = (γ − 1) e1/gd. (19)

The initial thermal structure of the (maximally) three re-
gions is characterized by the radiative temperature gradi-
ents,

∇i =
(d lnT

d ln p

)
i

(i = 1, 2, 3) . (20)

In addition, one often employs the polytropic index, m =
(1 − ∇)/∇. The adiabatic temperature gradient is given
by ∇ad = (γ − 1)/γ. A measure for instability is provided
by the superadiabaticity, δi = ∇i−∇ad, which is positive
in an unstably stratified medium. The Rayleigh number
is defined as

Ra =
d4gδ2
νχ0Hph

, (21)

where Hph = ξ0d + 0.5d/(m2 + 1) is the pressure scale
height in the middle of the unstable layer, as can be shown
using the hydrostatic equilibrium (25). The parameters δ2

and Hph refer to the unperturbed stratification, i.e. that
before the onset of convection. The Rayleigh number is a
measure of the strength of convection compared to that
of viscous and thermal (radiative) dissipation, as can be
seen by writing Ra = tvisctrad/t

2
conv, where tvisc = d2/ν,

trad = d2/χ0, and t2conv = Hph/gδ2. Alternatively, one
may express Ra in terms of the entropy gradient, ds/dz =
Cp δ/Hp. According to the Schwarzschild criterion, a posi-
tive value for δ, i.e. Ra > 0, signifies instability. In reality,
Ra must exceed a finite threshold value for convection
to set in. It should be noted that the local value of the
Rayleigh number, d4gδ/(νχHp), varies with depth within
the unstable layer, because χ, Hp and, as a result of con-
vection also δ, are z-dependent. Typically, the local value
is several times smaller than Ra, mainly because δ can be
strongly reduced by convection. The Taylor number,

Ta = (2Ωd2/ν)2, (22)

measures the importance of rotation relative to viscous
dissipation. Finally, σ0 represents the rate at which inter-
nal energy is lost from the upper stable layer, and θ is the
angle between the rotation vector and the z-axis.

All other parameters are secondary. The Coriolis num-
ber, or inverse Rossby number, measures the importance
of the Coriolis force and is defined as

Co = 2Ωτ, (23)

where τ = `/urms is the turnover time. The correlation
length, `, is taken to be d in the unstable region. The
Chandrasekhar number,

Ch =
µ0B

2
0d

2

4πρ0νη
, (24)

measures the strength of the imposed magnetic field. In
the initial state, the z-component of the radiative en-
ergy flux, Frad,z = −κde/dz, is assumed to be constant
throughout the domain. This determines the radiative
conductivities in the three regions according to κi/κ2 =
(mi + 1)/(m2 + 1). In fact, κ is turned into a smooth
function of depth by allowing it to change continuously
across thin intermediate layers between the three regions.
An approximate initial stratification, unperturbed by con-
vection, is calculated on the assumption of hydrostatic
equilibrium, and this is done iteratively until the condi-
tion ρ(z = z3) = ρ0 is satisfied. It is also assumed that
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region 1 is cooled efficiently enough to become isothermal.
The result is then basically a smoothed version of

e =



e(z1)
[
1 +

z − z1

(m1 + 1)Hp(z1)

]
(i),

e(z2)
[
1 +

z − z2

(m2 + 1)Hp(z2)

]
(ii),

e(z3)
[
1 +

z − z3

(m3 + 1)Hp(z3)

]
(iii),

(25)

ρ =



ρ(z1)
[
1 +

z − z1

(m1 + 1)Hp(z1)

]m1

(i),

ρ(z2)
[
1 +

z − z2

(m2 + 1)Hp(z2)

]m2

(ii),

ρ(z3)
[
1 +

z − z3

(m3 + 1)Hp(z3)

]m3

(iii),

(26)

where (i) · · · (iii) stand for the three regions, z1 ≤ z < z2,
z2 ≤ z < z3, and z3 ≤ z ≤ z4, respectively. The ac-
tual initial stratification in region 2 is calculated nu-
merically using the mixing-length formalism of convec-
tion. The advantage of this approach is that it reduces
the amount of time required for relaxation to a fully
convective state. The internal energy density at the top
equals e1 = ξ0madgd. Using (25), it is easily shown
that (de/dz)4 = madg/(m3 + 1). The radiative, kinetic
and magnetic diffusivities follow from Eqs. (18) and (21).
Reynolds numbers are defined as

Re = urmsd/ν , Rm = urmsd/η, (27)

where urms is the rms velocity defined in a suitable way
(e.g., by averaging over time and over a partial volume of
the box).

We employ a finite difference scheme, according to
which spatial derivatives are calculated with 6th-order ac-
curacy (Lele 1992). Time-stepping is done using a third-
order Hyman predictor-corrector method. Table 1 gives
a list of the parameters used for a first series of runs in
which the influence of rotation is investigated by varying
the Taylor number.

3. The α effect

Essentially, the α effect amounts to a proportionality be-
tween the mean electromotive force, 〈u×b〉, and the mean
magnetic field. Magnetoconvection in a rotating, stratified
medium provides the necessary anisotropies for a non-zero
α. In the present case, with the rotation axis chosen par-
allel to the direction of gravity, the most elementary, non-
isotropic form of the expression for the α effect is one that
distinguishes vertical and horizontal components:

〈u×b〉 = αV〈Bz〉+ αH〈BH〉· (28)

The components αH = αxx = αyy and αV = αzz cor-
respond to αφφ and αrr in spherical coordinates, respec-
tively. We recall that αφφ plays the dominant role in the

Fig. 2. Averaging procedure (run 6). Top: at each time step,
αV is calculated as a function of depth by averaging over the
horizontal coordinates (grey curves). The thick drawn curve
is the time average, and the surrounding thin drawn curves
indicate the error in the mean. Bottom: αV is calculated sep-
arately for two partial volumes, namely αV,unst for the depth
range −0.15 < z < 1, and αV,stab for the range 1 < z < 1.5.
The error in the time averages is determined on the basis of
the number of coherence times covered by the simulation. All
calculations are for the solar south pole.

generation of the poloidal magnetic field. The two com-
ponents of α are extracted from the simulations by con-
structing αV = 〈u×b〉 ·〈Bz〉/|〈Bz〉|2 and αH = 〈u×b〉 ·
〈BH〉/|〈BH〉|2. In practice, 〈u×b〉 in these expressions is
replaced by 〈U ×B〉, because the difference, 〈U 〉×〈B〉,
was found to be negligible in every case. Depending on
which component of α, i.e. αV or αH, is to be determined,
a magnetic field is imposed in the z-direction or in the
x-direction, respectively.

3.1. Statistics

It is well known from other numerical simulations that
α is an extremely noisy quantity, so that one should do
as much averaging as possible in order to optimize the
statistics.

For this paper we have chosen two averaging proce-
dures. The first, which is considered in the present sec-
tion, consists of an average over the horizontal coordinates
and over time (Fig. 2, upper panel). The time average
is initiated from the moment when the magnetoconvec-
tion has attained a statistically stationary state, i.e. when
the kinetic and magnetic energy densities are more or less
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Table 1. Run parameters. For the geometry, see Fig. 1. The imposed magnetic field is B0 = B0ez, or B0ex, depending on
whether αV or αH is determined. In all runs, the polytropic indices are given by m1 = 0, m2 = 1 and m3 = 3, the mesh size is
503 (except for run 10, where it is 303); B0 = 10−3, Ra = 5 × 104, Pr = Pm = 1 (i.e. Rm = Re), and ξ0 = 0.2. It follows that
ν = 0.00211, and Ch = 0.018. The parameters Ma, Re and Co are averages over time and over the unstable layer; T is the time
interval over which the averaging is performed.

run 1 2 3 4 5 6 7 8 9 10

Ta 2 10 30 100 300 2000 10 000 20 000 50 000 10 000
T (αV) 206 822 206 841 698 545 940 362 376 554
T (αH) – – – 564 564 456 508 346 290 521

Ma 0.089 0.088 0.088 0.084 0.091 0.089 0.080 0.070 0.056 0.10
Re 34 34 34 34 35 34 30 30 20 38
Co 0.042 0.093 0.16 0.30 0.50 1.3 3.3 5.4 11 2.6

constant. The second is an additional average over two
suitably chosen depth ranges (Fig. 2, lower panel): since
the α effect depends on depth, and is expected to change
sign near the bottom of the unstable layer, the averaging
over depth is performed separately for the unstably and
the stably stratified layers. This second procedure will be
used mainly in later sections.

The statistical deviation of α from its mean value gen-
erally is large, often larger than the difference between
that mean and zero, as illustrated in Fig. 3. Therefore,
extended simulations are necessary in order to obtain a
significant result. In the present paper the error estimate
is based on the assumption that a single simulation can be
divided into a number of time intervals containing inde-
pendent realizations of the small-scale flow and magnetic
field. The length τ of those time intervals should then ex-
ceed the correlation time, which is ≈20 (in dimensionless
units), as determined from the width of the autocorrela-
tion function. To be on the safe side, we smoothed curves
of αV,unst(t) and αV,stab(t) for several runs by performing
a box average, and then calculated the autocorrelation
function. This procedure yields a typical coherence time
τ = 50, which is several times longer than the value de-
rived from the unsmoothed curves.

Our procedure of estimating errors is more primitive
than that applied earlier to results of numerical simula-
tions (Pulkkinen et al. 1993). Moreover, the errors of the
mean values determined in this manner can only be crude
estimates because firstly we cannot be sure that we deal
with Gaussian statistics (although inspection of the exam-
ples of Fig. 3 suggests that α varies in a nearly symmet-
ric manner around its mean), and secondly the number
T/τ of time intervals is not very large. Nevertheless we
think that the procedure indicates whether or not the ob-
tained mean values are significantly different form zero.
Test simulations with identical parameters but different
initializations confirm this indication. Of course, the re-
sulting error bars do not imply anything about the phys-
ical assumptions made. In particular, we cannot expect
that models based on different assumptions, such as ours
and that of Rüdiger & Kitchatinov (1993), will yield re-
sults that lie within error bars obtained from statistics

(these bars shrink to zero for T → ∞). In contrast, we
must see whether we can find qualitatively similar or dis-
similar results from different models, especially as none of
the models yet meets the real Sun.

3.2. Relations between α and turbulence properties

The existence of the α effect is attributed to the helical
nature of convective flows in a rotating medium. Figure 3
shows αV, αH and several quantities that, as is shown
below, have a relation to the α effect. Three different runs
are selected in order to demonstrate the effects of rotation
and boundary conditions.

The α coefficients are depth-dependent, and undergo
a sign change within the unstable layer. For Co <∼ 4, the
vertical alpha coefficient exceeds the horizontal coefficient,
and has the opposite sign. If rotation is stronger, the ver-
tical α effect is strongly reduced.

For isotropic turbulence, the first-order smoothing ap-
proximation (FOSA) yields that α can be described by a
single scalar

α ≈ −1
3
τ〈ω ·u〉 , (29)

where τ is the correlation time of the convection, and
〈ω · u〉 is the kinetic helicity (Krause & Rädler 1980).
An alternative representation, valid under the assump-
tion of FOSA, relates α to the current helicity (Keinigs
1983; Rädler & Seehafer 1990; note the extra minus sign
in Keinigs’ definition of α):

α ≈ −η 〈j ·b〉/|〈B〉|2 . (30)

It should be noted that (30) does not reflect the nonlinear
feedback of the Lorentz force on the flow, but is a purely
linear result. If one allows for mild anisotropy in the radial
direction, alpha assumes the form of a tensor, and a de-
tailed calculation (Steenbeck & Krause 1969) reveals that,
for slow rotation (Co� 1), the diagonal term is given by

α ≈ −16
15
τ2u2

rmsΩ·∇ ln (ρurms) . (31)

While conditions under which expressions (29)–(31) hold
are fulfilled neither in the simulations nor in the Sun
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Fig. 3. Row 1 : vertical α effect. Row 2 : horizontal α effect. Row 3 : kinetic helicity. Row 4 : gradients of ln ρ and lnurms, and
their sum (rows 3 and 4 are for a vertical imposed field, but since the field is weak the results in these rows would be the same
for a horizontal field). Row 5 : current helicity for a vertical imposed magnetic field. Left column: run 6 (Ta = 2000). Middle
column: run 7 (Ta = 10 000). Right column: run 10 (Ta = 10 000; no stable layers). In all cases the unstable region is between
z = 0 and z = 1. All calculations are for the solar south pole. Error margins are given for rows 1 and 2 as thin lines enclosing
the mean; those in rows 3–5 would be comparable or narrower, but are omitted in order not to overload the drawings.

(mainly because of the requirements for a short correla-
tion time and only mild anisotropies in the turbulence),
it is still instructive to compare them with the numerical
results.

The kinetic helicity is positive at the top of the convec-
tive layer (Fig. 3, row 3), as is expected for the southern
hemisphere based on the direction of the Coriolis force for
contracting sinking parcels, or expanding rising parcels.

Brummell et al. (1998) find kinetic helicity with the same
sign for a box on the northern hemisphere, but their coor-
dinate system turns out to have a left-handed orientation.
Near the center of the convective layer, the sign of the
kinetic helicity reverses if rotation is sufficiently strong,
because below a certain point sinking parcels expand lat-
erally while approaching the level z = 1 (i.e., the sta-
bly stratified overshoot layer or the impenetrable lower
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boundary if an overshoot layer is absent), while rising
parcels contract while moving away from it. For Co <∼ 2,
no reverse-helicity region seems to exist. Nevertheless, in
these cases alpha still changes its sign near the bottom of
the convective layer. For comparison we have calculated a
case (run 10) with the same Taylor number as in run 7,
but where the stably stratified layers are replaced by im-
penetrable boundaries at z = 0 and z = 1. In this case the
kinetic helicity near the bottom of the unstable layer is
more strongly negative, and has a magnitude comparable
to that in the upper part of the unstable layer (Fig. 3,
row 3, Col. 3). This can be attributed to the fact that an
impenetrable boundary forces a sinking parcel to diverge
more strongly than does a stably stratified layer. Thus,
except for the stable region in some cases, the sign of α
as predicted by Eq. (29) roughly agrees with that of αH,
while it is opposite to that of αV. The deviating sign of
αV was explained by Brandenburg et al. (1990). We note
that the same unconventional sign of αV was also found
by Ferrière (1992), and Rüdiger & Kitchatinov (1993), al-
though not for the same values of the Coriolis parameter
as in our simulations.

The gradient of ln (ρurms) is positive at the top of the
convective layer and changes sign at a point near the bot-
tom of the unstable layer in the runs with an overshoot
layer (Fig. 3, row 4, Cols. 1, 2). Hence the sign of α as pre-
dicted by (31) agrees with that of αH in the simulations,
also if rotation is weak. In this respect, ∇ ln (ρurms) agrees
qualitatively more closely than does the kinetic or the
current helicity. In the upper region, ∇ ln (ρurms) is pos-
itive because the density gradient dominates, while near
the bottom of the unstable domain the influence of the
convective stability is felt, resulting in a reduction of the
turbulent velocity sufficient to produce a negative sign.
With regard to αV, the sign and the dependence on Co
differ strongly from (31). Also, in the run without the sta-
bly stratified layer, the gradient of the density dominates
throughout the box, and no sign change of ∇ ln (ρurms)
is observed (Fig. 3, row 4, Col. 3). Both components of
α do exhibit a sign change, though. This inconsistency
may be a result of the impenetrable boundary condition
at z = 1, which causes a transfer of kinetic energy from
the vertical to the horizontal components, an effect which
is not accounted for by Eq. (31). A detailed comparison
of the rotational dependence of αV and αH with Eq. (31),
and with the analytical results of Rüdiger & Kitchatinov
(1993), will be presented in Sect. 4.2.

The current helicity is negative in the upper part of the
unstable layer for a vertical imposed magnetic field (Fig. 3,
row 5), which confirms earlier results of Brandenburg et al.
(1990). A reverse-polarity layer is not observed, except in
run 10 with the impenetrable boundary at z = 1. Thus,
the sign of α in the unstable layer as predicted by Eq. (30)
is the same as that of αV. The negative sign of 〈j ·b〉, which
corresponds to a positive sign in the bulk of the convec-
tion zone on the northern hemisphere, is at odds with
forced isotropic turbulence calculations by Brandenburg
(2001) as well as with observations of the solar surface

(Seehafer 1990; Low 1996) and mean-field calculations
(Rädler & Seehafer 1990; Rüdiger et al. 2001). For a hori-
zontal imposed magnetic field, the current helicity is about
one order of magnitude smaller than in the case of a ver-
tical imposed field. It is highly fluctuating, and its mean
value can have either sign (not shown). The smaller am-
plitude is consistent with the smaller amplitude of the
magnetic fluctuations (Fig. 6).

4. The α effect as a function of Ω

In this section we investigate the dependence of the α ef-
fect on the angular velocity Ω. The relevant dimensionless
parameters are the Taylor number and the Coriolis num-
ber, as defined by (22) and (23). Averages are calculated
over time, and separately over the unstable region and the
stable region, as explained above.

4.1. Kinetic helicity and current helicity

Figure 4 shows the rotational dependence of the kinetic
helicity and the current helicity (for the vertical imposed
magnetic field). The kinetic helicity and the current he-
licity have been multiplied with d/3u2

rms and η/B2
0urms,

respectively, in order to allow a comparison with α/urms,
as suggested by Eqs. (29) and (30) if one sets τ ≈ d/urms.
The kinetic helicity in the unstable layer increases with
the rotation rate up to Ta ≈ 104; its value in the stable
layer is much smaller. Hence the general trend and the cor-
rect sign of αH (Fig. 5, bottom) are recovered by (29) in
the unstable layer, but not in the stable layer. The current
helicity for the vertical imposed magnetic field increases
with rotation up to Ta ≈ 100−300, while it decreases for
stronger rotation, as do the magnetic fluctuations (Fig. 6).
It seems that αV in the unstable layer roughly traces the
current helicity (Figs. 4 and 5). Note however that both
the normalized kinetic helicity, 〈ω ·u〉/ωrmsurms, and the
normalized current helicity, 〈j·b〉/jrmsbrms, increase mono-
tonically with Ta (not shown). This reflects an increasing

Fig. 4. Solid : kinetic helicity, 〈u ·!〉d/3u2
rms; dotted : current

helicity, η 〈j ·b〉/B2
0urms, for a vertical imposed magnetic field

at the solar south pole. (a,c) average over −0.15 ≤ z ≤ 1; (b,d)
average over 1 ≤ z ≤ 1.5.
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degree of alignment of vorticity with velocity, and of cur-
rent with magnetic field, respectively.

The main conclusion to be drawn with regard to the
validity of (29)–(31) is that qualitative agreement exists
only between αH, (29), and (31) on the one hand, and be-
tween αV and (30) in the unstable layer on the other hand.
For Co >∼ 5, such qualitative similarities are no longer ev-
ident, but in the following sub-section we shall compare
the behavior of αV and αH with mean-field results that
were derived for the case of arbitrary rates of rotation.

Fig. 5. α-coefficients, normalized by urms, as functions of Ta.
Here urms is an average over time and over the unstable layer.
Top: vertical α effect. Bottom: horizontal α effect. The errors
are standard deviations divided by the square root of the num-
ber of turnover times covered by the simulation. All simulations
are for the solar south pole. The dashed curves are analytical
results based on Rüdiger & Kichatinov (1993). In each figure,
a suitable uniform scaling factor was applied to the analytical
curves.

4.2. Rotational quenching of α

Figure 5 shows αV and αH, normalized by urms, as a func-
tion of Ta (or Co). For zero rotation the α effect van-
ishes. For weak rotation αV/urms increases with increasing

Fig. 6. Strength of the velocity and magnetic field perturba-
tions as a function of Ta, in units of

√
gd, and

√
µ0ρ0gd, respec-

tively. The vertical and horizontal orientation of the imposed
magnetic field are used for αV and αH, respectively.

rotation rate. It reaches a maximum near Co ≈ 1.3
(Ta ≈ 2 × 103); for stronger rotation it is quenched. The
decrease of αV/urms occurs in spite of the monotonic in-
crease of the kinetic helicity, and in spite of the decrease of
urms with increasing rotation rate (Fig. 6). The horizontal
α effect sets in at a higher rotation rate. Its magnitude
increases monotonically with the rotation rate, and ex-
ceeds that of the vertical α effect if Co >∼ 8. For Ta = 105,
Coriolis forces are so strong that they stifle the convec-
tion (see below), and hence also alpha. Two effects that
are not shown in detail appear to be responsible for the
reduction of αV: an increasing number of sign changes of
αV(z), resulting in cancelations when the volume average
is calculated, and a decreasing amplitude of the magnetic
fluctuations (Fig. 6). Both effects are absent in the case
of αH.

Clearly, the alpha effect is highly anisotropic, and its
dependence on rotation is more complicated than sug-
gested by Eqs. (29) and (31). Rüdiger & Kichatinov (1993)
present analytical expressions for the rotational depen-
dence of αV and αH, based on the first-order smoothing
approximation (FOSA), but for arbitrary rotation rates.
They employ a linearized equation of motion for the fluc-
tuating quantities which includes a random driving force
with prescribed spectral properties to model turbulence,
and which takes into account a stratification of the den-
sity and of the turbulent velocity. Due to the stratifica-
tion as well as rotation, the electromotive force becomes
anisotropic. In the simplest case of a driving force with
zero frequency and containing a single wavelength (the
case designated mixing-length approximation by the au-
thors), and for a weak magnetic field, a manageable ex-
pression can be derived. For the present geometry, i.e., a
local Cartesian grid situated at the south pole, one obtains

αV = −τu2
rms

[
ψρV∇ ln ρ+ ψuV∇ lnurms

]
(32)

αH = −τu2
rms

[
ψρH∇ ln ρ+ ψuH∇ lnurms

]
. (33)

These expressions correspond to those of Rüdiger &
Kichatinov (1993) if one sets αV = αzz , αH = αxx,
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Fig. 7. Functions ψρ,uV,H, which describe the Coriolis number
dependence of contributions to αV and αH due to density and
turbulence stratification, respectively.

ψρH = Co Ψρ, and ψuH = Co Ψu (cf. their Eq. (3.11)). The
functions ψρ,uV are given by

ψρV =
1
x3

[
1
2
x2 − 23

2
− (x2 − 1)2

2(x2 + 1)

+2
x2 + 6
x

arctanx
]

(34)

ψuV =
1
x3

[
x2 − 17− (x2 − 1)2

x2 + 1

+2
x2 + 9
x

arctanx
]
, (35)

where x = Co. Several features relevant for our discussion
should be noted. As is shown in Fig. 7, the functions ψρ,uH

are almost equal and, for Co <∼ 3, they are linear in Co,
so that Eq. (33) reduces to Eq. (31), apart from a fac-
tor of order unity. Secondly, ψρ,uV , and therefore αV, are
subject to rotational quenching. This unexpected behav-
ior, which is not predicted by Eqs. (29)–(31), is roughly
confirmed by the simulations, as is shown by Fig. 5. In
order to produce the dashed curves, representative val-
ues, estimated from the simulations, were inserted for the
gradients ∇ ln ρ and ∇ lnurms, namely 1.5 and −1.0 in the
unstable layer, and 1.0 and −3.5 in the stable layer (Fig. 3,
row 4). For a given Taylor number, the same value of Co
was used for both the unstable layer and the stable layer,
i.e. the turnover time, τ ≈ `/urms, was assumed to be the
same. This is motivated by the fact that both the effec-
tive thickness, `, and urms for the stable layer are smaller
by a factor 3–4 compared to their values in the unstable
layer. Secondly, the temporal variations of the flow are
very similar in both layers (Fig. 2, bottom). After divid-
ing Eqs. (32) and (33) by urms, a factor τurms remains
in front which can be assumed to be independent of Co.
However, it was found that setting this factor to τurms = `
overestimates the amplitude of α. For the dashed curves
shown in Fig. 5, it was replaced by a suitable uniform

scaling factor, namely 0.19 for αV and 0.01 for αH. Thus,
our simulations produce much smaller α coefficients than
predicted by (32) and (33), especially αH which is smaller
by two orders of magnitude. On the other hand, the main
point is the agreement with regard to the rotational de-
pendence. Except for the sign of αV in the unstable layer,
the rotational quenching is reproduced, including the posi-
tion of the maxima. For weak rotation, ψuV ≈ 4ψρV, so that
the contribution of ∇ lnurms dominates, while for Co >∼ 2
the density gradient dominates; in both cases the mean-
field formula yields the wrong negative sign. Clearly, the
sign of αV as predicted by Eq. (32) can have both values
in principle, and depends in a delicate way on the relative
importance of the two gradients; even a slight change of
the ψ coefficients can generate a sign chance. With regard
to αH, we confirm the saturation predicted by Eq. (33)
only in the stably stratified layer, but not (yet) in the un-
stable layer (Fig. 5, bottom). Apart from this, the general
trend as well as the correct signs are reproduced by (33)
in both layers. Due to the shape of the functions ψρ,uH , this
feature should be rather robust.

In order to shed further light on the influence of rota-
tion, Fig. 8 shows snapshots of the vertical velocity for two
simulations with different rotation rates. Clearly, stronger
rotation causes the eddies to have a smaller diameter in
the horizontal plane (i.e. perpendicular to the rotation
axis). Hence the number of eddies within the simulation
domain increases with the rotation rate, and this leads to
a more accurate result for α, as is obvious from the length
of the error bars in Fig. 5, taking into account the duration
of the runs (Table 1). In the simpler case of Boussinesq
convection in a rotating layer, the scale at which the insta-
bility sets in also decreases with increasing Taylor number
(Chandrasekhar 1961). Although the present simulations
are done at supercritical Rayleigh numbers whereas the
analysis of Chandrasekhar applies to the marginally sta-
ble case, we may for the moment set aside this difference,
as well as possible effects of compressibility and different
boundary conditions. In fact, the smallest value of the
local Rayleigh number in the unstable layer was found
to be typically 104, so that the actual supercriticality is
less than assumed. The present runs, which are charac-
terized by Pr = Pm = 1 and Ch = 0.018, belong to a
regime where the onset of instability occurs in the form of
non-oscillatory convection. Since the value of the critical
Rayleigh number depends on the horizontal wavenumber,
k, there is a critical wavenumber, kc, corresponding to a
preferred eddy size 2π/kc, for which the critical Rayleigh
number attains a minimal value, Rac. The eddy sizes ob-
served in the simulations are in quite good agreement with
the analytical values of 2π/kc for convection between two
free boundary surfaces (Table 2). The results suggest that
the preferred mode of convection is the same as that per-
taining to the onset of convection. The critical Rayleigh
number increases with Ta from 661 for Ta = 2 up to
2.13 × 104 for Ta = 105. This explains why for a fixed
value of Ra the intensity of convection, as measured by
urms, decreases with increasing rotation rate. Since the
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Table 2. Eddy sizes and preferred length scales for the onset of the convective instability between two free boundaries as given
by Chandrasekhar (1961). The eddy sizes were determined visually; their random error is estimated to be about 25%.

run 1 2 3 4 5 6 7 8 9

Ta 2 10 30 100 300 2000 104 2× 104 5× 104

eddy size 2.5 2.5 2.5 2.5 2.0 1.5 1.3 1.0 0.8
2π/kc 2.8 2.8 2.7 2.4 2.1 1.5 1.1 1.0 0.82

Fig. 8. Snapshot of the vertical velocity (connected lanes:
downward, isolated patches: upward). Top: run 6, moderate
rotation. Bottom: run 9, strong rotation. The white curve de-
notes the zero level of the vertical velocity. The top and bottom
surfaces correspond to z = 0.09 and z = 1.81, respectively.

actual Rayleigh number in the unstable layer has a local
minimum of about 104, this also explains why no convec-
tion was observed for Ta = 105.

As the scale of the individual eddies decreases, the
corresponding decrease of the effective Coriolis number,
2Ω`/urms, may be interpreted as a readjustment of the
convection in response to increased Coriolis forces, which
tend to hamper the convective energy transport. Still the
convective flux of the run with the strongest rotation

Fig. 9. Energy fluxes. Top: run 6; Bottom: run 9. Only the
three most important contributions are shown, the viscous
and electromagnetic fluxes being negligible. The total flux F tot

does not include the flux associated with the cooling term Q,
Eq. (9); hence the steep rise in region 1.

(run 9) is reduced by a factor of about two compared
to runs with weak rotation. Apart from a possible effect
of the increased Coriolis force, the reduced flux may re-
sult from the fact that smaller eddies lead to larger tem-
perature gradients in horizontal planes, and this causes
increased horizontal radiative transport between adjacent
eddies which reduces the efficiency of convective energy
transport in the vertical direction (Fig. 9).

5. Alpha and magnetic field strength

If the strength of the imposed magnetic field is in-
creased, effects of the Lorentz force become more no-
ticeable. Moreover, these effects depend on the orien-
tation of the imposed field, i.e. vertical or horizontal.
From the previously discussed runs, a representative case
(run 7) was selected as the starting point for runs with
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Fig. 10. Top: rms velocity perturbations as a function of the
strength of the imposed magnetic field (normalized to the value
of Beq for small B0). Bottom: rms magnetic field and final
equipartition field strength.

increasingly strong imposed magnetic fields of both ori-
entations (Table 3). A comprehensive study of the mode
structure of magnetoconvection for different imposed mag-
netic fields is beyond the scope of the present paper,
though. Various cases for a vertical imposed field, without
rotation, are treated by Matthews et al. (1995). Wissink
et al. (2000) consider the breakup of a horizontal magnetic
layer into a number of flux tubes, thereby including the
effect of rotation.

Table 3. Initial field strength, B0, and averaging interval, T .
Other parameters as in run 7 (Table 1). The imposed magnetic
field is B0 = B0ez, or B0ex, depending on whether αV or αH

is determined.

run 7 7a 7b 7c 7d 7e

B0 0.001 0.01 0.02 0.04 0.06 0.08
T (αV) 940 205 203 200 414 96
T (αH) 508 280 278 559 381 268

For an imposed magnetic field in the vertical direction,
convection is increasingly hampered with increasing field
strength, as is indicated by a decrease of the rms turbulent
velocity (Fig. 10, top) and of the convective energy flux.
Since the magnetic energy is enhanced by advection of the
imposed field, while the kinetic energy decreases as a result
of the Lorentz force, after a while the rms magnetic field

Fig. 11. Top: αV,unst and αV,stab as functions of B0/Beq for
run 7, where B0 = B0ez. Bottom: αH,unst and αH,stab as func-
tions of B0/Beq for run 7, where B0 = B0ex. Here Beq = 0.052
is the equipartition field strength, averaged over the unsta-
ble layer, for convection without a magnetic field. Analytical
quenching results (dash-dotted) are given for both signs. All
calculations are for the solar south pole.

can be much larger than the equipartition field strength
(Fig. 10, bottom). Moreover, if the initial magnetic field
is too strong, then convection dies out completely. This in
fact occured during run 7e (B0/Beq ≈ 1.7). After 100 time
units, the volume-averaged energy density of the velocity
and magnetic-field perturbations had both fallen by about
2 orders of magnitude. The decrease of αV is more rapid
than that of urms, because advection of the imposed field
by convection is stifled; this explains why alpha decreases
also when measured in dynamical units (i.e., when divided
by urms).

A debate is ongoing in the literature about how and
whether the magnetic Reynolds number affects the mag-
netic quenching of the α effect. The dependence of α
on the magnetic field strength is often schematically
represented in the form α ≈ α0[1 + RmpB2/B2

eq]−1.
While some numerical and analytical results suggest that
p ≈ 0 (Kraichnan 1979a, 1979b; Brandenburg & Donner
1997), others suggest p ≈ 1 (Cattaneo & Vainshtein
1991; Vainshtein & Cattaneo 1992; Tao et al. 1993;
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Cattaneo 1994; Cattaneo & Hughes 1996; Vainshtein 1998;
Brandenburg 2001). Although the present set of simula-
tions is not well-suited to answer this question because of
the relatively small Reynolds numbers (Rm ≈ 30), the re-
sults for both αV and αH are consistent with p ≈ 1
(Fig. 11). Blackman & Field (2000) argued that the
quenching with p ≈ 1 observed in simulations with pe-
riodic boundaries may in fact be a consequence of the
boundary conditions rather than a dynamic effect, and
that p = 0 should be possible if a flux of magnetic helicity
through the boundaries is allowed. Our conditions (10) do
allow for a flux of magnetic helicity through the top and
bottom boundaries. Thus, the fact that α quenching sets
in when B2 ∼ RmB2

eq suggests that an Rm-dependence
of the α quenching is possible in the present case; such
quenching could be dynamic according to the reasoning of
Blackman and Field. However, this conclusion may change
if one allows for shear near the surface. This is the case
between the solar surface and the corona, and so a strong
helicity flux is possible in that case (Berger & Ruzmaikin
2000).

It appears that for boundaries that allow for a flux of
helicity diverse Rm dependencies of the α quenching are
possible, depending, e.g., on the character of the forcing
of the flow. Brandenburg & Dobler (2001) report a case
where p ≈ 1/2. We also note that even with the strong
p ≈ 1-quenching of α a large-scale field may build up
because of an equally strong quenching of the turbulent
magnetic diffusivity (Brandenburg 2001).

The magnetic-field dependence of the α coefficients is
essentially the same for the cases of the vertical and hori-
zontal imposed fields, even though convection is hampered
less in the case of a horizontal imposed field (Fig. 11,
top). For field strengths comparable to the equipartition
value, the convective pattern becomes very different. If
B0 = 0.02 ≈ 0.38Beq, convection exhibits a pattern of ir-
regular oblique elongated cells that make an angle with
the direction of the imposed magnetic field, and a small
horizontal α effect is still measured. For runs with field
strengths B0 = 0.04 ≈ 0.77Beq and B0 = 0.06 ≈ 1.15Beq

respectively, longitudinal rolls are formed that are increas-
ingly aligned along the x-direction, and the coefficient αH

is practically zero. For still stronger fields (B0 = 0.08 ≈
1.5Beq), convection assumes the form of highly regular
oblique lanes, and a small α effect is again measured.

6. Discussion

The following discussion of our results in the solar con-
text may be considered as complimentary to that of
Brandenburg et al. (1990). First-order smoothing is a jus-
tified approximation if either the magnetic Reynolds num-
ber is small, or if the flow is slow in the sense uτ/d � 1.
In our dimensionless variables, the latter condition would
mean urmsτ/d � 1 but, with the rms velocities and co-
herence times obtained in our simulations, we rather have
urmsτ/d >∼ 1. Our magnetic Reynolds number (20–35)
is quite moderate but not small. Hence the simulations

clearly go beyond first-order smoothing, although we are
far from the conditions met in the solar convection zone.
The large fluctuations that occur at large Reynolds num-
ber are evident in our calculations. In particular we see
that the components of the α tensor undergo large fluc-
tuations. Only after averaging over many coherence times
and over the horizontal coordinates of the box a significant
depth variation is obtained. With this variation we confirm
some results obtained in the case of weakly anisotropic tur-
bulence, and extend them beyond the limits of first-order
smoothing: in the southern hemisphere the horizontal α
coefficient (Fig. 3, row 2) is negative (positive) in the up-
per (lower) part of the box, as is plausible from the ro-
tational effect on convergent and divergent velocities that
arise as the flow is forced into the horizontal direction. On
the other hand we find the opposite sign for the vertical
α coefficient (Figs. 2 and 3, row 1). Also of opposite sign
is the small-scale current helicity. Indeed, both the sign
and the rotational dependence of αV in the unstable layer
roughly agree with that predicted by the simple FOSA-
expression which relates α to the current helicity (30).

For cases with convective overshooting in the lower
part of the box the components of α reverse their sign
near the transition to the stable stratification. For an αΩ
dynamo the horizontal component αH is the essential in-
gredient; possibly the sign change of αH has interesting
implications for a dynamo that operates as an interface
wave at the base of the convection zone. In the layer of
convective overshooting the sign of αH is appropriate for
the equatorward migration of the mean field, if the posi-
tive shear ∂Ω/∂r, as inferred from helioseismology for the
depth range around 0.7 r� and the lower heliographic lat-
itudes (Kosovichev et al. 1997), is used as the other es-
sential ingredient. These conclusions are drawn from sim-
ulations with an imposed magnetic field B0 = 10−3, and
may still be valid for B0 = 10−2, as the results of run 7a,
shown in Fig. 11, suggest. The latter field strength corre-
sponds to ≈10 T, which is the strength of the field in the
stable layer below the convection zone, as deduced from
the properties of rising flux tubes (Caligari et al. 1995).
For stronger fields we obtain a marked quenching of α con-
sistent with a factor [1 + Rm (B0/Beq)2]−1, although we
have checked this only for Rm ≈ 30. The simulations have
also revealed a striking difference between the convective
patterns for a vertical and a horizontal orientation of the
imposed magnetic field, with rolls being formed for strong
horizontal fields.

In view of a strong toroidal field at the base of the
convection zone a magnetic Rayleigh-Taylor instability
(Brandenburg & Schmitt 1998) or an instability of toroidal
flux tubes (Ferriz-Mas et al. 1994) should be employed to
obtain an α effect. Nevertheless, since the sign of αH fol-
lows plausible arguments, we may hope to obtain the same
sign for such a dynamically determined α (Brandenburg
& Schmitt 1998).

As far as the dependence of α on rotation is concerned,
the simulation may yield more reliable results than for the
other parameters. In the solar convection zone the Coriolis
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number is small near the surface, and increases to values
around 1 or somewhat larger near its base. This is the
regime shown in Fig. 5. The rotational quenching of αV

and the saturation of αH (Fig. 5, top) may therefore just
begin in the depth region where the dynamo operates, but
in solar-type stars which are younger and therefore rotat-
ing faster, these effects may be important. We have ob-
served some agreement between the numerical results for α
and the predictions of Rüdiger & Kichatinov (1993), as far
as the dependence on rotation and on depth is concerned.
In both the unstable and the stable layer, the approximate
Coriolis number dependence and the correct sign for αH

are reproduced. The main discrepancies concern the am-
plitude of α (the scaling factors of the theoretical curves
in Fig. 5) and the sign of αV in the unstable layer, as well
as the sign of the small-scale current helicity.

Even within the limited range accessible to numer-
ical simulation, the parameter space is enormous. We
have not yet considered the latitude dependence of α (al-
though some earlier work of Brandenburg 1994 indicates
that |α| is maximum at about ±60◦ of latitude), and we
have not yet explored the dependencies on the Reynolds
and Rayleigh numbers. This must be done by further
simulations.
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Küker, M., & Stix, M. 2001, A&A, 366, 668
Lantz, S. R., & Fan, Y. 1999, ApJS, 121, 247
Leighton, R. B. 1969, ApJ, 156, 1
Lele, S. K. 1992, JCP, 103, 16
Low, B. C. 1996, Solar Phys., 167, 217
Matthews, P. C., Proctor, M. R. E., & Weiss, N. O. 1995, J.

Fluid. Mech., 305, 281
Moffatt, H. K. 1978, Magnetic field generation in electrically

conducting fluids (Cambridge Univ. Press)
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