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Abstract. Dynamo action is investigated in simulations of locally isotropic and homogeneous turbulence in a slab
between open boundaries. It is found that a “pseudo-vacuum” boundary condition (where the field is vertical)
leads to strong helicity fluxes which significantly reduce the amplitude of the resulting large-scale field. On the
other hand, if there is a conducting halo outside the dynamo-active region, the large scale field amplitude can reach
larger values, but the time scale after which this field is reached increases linearly with the magnetic Reynolds
number. In both cases, most of the helicity flux is found to occur on large scales. From the variety of models
considered we conclude that open boundaries tend to lower the saturation field strength compared to the case with
periodic boundaries. The rate at which this lower saturation field strength is attained is roughly independent of
the strength of the turbulence and of the boundary conditions. For dynamos with less helicity, however, significant
field strengths could be reached in a shorter time.
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1. Introduction

Significant progress has been made in recent years in the
understanding of the generation of large-scale magnetic
fields in astrophysical bodies by dynamo action. Some es-
sential features of mean-field dynamo theory (e.g., Moffatt
1978; Krause & Rädler 1980) are recovered qualitatively
and quantitatively in direct three-dimensional simula-
tions, but the time scale on which large-scale fields are
established becomes very long as the magnetic Reynolds
number increases (Brandenburg 2001a, hereafter referred
to as B2001). This result, which has been obtained us-
ing simulations of helical turbulence in a periodic domain,
is now understood to be a consequence of the fact that
the large-scale magnetic fields generated by such flows
possess magnetic helicity which is conserved, except for
(microscopic) resistive effects. This behaviour can also
be reproduced with a mean-field model with resistively
dominated (“catastrophic”) quenching of α-effect and tur-
bulent magnetic diffusivity; see B2001 for details. The
implications of boundary conditions for “catastrophic” α-
quenching were first pointed out by Blackman & Field
(2000a), who showed that the results of earlier simula-
tions by Cattaneo & Hughes (1996) could be understood
as a consequence of periodic boundary conditions.
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The problem is that in order to generate large-scale
fields with finite magnetic helicity on time scales shorter
than the resistive time, one also needs to generate mag-
netic fields with the opposite sign of magnetic helicity,
so that the net magnetic helicity stays close to its ini-
tial value. In an astrophysical body, the sign of the mag-
netic helicity is different in the two hemispheres, but
preliminary models with helicity flux through the equa-
torial plane suggest that this actually diminishes the
net large-scale magnetic field rather than enhancing it
(Brandenburg 2001b). The other possibility is that one can
have a segregation in scales (e.g. Seehafer 1996) such that
large-scale magnetic fields with magnetic helicity of one
sign are generated within the domain of interest, whilst
small-scale magnetic fields with opposite sign of magnetic
helicity are expelled through the boundaries (Blackman &
Field 2000b). Whether or not this mechanism really works
is unclear. So far there has only been a phenomenological
approach suggesting that the α-effect would be large if a
flux of magnetic helicity through the boundaries was pos-
sible (Kleeorin et al. 2000).

The aim of the present paper is to investigate the effect
of open boundaries on the dynamo. A simple local bound-
ary condition is the vertical field condition (sometimes also
referred to as pseudo-vacuum boundary condition), that
was used previously both in magnetoconvection (Hurlburt
& Toomre 1988) and in accretion disc simulations showing
dynamo action (Brandenburg et al. 1995). This boundary
condition allows for a finite magnetic helicity flux through
the boundaries, even though the flux of magnetic energy
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(i.e. the Poynting flux) is still zero. We also consider cases
with a conducting halo outside the disc, as well as cases
with density stratification, so that magnetic buoyancy can
contribute to turbulent flux transport out of the dynamo-
active region.

2. The model

We solve the isothermal compressible MHD equations for
the logarithmic density ln ρ, the velocity u, and the mag-
netic vector potential A,

D ln ρ
D t

= −∇ · u, (1)

Du
D t

= −c2s∇ ln ρ+
J ×B
ρ

+
µ

ρ
(∇2u+ 1

3∇∇ ·u) + f ,(2)

∂A

∂t
= u×B − ηµ0J , (3)

where D/Dt = ∂/∂t + u ·∇ is the advective derivative,
B = ∇×A the magnetic field, J = ∇ ×B/µ0 the cur-
rent density, and f is the random forcing function spec-
ified in B2001. The induction Eq. (3) implies a specific
gauge for A; in Sect. 4 we discuss how to calculate gauge-
independent magnetic helicity and helicity fluxes. Instead
of the dynamical viscosity µ (= const) we will in the fol-
lowing refer to ν ≡ µ/ρ0, where ρ0 is the mean density in
the domain (ρ0 = const owing to mass conservation). We
use nondimensional units where cs = k1 = ρ0 = µ0 = 1.
Here, cs = const is the sound speed, k1 the smallest
wavenumber of the domain (so its size is 2π), and µ0 is
the vacuum permeability.

We use sixth-order finite difference and a third-order
time stepping scheme. The number of meshpoints is usu-
ally 1203, except for a few low Reynolds number runs.

All variables are assumed to be periodic in the x- and
y-directions. This implies that the vertical magnetic flux
vanishes, because Bz = ∂xAy − ∂yAx, so the integral of
Bz over x and y vanishes. Therefore the horizontal aver-
age of the vertical field also vanishes. In the z-direction
we assume either also periodicity (if there is a halo), or
we adopt a stress-free boundary condition where the field
is purely vertical (if there is no halo). The latter states
that ∂zux = ∂zuy = uz = 0 together with Bx = By = 0,
and solenoidality then implies that ∂zBz = 0 on the ver-
tical boundaries. In terms of A, this boundary condition
is ∂zAx = ∂zAy = Az = 0. In models with a halo the
extent in the z-direction is 4π and f is multiplied by a
mask function

p(z) =
{

exp[−z2/(H2 − z2)] for |z| < H,
0 for |z| ≥ H, (4)

where H = π is the semi-height of the disc. In the models
with halo we adopt periodic boundary conditions which
has some conceptual advantages in that all the mag-
netic energy and helicity that crosses the boundary at
z = ±H can be accounted for. We also consider models

Table 1. Summary of the main properties of the runs with ver-
tical field boundary condition and with conducting halo. The
models Buoy 1 and Buoy 2 are stratified and allow for mag-
netic buoyancy effects. The parameter q = 〈B2〉/〈B2〉 gives
the fractional magnetic energy in the mean field relative to the
total magnetic field

ν η ηhalo urms brms q

Vert 1 0.01 0.01 – 0.100 0.093 0.76
Vert 2 0.005 0.005 – 0.161 0.141 0.59
Vert 3 0.002 0.002 – 0.197 0.178 0.39
Vert 4 0.002 0.001 – 0.191 0.166 0.24
Halo 1 0.002 0.0005 0.02 0.116 0.137 0.44
Halo 2 0.002 0.001 0.02 0.118 0.156 0.60
Buoy 1 0.002 0.001 0.02 0.124 0.200 0.61
Buoy 2 0.002 0.001 0.001 0.147 0.242 0.71

where, in addition to the halo, we have imposed gravi-
tational acceleration, so f → f + g, where g = −∇Φ
and Φ = −g0 cos(z/2) is a periodic gravitational poten-
tial in |z| < 2π. This produces a density enhancement
near the midplane at z = 0. The models presented be-
low have g0 = 0.5, so the maximum density contrast is
∆ ln ρ = 2g0/c

2
s = 1. These models allow for additional

flux loss via magnetic buoyancy. We first discuss the mod-
els without halo and uniform background density.

3. Description of the various runs

The parameters of the various runs are summarized in
Table 1. All runs develop a large-scale magnetic field after
some time. This large-scale field points in the horizontal
directions and varies along z. However, in some cases there
can be intermediate stages during which the large scale
field is oriented differently. The different orientations of
the mean field are best described by calculating the three
different mean fields, whose energies are denoted in the
following by Kx, Ky, and Kz. The corresponding mean
fields vary only in the x, y, and z directions, respectively,
and are averaged in the two perpendicular directions; see
also Eqs. (8)–(10) of B2001. The mean field that varies
only in the z-direction, and which is averaged over x and
y, is denoted in the following by an overbar.

3.1. Runs with vertical field boundary condition

In Fig. 1 we show the resulting field structure near the end
of run Vert 4 at t = 1150. Unlike the case with periodic
boundaries where the presence of a large scale field was
readily visible in two-dimensional slices of individual field
components (see Fig. 4 in B2001), averaging over one of
the two horizontal coordinate directions is required before
the mean field becomes visible.

Averaging over both horizontal coordinate directions
clearly yields the profiles of the two non-vanishing
field components, Bx and By; see Fig. 2. Note that one
of the two components (here Bx) is approximately
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Fig. 1. Images of a cross-section and an x-average of By.
Vert 4, t = 1150. Dark and light indicate shades indicate nega-
tive and positive values, respectively. Note the high noise level
in the cross-section

Fig. 2. Horizontal averages of Bx and By. Vert 4

antisymmetric about the midplane, whilst the other (here
By) is approximately symmetric about the midplane and
of larger amplitude. There are also some indications of
boundary layer behaviour which was seen in highly nonlin-
ear α2-dynamos (Meinel & Brandenburg 1990), with the
same boundary conditions as in the present simulations,
i.e. Bx = By = 0.

In Fig. 3 we plot the evolution of the magnetic en-
ergy within the domain. The magnetic diffusion time is
(ηk2

1)−1 ≈ 500. For t <∼ 200, magnetic energy is mainly
in the small scales, for which the helicity constraint is ir-
relevant, so the initial exponential growth can occur on
a dynamical time scale. At t = 400, the magnetic energy
reaches a peak. At that time most of the large scale field
energy is actually in Ky, which denotes the energy of the
mean field defined by averaging in the two directions per-
pendicular to y, so this field varies only in the y-direction.
This field is different from the anticipated field Kz that
is obtained by averaging in the x and y-directions. This
Kz field also builds up and saturates around t = 700, but
it reaches a saturation level that is significantly less than
in the case of periodic domains (B2001). Furthermore, as
the magnetic Reynolds number increases, the fractional
energy of the mean field relative to the total magnetic
field decreases; see Fig. 4.

Fig. 3. Evolution of kinetic and magnetic energy together with
the magnetic energies contained in three differently averaged
mean fields. Vert 3

Fig. 4. Mean-field magnetic energy relative to the total mag-
netic energy, q = 〈B2〉/〈B2〉, for different values of the mag-
netic Reynolds number, Rm = urmsL/η, where L = 2π is the
scale of the simulation domain

3.2. Runs with a conducting halo

We have carried out runs with low and high halo con-
ductivities, with and without imposed gravity. All these
runs are similar with respect to the overall field evolution
in that they all produce a clearly visible large scale field
that grows slowly (on a resistive time scale), reaching fi-
nally super-equipartition field strengths. These runs are
therefore similar to those of periodic domains, but rather
different to those with vertical field boundary conditions.

In Fig. 5 we show a vertical slice of the resulting field
structure for a run with gravity (g0 = 0.5) and a halo
conductivity that is equal to the conductivity in the tur-
bulent zone (in |z| < π). Note that, in contrast to Fig. 1,
the large scale field can clearly be seen even without av-
eraging. The horizontally averaged field components are
shown in Fig. 6.
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Fig. 5. Slices of the two horizontal field components for Buoy 2
with conducting halo and vertical gravity. The boundaries
between halo and disc plane are indicated by white lines.
t = 1400. Dark and light shades indicate negative and posi-
tive values, respectively

Fig. 6. Horizontal averages of Bx and By for Buoy 2. The
boundary between halo and disc plane is indicated by the ver-
tical dash-dotted lines. t = 1400. Note that at this late time
significant amounts of magnetic flux have been diffused into
the halo

The evolution of kinetic and magnetic energies, as well
as the magnetic energy of the large scale field, are shown
in Fig. 7 for Buoy 2. In addition to a run starting with
just a weak seed magnetic field we also show how the ener-
gies evolve when restarting from a snapshot of Buoy 1 at
t = 800.

In the following we study the results obtained in view
of the helicity constraint, which was used extensively in
B2001 in order to understand the slow growth of the large
scale field and its final saturation level.

Fig. 7. Evolution of kinetic and magnetic energy together with
the magnetic energies of the mean field. η = 10−3. Buoy 2. The
second part of the run (t ≥ 800) was obtained by restarting
the simulation from Buoy 1

4. Helicity constraint and helicity fluxes

The resistively limited growth of large scale fields gener-
ated by helical turbulence is primarily a consequence of
helicity conservation. In the present case, however, there
is an additional surface term which results from the flux of
helicity passing through those boundaries, so the equation
of magnetic helicity conservation becomes

dH
dt

= −2ηµ0C −Q, (5)

whereH and C are magnetic and current helicities, respec-
tively, and Q is the surface-integrated helicity flux through
the boundaries.

Owing to homogeneity of the system in the two hori-
zontal directions we can consider integral quantities nor-
malized per unit surface, so the current helicity (per unit
surface) is therefore defined as

C =
1

LxLy

∫
J ·B dV ≡

∫ z2

z1

J ·B dz, (6)

where the overbar denotes x and y integration and di-
vision by the corresponding surface area LxLy (= 4π2),
i.e. a horizontal average. The magnetic helicity would be∫
A ·B dz, but in this form it is not gauge-invariant and

would change if a constant or some gradient field were
added to A, which would leave B unchanged1. The gauge
invariant helicity of Berger & Field (1984) is given by

H =
∫ z2

z1

(A+A0) · (B −B0) dz, (7)

where B0 =∇×A0 is a potential field that satisfies

∇2A0 = 0, ∇ ·A0 = 0, A0z = 0 in z1 < z < z2, (8)
1 We recall that in a periodic domain,

∫
A · B dV is auto-

matically gauge invariant, because then there are no surface
terms and

∫
rφ ·B dV = −

∫
φr ·B dV = 0 for any φ.
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and

A0 = A0 +∇⊥ × (ψẑ), ∇2
⊥ψ = −Bz on z = z1, z2; (9)

here, ∇⊥ = (∂x, ∂y, 0) is the horizontal nabla operator.
Like A, we assume A0 and ψ to be periodic. This implies
that the horizontal average of ∇⊥ × (ψẑ) vanishes. This
is the reason why we had to include an explicit A0 term
in Eq. (9) which is not needed by Berger & Field (1984).
Since the gauge-invariant magnetic helicity of the mean
field plays an important role in the present context, we
give an explicit derivation of this component of the mag-
netic helicity in Appendix A.

For the following analysis it is convenient to split the
helicity terms into contributions from mean and fluctuat-
ing fields, H = Hmean +Hfluct, with (see Eq. (A.5))

Hmean =
∫ z2

z1

A ·B dz + ẑ · (A1 ×A2), (10)

where A1 and A2 are the values of A at z = z1 and z2,
respectively, and

Hfluct =
∫ z2

z1

(a+ a0) · (b− b0) dz. (11)

The latter expression is just Eq. (7), but rewritten for the
fluctuating fields, a = A − A, and correspondingly for
the other variables. (We recall that Eq. (10) can also be
written in a form similar to Eq. (11).) The components
of the helicity flux, Q = Qmean +Qfluct, are given by (see
Appendix B)

Qmean = −(E1 +E2) ·
∫ z2

z1

B dz (12)

and (see Berger & Field 1984)

Qfluct = 2ẑ · (e× a0)
∣∣z2
z1
, (13)

where

E = ηµ0J − u×B (14)

is the electric field, and E = E + e is its decomposition
into mean and fluctuating components. In Appendix C we
give the values of magnetic energy, magnetic helicity, inte-
grated helicity flux, as well as the current helicity, for the
eigenfunction of the α2-dynamo with the boundary condi-
tion Bx = By = 0. Next we present in Fig. 8 the evolution
of magnetic energy, magnetic and current helicities, and
integrated helicity flux, for model Vert 4. Note that, in the
steady state, the helicity flux is balanced by the current
helicity term, i.e.

2ηµ0Cfluct ≈ −Qmean. (15)

The small scale current helicity term, 2ηµ0Cfluct, may
therefore be regarded as the source of magnetic helic-
ity. Somewhat surprisingly, however, most of the helic-
ity flux that is carried away results from the mean field,
whilst most of the current helicity comes from the fluc-
tuations. Similarly, |Hmean| � |Hfluct|. This dominance is

Fig. 8. Evolution of magnetic energy M , magnetic helicity H,
current helicity 2ηC and magnetic helicity flux Q, for mean
(solid lines) and fluctuating (dashed lines) field components
for Vert 4. (µ0 = 1 factors are omitted in the legends)

partly explained by the factor (kf/k1)2 = 25 by which the
large scales would exceed the small scales in the magnetic
helicity relative to the current helicity [see B2001 after
Eq. (41)].

It is then not too surprising, although perhaps some-
what disappointing, that almost all the magnetic helicity
flux is in the large scales. We note, however, that the frac-
tional contribution of small scale helicity flux does increase
somewhat with increasing magnetic Reynolds number; see
Table 2, where quantities relevant for the magnetic helic-
ity equation are given for the different models with ver-
tical field boundary condition. The fact that the Q and
C terms in Eq. (15) do not balance exactly is partly ex-
plained by the finite value of dH/dt, even towards the
end of the simulation. A potentially important feature is
the negative burst of small-scale magnetic helicity around
the time when the small scale field saturates (t ≈ 300 in
Figs. 8 and 9). In Halo 1 this is also associated with a



334 A. Brandenburg and W. Dobler: Large scale dynamos with helicity loss through boundaries

Table 2. Comparison of relevant quantities in the magnetic
helicity equation for different runs with vertical field boundary
conditions

Vert 1 Vert 2 Vert 3 Vert 4

mesh 303 603 1203 1203

η 0.01 0.005 0.002 0.001
Mmean 0.021 0.037 0.038 0.021
−Hmean 0.051 0.069 0.084 0.037
2ηCfluct 0.0012 0.0023 0.0021 0.0012
−Qmean 0.0007 0.0017 0.0017 0.0010
Mfluct/Mmean 0.3 0.7 1.6 3.2
Hfluct/Hmean −0.03 −0.09 −0.12 −0.23
Cfluct/Cmean −4 −13 −26 −69
Qfluct/Qmean −0.000 −0.003 −0.005 −0.007
εH −2.5 −1.9 −2.2 −1.8
εC −0.7 −0.5 −0.5 −0.4
εQ −0.35 −0.29 −0.23 −0.26

similar negative burst in Qfluct, as well as a with a period
of enhanced small scale and large scale Poynting flux,

Pfluct = ẑ ·(e× b)
∣∣z2
z1
, and Pmean = ẑ ·(E×B)

∣∣z2
z1
,(16)

respectively. (We recall that in the case of the vertical field
boundary condition P = 0 because B is vertical.)

Toward the end of the simulation with halo a signif-
icant mean field has been accumulated in the halo (see
Fig. 6). This is a somewhat unrealistic feature that re-
sults from the use of periodic boundary conditions at the
top of the halo. In reality the halo would extend further
and the field would be lost into the exterior (i.e. inter-
stellar or intergalactic) medium. An additional artifact of
the halo being saturated with a large-scale field is the fact
that at late times the Poynting flux is occasionally point-
ing inwards (Fig. 9), which is unlikely to occur in reality.

In Table 2 we also give the helicities and corresponding
fluxes of the mean field in terms of the following nondi-
mensional quantities:

εH =
k1Hmean/µ0

Mmean
, (17)

εC =
Cmean/k1

Mmean
, (18)

εQ =
Qmean/µ0

urmsMmean
, (19)

where k1 = 2π/L is the smallest wavenumber in the do-
main (and usually the wavenumber of the large scale field);
in our case k1 = 1. We also have µ0 = 1, but we keep this
factor in some of the expressions for clarity.

Table 3 gives the same quantities for the model with
a conducting halo. Here the overall helicity flux is gener-
ally somewhat smaller than in the case with vertical field
boundary conditions. However, the fractional contribution
of small scale helicity flux is larger. The magnetic helic-
ity production, which is dominated by 2ηµ0Cfluct, is still

Table 3. Comparison of relevant quantities in the magnetic
helicity equation for different runs with different implementa-
tions of a conducting halo. Buoy 1 has a poorly conducting
halo, whereas Buoy 2 has a halo conductivity equal to the disc
conductivity. In Halo 1 the value of η was so small that the full
saturation field strength has not yet been achieved by the end
of the simulation. The asterisks mark those quantities that are
likely to change if the run was continued further. In all cases
we use 120 × 120× 240 mesh points

Halo 1 Halo 2 Buoy 1 Buoy 2

η 0.0005 0.001 0.001 0.001
ηhalo 0.0205 0.021 0.021 0.001
Mmean 0.052∗ 0.092 0.15 0.26
−Hmean 0.170∗ 0.300 0.53 0.94
2ηCfluct 0.0007 0.0012 0.0019 0.0021
−Qmean 0.0000 0.0000 0.0007 0.0009
Pmean 0.0000 0.0000 0.0003 0.0003
Mfluct/Mmean 1.3 0.7 0.6 0.4
Hfluct/Hmean −0.06 −0.04 −0.03 −0.02
Cfluct/Cmean −10 −4.8 −4.4 −3.1
Qfluct/Qmean +0.27∗ −0.09 +0.006 −0.034
εH −3.3 −3.3 −3.5 −3.6
εC −1.3 −1.3 −1.4 −1.3
εQ −0.002 +0.005 −0.036 −0.022

similar in the two cases. In the following section we dis-
cuss why the losses of the field with large scale helicity
significantly lower the saturation field strength.

5. Interpretation

5.1. The helicity constraint

In B2001 it was possible to understand the magnetic field
evolution as a consequence of the magnetic helicity evo-
lution. The current data show that most of the magnetic
helicity and its corresponding flux is in the mean field.
Thus, helicity conservation is governed approximately by

d
dt
Hmean ≈ −2ηµ0(Cmean + Cfluct)−Qmean. (20)

Furthermore, in B2001 it was found that for strongly he-
lical fields both current and magnetic helicities are pro-
portional to the large scale magnetic energy. The same is
true here: from Table 2 we see that the ratio εH is around
2, and that εC is around 0.5–1, We also note that the he-
licity flux is a certain fraction of the magnetic energy, i.e.
εQ ≈ 0.2–0.4. Using the fact that all these ratios are ap-
proximately constant for the different runs, we may write

d
dt
Mmean ≈ −2ηeffk

2
1Mmean + 2ηk1

Cfluct

εH
, (21)

where we have defined an effective magnetic diffusion co-
efficient via

2ηeff = (2ηεC + εQk
−1
1 urms)/εH . (22)
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Fig. 9. Evolution of magnetic energy M , magnetic helicity H,
current helicity 2ηC, magnetic helicity flux Q, and magnetic
energy (or Poynting) flux P , for mean (solid lines) and fluctu-
ating (dashed lines) field components for Halo 1. All quantities
are evaluated between the boundaries z1 = −π and z2 = π.
After t ≈ 400–500 the field in the halo becomes noticeable and
effects of the periodic boundaries in the z-direction begin to
affect the evolution of the fluxes

Equation (21) has the solution

Mmean ≈
η

ηeff

Cfluct

εHk1

[
1− e−2ηeffk

2
1(t−ts)

]
for t > ts, (23)

where ts = −λ ln(Bini/Beq) is the saturation time of the
total (mainly small scale) field, λ is the kinematic growth
rate of the dynamo, and Bini is the initial field strength.
Equation (23) is analogous to Eq. (45) of B2001, but since

ηeff is much larger than η, the time scale for reaching full
saturation is reduced from (ηk2

1)−1 to (ηeffk
2
1)−1 due to the

presence of boundaries. However, this result is obtained at
the price of having reduced the saturation field amplitude.
Therefore, all this flux term really does is cutting off the
growth of the field earlier than otherwise, so at any time
the energy is less than in the case of a periodic domain.
Indeed, expanding the exponential for short enough times
we find that

Mmean ≈ 2ηk1
Cfluct

εH
(t− ts) for t > ts, (24)

which shows that the initial growth time is still inversely
proportional to the microscopic magnetic diffusivity.

There is not much scope for increasing the rate of
large-scale field production in Eq. (24). The value of Cfluct

does not strongly depend on the details of the model (cf.
Tables 2 and 3). The only way out seems to be in lowering
the value of εH , which corresponds to making the field less
helical. This is what happened when adding the effects of
shear (Brandenburg et al. 2001).

If η/ηeff becomes very small the estimates given in
Eqs. (23) and (24) underestimate the value of Mmean, be-
cause there is always some mean field that results from im-
perfect cancellations of the fluctuating field at the energy
carrying wavenumber which is here kf . The resulting en-
ergy of the mean field would be of the order (k1/kf)3Mfluct.
In the present case we are however far away from this lower
limit.

In the presence of a conducting halo the helicity flux
is smaller than in the case of the vertical field boundary
condition; see Table 3 and Fig. 9 where we also show, in
addition to magnetic helicity flux and current helicity, the
evolution of magnetic energy, magnetic helicity, and the
Poynting flux. Note in particular that Qmean now fluctu-
ates about zero. Consequently, there is no longer an ap-
proximate balance between 2ηCfluct and Qmean. Instead,
the Cmean term becomes more important and would, in
the limit of a periodic domain (Q→ 0), balance Cfluct, as
was found in the case of periodic domains; see B2001.

5.2. Comparison with a mean-field model

In the case of a periodic domain it was possible to repro-
duce the slow saturation of the magnetic energy with an
α2-dynamo with simultaneous α and ηt-quenching of the
form

α =
α0

1 + αBB2/B2
eq

, ηt =
ηt0

1 + ηBB2/B2
eq

, (25)

where αB = ηB was assumed, and both quantities were
proportional to the magnetic Reynolds number, as was
suggested by Vainshtein & Cattaneo (1992). The reason
this worked was because of the presence of microscopic
magnetic diffusion which was not quenched, and which led
to saturation such that (see Eqs. (55) and (56) of B2001)

αB
B2

fin

B2
eq

≈ λ

ηk2
1

≈ 0.01Rm (for a periodic domain), (26)
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Fig. 10. Normalized magnetic energy in one-dimensional
mean-field models with periodic and open boundary condi-
tions. The models with open boundaries allow for helicity flux
out of the domain and yield significantly smaller field ampli-
tudes when the magnetic Reynolds number, or λ/ηk2

1 , is large.
In the periodic case the growth rate is λ = α − ηT, whilst in
the case with open boundaries λ = 1

4
(α2−η2

T)/ηT. For the pe-
riodic boundary condition, squares correspond to α0 = 2 and
triangles to α0 = 5. The data are obtained numerically using
a time-stepping method

where Bfin is the final magnitude of the mean field, λ =
αk1 − ηTk

2
1 is the kinematic growth rate of the dynamo,

ηT = η + ηt is the total magnetic diffusivity, and Rm =
urmsL/η is the magnetic Reynolds number with respect to
the scale of the domain.

In the present case of open boundaries there is an
additional loss term and so Eq. (26) no longer holds. A
numerical integration of the nonlinear α2-dynamo equa-
tions with boundary conditions Bx = By = 0 (Meinel &
Brandenburg 1990) shows that the term αBB

2
fin/B

2
eq satu-

rates at a value of around 3 and is only weakly dependent
on the value of α0; see Fig. 10, where η + ηt0 = 1. In
the simulations, on the other hand, the final large-scale
field strength decreases with Rm like R−1/2

m , even though
the total (mainly small scale) magnetic field strength is
always close to the equipartition field strength; see Fig. 4
and Table 1. From this we can conclude that αB increases
only like R1/2

m . This is to be contrasted with the case of
periodic domains where Bfin/Beq was independent of Rm

and therefore αB ∝ Rm. It is important to realize, how-
ever, that the scaling of αB with Rm is secondary to hav-
ing strong large-scale dynamo action. What really matters
is the saturation level and the time scale on which full
saturation is reached. These properties are controlled pri-
marily by the magnetic helicity equation which, in turn,
is sensitive to boundary conditions, anisotropies, and the
presence of shear, for example (e.g. Brandenburg et al.
2001).

6. Conclusions

The results presented in this paper show that open bound-
ary conditions, and boundaries different from periodic

ones, can have profound effects on the large-scale field gen-
eration in helical flows. Firstly, unlike the case of periodic
domains, a strictly force-free large-scale magnetic field is
no longer possible. Secondly, the loss of magnetic helicity
through the boundaries severely limits the large-scale field
amplitude attainable in simulations. This is quite different
from the case of periodic domains, where the large-scale
field energy can exceed the kinetic energy, provided there
is sufficient scale separation between the energy carrying
scale and the scale of the system (see Sects. 3.5 and 3.6
of B2001). For an open simulation volume with a verti-
cal field boundary condition, however, the large-scale field
amplitude can be severely limited in a magnetic Reynolds
number (Rm) dependent fashion. Again, this result can be
modelled with a mean-field α2-dynamo, where the α-effect
and turbulent magnetic diffusivity are quenched. However,
the Rm-dependence of these quenching expressions is here
less extreme than in the case of periodic domains where
the field can be force-free (B2001). This suggests that a
dependence of α and ηt on B2 alone is too simplistic, and
that there might be an additional dependence on J ×B
or J ·B, for example, that would react specifically on non
force-free magnetic fields.

Our result that the quenching of α and ηt can be sen-
sitive to external factors is not entirely unfamiliar. For ex-
ample in the presence of large scale shear (corresponding
to differential rotation) the quenching of α and ηt was al-
ready found to be significantly reduced; see Brandenburg
et al. (2001). A significant reduction of the quenching may
explain why the cycle period in oscillatory dynamos does
not need to scale linearly with the resistive time scale
(which would be too long). Nevertheless, the growth time
of a large-scale dynamo with helicity does seem to scale
linearly with the resistive time scale in all cases investi-
gated so far.

In the simulations presented here, the effects of open
boundaries and magnetic buoyancy were too weak to pro-
duce any sizeable small scale magnetic helicity fluxes.
However, this leaves unanswered the question whether
small scale magnetic helicity fluxes are in principle ca-
pable of reducing the long time scales that result from
magnetic helicity conservation. In order to clarify this one
may need to resort to models where small-scale flux losses
are somehow artificially enhanced.

Finally, it should be mentioned that we have here ne-
glected the effects of an equator where the sign of the he-
licity would change. In the present framework this can be
modelled by modulating the sign of the helicity of the forc-
ing function in the z-direction. Preliminary results have
been reported in Brandenburg (2001b), but the results are
quite similar to those in the case of open boundary con-
ditions. Indeed an estimate similar to Eq. (23) has been
obtained for the resulting magnetic energy of the mean
field.

It is now important to move on to more realistic global
simulations which would automatically allow for helic-
ity exchange across the equator and produce flux losses
through winds and eruptions into the corona. It is indeed
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quite possible that significant helicity fluxes are only pro-
duced by the combined action of stratification and shear
(Berger & Ruzmaikin 2000; Vishniac & Cho 2000), which
again would automatically be addressed by more realis-
tic global simulations. Even if the magnetic helicity flux
continues to be dominated by large scale contributions,
it could be argued that such an effect could alleviate the
helicity constraint, because saturation (albeit at a lower
value) does occur earlier. It would seem necessary, how-
ever, to compensate those additional losses by more pow-
erful dynamo action. Again, the effects of shear may prove
important, because it provides additional toroidal field
that is non-helical and hence not subject to any constraint.
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Appendix A: Gauge-independent magnetic
helicity of the mean field

In a periodic domain the magnetic helicity is gauge invari-
ant, soA·B (in z1 ≤ z < z2) can be made gauge invariant
by linearly extrapolatingA from z2 to z3, where A3 = A1

is assumed, and Ai are the values of A at z = zi, where
i = 1, 2, or 3. Linear extrapolation is used because this cor-
responds to the simplest possible, current-free field. Thus,
we can write for the magnetic helicity of the mean field

Hmean =
∫ z2

z1

A ·B dz +
∫ z3

z2

Ã · B̃ dz, (A.1)

where

Ã = A2 +
A3 −A2

z3 − z2
(z − z2) (A.2)

is the linear extension of A from z2 to z3, and

B̃ =∇× Ã = ẑ × A3 −A2

z3 − z2
, (A.3)

so

Ã · B̃ = A2 ·
[
ẑ × A3 −A2

z3 − z2

]
= ẑ · A3 ×A2

z3 − z2
· (A.4)

Since A3 = A1 we have∫ z3

z2

Ã · B̃ dz = ẑ · (A1 ×A2), (A.5)

which is independent of the choice of the value of z3. In
particular, we may choose z3 = z1, in which case this
definition is identical to Eq. (7) with Eq. (9) andA0 = Ã.

Appendix B: Helicity flux of the mean field

The evolution of the gauge-invariant magnetic helicity of
the mean field is given by

d
dt
Hmean =

∫ z2

z1

(Ȧ ·B +A · Ḃ) dz

+ẑ · (Ȧ1 ×A2 +A1 × Ȧ2), (B.1)

where dots denote partial time derivatives, but, because
Ȧ = −E in our gauge (cf. Eq. (3)), we have

d
dt
Hmean = −2

∫ z2

z1

E ·B dz − ẑ · (E ×A)
∣∣z2
z1

−ẑ · (E1 ×A2 +A1 ×E2). (B.2)

The last two terms reduce to

−ẑ ·
[
(E1 +E2)× (A2 −A1)

]
, (B.3)

which can also be written as (E1 +E2) ·
∫ z2
z1
B dz.

Appendix C: Helicity flux for the eigenfunction of
the associated α2-dynamo

The kinematic α2-dynamo equation with B = B(z, t) =
(Bx, By, 0) can be written in the form

∂tB = iα∂zB + ηT∂
2
zB, (C.1)

where we have adopted complex notation, B = Bx + iBy,
and α and ηT are assumed constant. The eigenfunction
that satisfies B = 0 at z = ±π is (e.g., Meinel &
Brandenburg 1990)

B(z, t) = B0 cos
z

2
exp

(
λt− α

ηT

iz
2

)
, (C.2)

where B0 is a complex constant and λ = 1
4 (α2 − η2

T)/ηT

is the growth rate. We are interested in the marginally
excited mode, λ = 0, and so we assume for simplicity
B0 = α = ηT = 1, so we have

B(z, t) = e−iz/2 cos(z/2). (C.3)

The complex current density, J = i∂zB, is given by

J (z, t) = 1
2 exp(−iz), (C.4)

and the complex vector potential is, apart from some ar-
bitrary constant,

A(z, t) = 1
2 exp(−iz)− 1

2 iz, (C.5)

which satisfies ∂2
zA = −J and B = i∂zA. For this field the

magnetic energy Mmean, the magnetic and current helici-
ties Hmean and Cmean, as well as the integrated magnetic
helicity flux Qmean, are given by

Mmean =
π

2
= Cmean, Hmean =

3π
2
, Qmean = π. (C.6)
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The Lorentz force is J×B = (0, 0, 1
4 sin z), and the current

helicity density is J ·B = 1
2 cos2(z/2), so

〈(J ×B)2〉
〈J2〉〈B2〉

=
1
4
,
〈(J ·B)2〉
〈J2〉〈B2〉

=
3
4
, (C.7)

so the field is neither fully force-free nor fully helical, but
something in between. (For the mean fields of B2001 those
values were 0 and 1, respectively.)
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Brandenburg, A., Nordlund, Å., Stein, R. F., & Torkelsson, U.
1995, ApJ, 446, 741

Cattaneo, F., & Hughes, D. W. 1996, Phys. Rev. E, 54, R4532
Hurlburt, N. E., & Toomre, J. 1988, ApJ, 327, 920
Kleeorin, N. I, Moss, D., Rogachevskii, I., & Sokoloff, D. 2000,

A&A, 361, L5
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