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Inverse cascade in decaying three-dimensional magnetohydrodynamic turbulence

Mattias Christenssdnand Mark Hindmarsh
Centre for Theoretical Physics, University of Sussex, Brighton BN1 9QJ, United Kingdom

Axel Brandenburg
Nordita, Blegdamsvej 17, DK-2100 Copenhagen, Denmark
and Department of Mathematics, University of Newcastle, Newcastle upon Tyne NE1 7RU, United Kingdom
(Received 22 November 2000; published 22 October 2001

We perform direct numerical simulations of three-dimensional freely decaying magnetohydrodynamic tur-
bulence. For helical magnetic fields, an inverse cascade effect is observed in which power is transfered from
smaller scales to larger scales. The magnetic field reaches a scaling regime with self-similar evolution, and
power-law behavior at high wave numbers. We also find power-law decay in the magnetic and kinematic
energies, and power-law growth in the characteristic length scale of the magnetic field.
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I. INTRODUCTION variables and by using conformal tilh@]. The equations of
[9] differ slightly from the ordinary nonrelativistic MHD

Within cosmology, astrophysics, or geophysics one ofterequations. However, in order to facilitate comparison with
needs to deal with electrically conducting plasmas at higtearlier work, we use the nonrelativistic equations.
kinematic and magnetic Reynolds numbers where magnetic We perform 3D simulations both with and without mag-
fields are dynamically important. Indeed, much of the turbu-netic helicity, starting from statistically homogeneous and
lence in the interstellar medium is magnetohydrodynamic irisotropic random initial conditions, with power spectra sug-
nature. gested by cosmological applications. We find a strong in-

Hydromagnetic turbulence has been exp]ored extensive|yerse cascade in the helical case, with equivocal evidence for
in connection with the generation of large-scale magneti® Weak inverse cascade when only helicity fluctuations are
fields in astrophysical bodies such as planets, stars, accreti®fiesent. In the helical case, we also find a self-similar power
discs, and galaxies through dynamo theories. NondriverSPectrum with an approximateky > behavior at higk. We
freely decaying turbulence may also be of interest in connecPresent energy decay laws that are comparable to those
tion with both the physics of the interstellar medium andfound in the incompressible case by Biskamp andiéty6],
cosmology. Our interest was inspired by the cosmology ofnd in the compressible case by Mac Lewal. [5].
primordial magnetic fields, which is sometimes considered
as a possible source for providing the seed for the galactic Il. THE MODEL
dynamo[1].

There have been various related works on decaying magd
netohydrodynami¢MHD) turbulence, by authors interested a
in different context§2—7]. Most directly comparable to our
work, Biskamp and Mier [6] studied the energy decay in
incompressible three-dimensiondBD) magnetohydrody- u IXB u 1
namic turbulence in numerical simulations at relatively high — = —u~Vu—c§V Inp+——F— V2u+—VV~u),
Reynolds number, and in a companion lefté}; studied the at p p 3
scaling properties of the energy power spectrum. @

We are here especially interested in the inverse cascade of J1n
magnetic helicity, whereby magnetic energy is transferred P =—Uu-VInp—V-u, )
from small-to-large-scale fluctuations. This is important for a gt
primordial magnetic field to reach a large enough scale with A
sufficient amplitude to be relevant for seeding the galactic J
dynamo[8]. o SUXB+ nV2A, ®)

It should be noted that due to the conformal invariance of
MHD in the radiation era, the MHD equations in an expand-whereB=V X A is the magnetic field in terms of the mag-
ing universe can be converted into the relativistic MHD netic vector potentialA, u is the velocity,J is the current
equations in flat spacetime by an appropriate scaling of theensity,p is the densityu is the dynamical viscosity, ang

is the magnetic diffusivity.
The code for solving these equatidri®] uses a variable

We consider the equations for an isothermal compressible
s with a magnetic field, which is governed by the momen-

tum equation, the continuity equation, and the induction

equation, written here in the form

*Electronic address: kapl7@pact.cpes.susx.ac.uk third-order Runge-Kutta timestep and sixth-order explicit
"Electronic address: m.b.hindmarsh@sussex.ac.uk centered derivatives in space. All our runs are performed on
*Electronic address: brandenb@nordita.dk a 12@ grid, and we use periodic boundary conditions, which
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means that the average plasma dengity = pq is conserved We will take the initial primordial power spectrum as
during runs. Herep, is the value of the initially uniform given and address the question of how such a primordial
density, and the brackets denote volume average. spectrum evolves as a consequence of the nonlinear equa-

We adopt nondimensional quantities by measutingn  tions of motion.
units of ¢, wherec is the speed of lightk in units of k,

Whgrekl is the smallest Wf_:lve_numl_)er in the box, WhiCh has IV. INITIAL CONDITIONS
a size ofLgoyx=2m, density in units ofpg=1, andB is
measured in units of/uopeC, Where i is the magnetic Since one of the aims of the present work is to investigate

permeability. This is equivalent to putting=k,=p,=pu, the role of magnetic helicity in the inverse cascade, we de-
=1. In the following, we will refer to the mean kinematic Scribe how the initial conditions for our simulations were set
viscosity v, which we define ag'= u/p,. The sound speed UP- We chose our initial condition by setting up magnetic
c, takes the value,=1//3, as appropriate for a relativistic fluctuations with an initial power spectrurRy(k)=(Bg
fluid. With c=1, the unit of time is such that the light cross- *Bx)~k" in Fourier spacéand averaged over shells of con-
ing time of the box is 2. stantk=|k|), for low values of the wave-numbér using an

Our equations are similar to those for the relativistic gasexponential cutofk.. [The shell-averaged power spectrum
in the early universe using scaled variables and conformaPwm(k) is not to be confused with the shell-integrated energy
time for nonrelativistic bulk velocitie§9]. We expect our spectrum,Ey=4mk?x (1/2)Py(k), which is shown in the
results to change little using the true relativistic equations, aglots below]

our advection velocity is at most only mildly relativistic, and ~ The magnetic-field fluctuations are drawn from a Gauss-
this only at the beginning of the simulation. ian random-field distribution fully determined by its power

spectrum in Fourier space according to the following proce-
dure. For each grid point, we use the corresponding wave
number to select an amplitude from a Gaussian distribution
The magnetic helicityH,, is given by centered on zero and with the width

Ill. ON THE ROLE OF THE INVERSE CASCADE

_ n 4
Hye f ABx @ Pu(K) =P ok” exif — (k/ko)], 5
where k=|k|. We then transform the field back into real
and characterizes the linkage between magnetic field linespace to obtain the field at each grid point. This is done
Hy is conserved in the absence of ohmic dissipation, alindependently for each field component.
though it is still possible to have local, small-scale helicity ~There is a requirement in cosmology thet 2, which is
fluctuations. Helicity plays an important role in dynamo set by causality demanding that the correlation function of
theory[11,17], where turbulence is driven. the magnetic field vanishes at large distances, and the fact
In many astrophysical and cosmological situations, thehat the magnetic field is divergence-frged]. In the simu-
magnetic Reynolds numb&wg,, is very large. We define the lations presented, we chose the slope of the power spectrum
magnetic Reynolds number &ws,=Lv/7, whereL andv to ben=2. We also chosé.= 30, unless specified other-
are the typical length scale and velocity of the system undewise, which gives a power spectrum peaked at a relatively
consideration anep is the resistivity. The magnetic Reynolds large value ofk. Biskamp and Mler [6,7] started with a
number is a measure of the relative importance of flux freezspectrum peaked &t =4, which may account for the differ-
ing versus resistive diffusion. In a cosmological context, thisent slope in the late-time power spectrum that we observe
number can be extraordinarily large: causality imposes thésee Sec. V A
weak limitL=<ct and relativity demands<c. With conduc- Our velocity power spectrum was chosen in a similar
tivities relevant to the era when the electroweak phase tranway, but withn=0 corresponding to white noise at large
sition took place[13], one can, in principle, obtain a mag- scales(there is no requirement for incompressibility in the
netic Reynolds number of about 0This is often taken to early universg The initial magnetic energy was taken equal
mean that the magnetic field is frozen into the plasma, antb the kinetic energy, and had the valug 50 2 in all runs,
the scale length of the field increases only with the expansioas the primordial field is thought likely to be weak.
of the Universe. In order to introduce a nonzero average magnetic helicity
However, this simple picture does not necessarily give anto the system, it is useful to represent the vector potential
full description of the dynamics because the MHD equationsin terms of its projection onto an orthogonal basis formed by
especially at high Reynolds numbers where nonlinear termg, | e | andk. The two basis vectors, ande_ can be
are important, exhibit turbulent behavior, which can lead to ahosen to be the unit vectors for circular polarization, right-

redistribution of magnetic energy over different length Scale%anded and left-handed, respectively. Thatdis=&,+ &,

[9]. Energy in a turbulent magnetic field can undergo an here & de . h | h oth
inverse cascade and be transferred from high-frequenc‘ﬁy eree, ande, are unit vectors orthogonal to each other

modes to low-frequency modes, increasing the overall coand tok. They are given bye,=kx2/|kxZ and e,=k
moving correlation lengtf11]. This process is due to the X(kxz)/|kx(kxX2)z|, respectively. z is a reference
nonlinear terms giving rise to interactions between many dif-direction.

ferent length scales. Note that since
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(6)

wheres= * 1, this corresponds to an expansion of the mag-
netic vector potential into helical modes.

Using these basis vectors, it is easily seen that the mag-
netic energy spectrum is

ikxe,=ske;,

Em(k)=27k*(|By[?), @)
where the amplitude of the magnetic field is given by
[Bul?= (A2 + A 1?)[KI? (8

and the expression for the magnetic helicity spectiipfk)
is

1

10° 10
Hu(k)=47k2(A% -B,), (9) k
FIG. 1. Magnetic energy spectruly, (k) for a run with finite
where magnetic helicity,v=7=5x10"°. The times shown are 0, 1.0,
_ 4.6, 10.0, 21.5, and 46.3. The initial spectrum is indicated by the
* _ +12_ 2
Ak 'Bk_(|Ak | |Ak | )|k|' (10 dashed line. At low wavenumbels the energy spectruriy,(k)

. . . . __increases with time.
The functionH (k) is a sensitive measure of the correlation

between the vector potential and the magnetic fielg(k)
may, of course, be positive in one part of Fourier space an
negative in another part. It is, however, bounded in magni
tude by the inequality

olds numbers in our simulations are evaluated using the
magnetic Taylor microscale, which we calculate here as the
ratio of the rms magnetic field and the rms current density,
L1=2mBns/Jims- The 2mr factor is here included so thht
represents the typical wavelengnd not the inverse wave
numbey of structures in the current density.
A field that saturates the above inequality is maximally he-
lical.

The amplitudesA, can be chosen independently, pro- _ _ _
vided A* = A", which is just the condition that the vector ~ The inverse magnetic cascade for decaying MHD turbu-
potential be real. Therefore, it is possible to adjust the aml€nce is best visualized in terms of magnetic energy spectra
plitudes|A;| and|A; | freely and in so doing obtaining a E.M(k) because |.nformat!on on nonImear_mteractlon between
magnetic field with arbitrary magnetic helicity. With our different scales is contained Ey(k). In Fig. 1, we show a

method, we are able to put statistically random but maxifun with initial magnetic helicity. In Fig..l, we see evidence
mally helical fields in our initial conditions. In our runs with [Of @ dual energy transfer both toward higher and lower wave

initial helicity, we takeH,,=H numbers. The inverse cascade is characterized by the transfer
' max- : F g
Because we evolve our dynamical fields on a discrete |at2f €nergy from S”.‘a"'sca'.e structures in the magnetic f|e_|d to
tice we have to be careful when using derivative operationd'9€r ones. In Fig. 1, this behavior is clearly seen as indi-

[Hu(K)[<2k™*Epy(K). (11

A. Spectral evolution

in Fourier space. In general, the wave vector, which is a
eigenvalue of the derivative operator, needs to be replaced
some functiork¢(k), which is an eigenvalue of the discrete

rs. Some energy is also being transported to smaller scales
here the spectrum is decaying due to diffusive effects. We

g;ted by the rise in the energy spectrum at small wave num-

halso note that at wave numbers above the pesk), the

derivative operator on the lattice. In our case, we have for th&

sixth-order explicit centered derivative

Ker(K) = %[sin(?ak)— 9 sin2k) +45sirk)]. (12

spectrum develops a power-law shape. This power law has
approximately &~ 2° slope. This differs from the approxi-
matelyk 5 law found by Miller and Biskamg 7]. We sug-
gest that this is due to finite-size effects, which affect the
spectrum if the initial scale separation betwdegnand the

In order to be consistent with the scheme used in the simsmallest wave number in the bok< 1) is insufficient, and

lation, we usek(k) when calculating the initial condition in
Fourier space.

V. RESULTS

In all runs, the mean kinematic viscosityand the resis-
tivity » were chosen to be equal with values betweeny
=5x10 *=5x10"°. In our simulations, we typically ob-

if the flow is strongly helical so that its spectrum is governed
by inverse cascading. In order to check this, we have per-
formed a run with larger initial length scalk,=5. In this
case, the magnetic energy spectrum develops into an ap-
proximatek ~%° law at late times. However, this occurs only
after the peak of the spectrum has left the simulation box,
i.e., after finite-size effects have begun to play a role.

To check if the magnetic-field evolution is self similar,

tain Reynolds numbers of the order of 100-200. The Reyone can make the following ansatz for the energy spectrum
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FIG. 2. The magnetic scaling functiag,(ké) described inthe ~ FIG. 4. Time evolution of the magnetic energy,(t) and the
text, Eq.(13), versuské. The straight lines indicate the power laws Kinetic energyE(t) in the case where there is initial magnetic
o (k&)*0 and o< (k&) 25, respectively. helicity. v=7=5% 10" °. The straight lines indicate the power laws

ot~ %7 and et~ respectively.

Em(k,t)=&(t) " Igm(ké). (13 small magnetic helicity fluctuations present in the initial con-
ditions. It is seen that only a weak inverse cascade is present
Here, ¢ is the characteristic length scale of the magneticat the lowest wave numbers, much smaller than in the helical
above, andy is a parameter whose value is some real num&S the effect could become more pronounced for higher Rey-
ber. We callgy, (k) the magnetic scaling function. In Fig. 2, nolds npmbe_rs_. It is po§S|bIe that this effect is due to the
we have plottedé(t)°Ey(k,t) versus the scaled variable Magnetic helicity fluctuations even though they were small.
kE(t). The value of the parametgiin this run isq=0.7. Itis ~ On€ Simulation was performed with identically zero initial
seen that for each different value of timye¢he data collapses magnetic helicity f_Iuctuat|ons. n this case, random fluctua-
. ; : . tions develop rapidly and no differences between the two
onto a smgle curve glvgn.by. the scaling fungtlgp(kg), cases were observed.
demonstrating the self similarity of the magnetic field evolu-
tion.
We also performed runs in which the magnetic helicity

was zero, in the statistical sense. Magnetic helicity was " Fig- 4, we show the time evolution of the magnetic

present due to fluctuations, but was of very small amplitudeS"€"8Y Em(t) and the kinetic-energi(t) for a run with
tial helicity and ak” initial energy spectrum slope. It is

S X ini
In these runs, no significant inverse cascade was observeH.

. : seen that the asymptotic decay rate t) is approxi-
Figure 3 shows the energy spectrum for such a run with on%atelyt,oj. The )Iée)l?nolds num)t/)er for?ﬁig )run ng around

Re~200 at late times. In another run witRe~100, the
decay rate was seen to be®8, so there seems to be a de-
pendence of the decay rate of the magnetic field on the Rey-
nolds number and perhaps the resulting slope of the spec-
trum.

The kinetic energy also decays with a power-law behavior
at late times. In the case of runs with initial helicity, the
kinetic-energyE(t) decays with a different, faster rate than
Em(t). The asymptotic decay rate is closettotX. In runs
without initial helicity, the decay rates dfy,(t) and Ex(t)
are approximately the same, closettd.

In our runs with Ex=E,, initially, the kinetic-energy
spectrum shows no evidence of an inverse cascade at any
scale. However, when the initial velocity distribution is zero,
the kinetic spectrum grows on all scales initially and in the
K low wave-number region, the energy continues to grow even
after the high wave-number modes start to decay.

B. Energy decay

FIG. 3. Magnetic energy spectrui),(k) for a run with no net
magnetic helicityr= »=1x10"*. Here,k,=10. The times shown
are 0, 2.2, 4.6, 10.0, 21.5, and 46.3. The initial spectrum is indicated
by the dashed line. The peak of the energy spectE(k) is During the course of the simulations, the initially small-
decreasing with increasing time. scale structures gain in size. A convenient length scale is the

C. Coherence length evolution
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10° ; fects may play an important role in this case.

In any case, it is interesting to compare our results with
the work of other authors interested in the decay properties
of cosmological magnetic field45-18. Ideal MHD has a
scale invariance that leads to the scaling [dW,17]

Em(t,k) =k 17 2"y(k* "), (14)

Lt

where is an unknown function, related t, . Assuming it
is peaked somewhere, ahd 0, the characteristic scale of
the field goes a& (t) ~tY~M, It is also often assumed that
#(0) exists and is nonzero: thub, is determined by the
initial power spectrum. Hence, for a magnetic power spec-
-1 ; trum of indexn, h=—(n+3)/2 and
0 1 2
0 ki " L(t)~t2(*5), (15)

FIG. 5. Time evolution of the magnetic Taylor microscale for
the case with initial magnetic helicityr=7=5x10"°. The
straight line indicates the power lawt®®,

10

This law may also be recovered by assuming that the char-
acteristic time scale for the decay of turbulence on a ddale
the eddy turnover time=1/v,, wherev,~I~(""3) is the
velocity averaged on a scal¢l16]. If the characteristic scale
magnetic Taylor microscale;, which was defined above. of the field is that scale that is just decaying, thenr-t, and
This length scale is mostly characteristic of the small scalewe again find Eq(15). One should note that these arguments
but even they grow during the course of the simulations. ignore helicity conservation.

In Fig. 5, we show the evolution df for a run with We recall that our nonhelical runs hae=2 for the mag-
initial helicity. The asymptotic behavior of the length scale isnetic power spectrum ana=0 for the velocity power spec-
seen to grow approximately as~t%°, trum. The observed growth law for the magnetic Taylor mi-

In runs with nonhelical initial conditions, the growth of croscalet®* is not consistent with the predicted power law
the magnetic Taylor microscale is slower than in the case ofor n=2, although it does square with the growth law for
helical initial conditions. In this case, the magnetic Taylorn=0, and it is possible that the growth in the magnetic field
microscale grows approximately ag~t%4. length scale is being controlled by the velocity field. Simu-

The discussion so far has mainly been concerned with thiations at higher Reynolds numbers seem required to resolve
evolution of causally generated magnetic fields using an inithis issue.
tial k* slope in the magnetic energy spectrum. Now we One would expect on integrating the helicity power spec-
briefly comment on the other cases we have looked at. For lum thatHy,~L,Ey, whereL, is the integral scale. We
white-noise initial spectrunE,,(k)~k?, the evolution is would expect that,~L+, and hence, if magnetic helicity is
qualitatively and quantitatively similar to the causal case. Foconserved,
helical fields, we observe an inverse cascade, while for non- .
helical fields, a much smaller inverse cascade is present only Em~Ls~. (16)

for the lowest modes. _ L
However, magnetic helicity is not conserved exactly: we ob-

serve a decrease ty, by a factor of about two in a run with
viscosityr=5x10"°. Indeed, withL+~t%°we find a some-
Our simulations show the decay rate of magnetic energyhat steeper reIatiorEM~t‘°-7~LT’1'4.
for compressible turbulence being sensitive to the initial he-  Finally, it is interesting to note that Son’s numerical simu-
licity of the magnetic field configuration. A similar result lations of decaying turbulendd 6], performed in the eddy-
was found in[6] in the case of incompressible turbulence.damped quasinormal MarkoviafEDQNM) approximation,
The fact that magnetic helicity is conservéekcept for re- show some evidence of a power law developing at high
sistive changes and the magnetic energy decays slower forthe slope being close tk~2° although there was no net
helical fields, is connected with the observed inverse cascadeelicity present, and no inverse cascade. Furthermore, Field
in which magnetic energy is transported toward larger scaleand Carroll[18], again using the EDQNM approximation,
because of nonlinear dynamics. found that there were self-similar solutions willy,~t~%3
The decay of kinetic energy does not seem to depend on L;l,
the initial helicity and its decay ratEy(t)~t~ 1 is consis-
tent with the earlier work of5,6]. Note that in the helical
case, we observe the kinetic energy decaying more rapidly
than the magnetic one; this behavior was also founid]n We have shown that for an isothermal and compressible
While these results are not directly applicable to the evoimagnetized turbulent fluid, when undergoing a process of
lution of primordial magnetic fields in the early universe, free decay, a substantial inverse cascade is present for helical
they do suggest that nonlinear magnetohydrodynamical efnagnetic field configurations, which transfer energy from

VI. DISCUSSION

VII. CONCLUSIONS
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smaller-scale magnetic fluctuation to larger-scale ones. For We also observed power-law behavior in the characteris-

nonhelical magnetic fields, only a weak inverse cascade waic length scale of the magnetic field, defined as the Taylor

observed on the largest scales. microscaleL 1. In the helical casé~t°%, whereas for non-
The energy spectrum of the magnetic field shows evihelical fields the growth was somewhat slowlef~t%4, and

dence for a self-similar evolution with a deVElOpment of Awe ascribe the faster growth rate to the presence of the in-
power law of roughlyk~2° beyond the peak. Decay laws for yerse cascade in the helical case.

both the kinematic and magnetic energy were found. The
kinetic-energy decay was approximately! for both heli-

cal and nonhelical magnetic fields. The decay of the mag-
netic field energy was found to be strongly dependent on the
the initial helicity, decaying roughly as %" andt~*? for This work was conducted on the Cray T3E and SGI Ori-

helical and nonhelical initial conditions, respectively. For thegin platforms using COSMOS Consortium facilities, funded

helical case, the magnetic energy decay rate showed a depdyy HEFCE, PPARC, and SGI. We also acknowledge com-
dence on the Reynolds number, with a slower decay rate fquuting support from the Sussex High Performance Comput-
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