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We present a Green’s function approach for quantifying the transport of a passive (teaey field in
three-dimensional simulations of turbulent convection. Nonlocal, nondiffusive behavior is described by a
transilient matrix(the discretized Green’s functinnwhose elements contain the fractional tracer concentra-
tions moving from one subvolume to another as a function of time. The approach was originally developed for
and applied to geophysical flows, but here we extend the formalism and apply it in an astrophysical context to
three-dimensional simulations of turbulent compressible convection with overshoot into convectively stable
bounding regions. We introduce a novel technique to compute this matrix in a single simulation by advecting
labeled particles rather than solving the passive scalar equation for a large number of different initial condi-
tions. The transilient matrices thus computed are used as a diagnostic tool to quantitatively describe nonlocal
transport via matrix moments and transport coefficients in a generalized, multiorder diffusion equation. Results
indicate that transport in both the vertical and horizontal directions is strongly influenced by the presence of
coherent velocity structures, generally resembling ballistic advection more than diffusion. The transport of a
small fraction of tracer particles deep into the underlying stable region is reasonably efficient, a result which
has possible implications for the problem of light-element depletion in late-type stars.

PACS numbe(s): 47.27—i

[. INTRODUCTION tively describe nonlocal transport in numerical simulations of
turbulent stellar convection. In the remainder of this intro-
The mixing of passive scalars in turbulent fluids is anduction we place this approach in context.
important problem which occurs in many astrophysical and A passive scalar field, represented by the particle concen-
geophysical settings. The transport of light elements in starfation per unit mass(r,t), in a fluid flow v(r,t) with neg-
is a prominent example. ligibly small molecular diffusion(infinite Peclet number
In the simplest treatments of mixing, one prescribes &Volves according to the advection equation
diffusion coefficient which scales with characteristic size
and velocity amplituder of the turbulence, and is typically Jc " _

e L : . —+v-Vc=0. D
much larger then the diffusivity arising from microscopic at
processes alone. The derivation of the turbulent diffusivity is
based, among other things, on the assumptiofiocélity,  (The field is characterized as passive ifloes not appear in
which means that a particle is carried only a very short disany of the equations which determing Equation(1) has
tance by one eddy before being entrained in a different eddthe solution
which is completely uncorrelated with the first.

The local prescription fails if the velocity field displays c(r,t)=c(ro(r,t),tg), 2)
long range correlations or if the dynamics is governed by
broad distribution functiongl]. This is just the situation whererq(r,t) is the position at some initial timg of a fluid
which is now known to hold in many turbulent flows, includ- particle which is at position at timet. In turbulent flow, the
ing turbulent convection in stars. Recent simulations of conparticle paths are so complicated that this exact solution is
vection[2,3] show coherent structures such as strong downnot usually desired. In practice, all descriptions of turbulent
ward plumes, which extend over several scale heights. Th#ansport are a compromise between the exact description
validity of the diffusion approximation must be called into given in Eq.(2) and a tractable simplification of it.
question in such systems. Stull and collaboraf@rshave In the local picture, the turbulent diffusion term is the first
developed an alternative, nonlocal description of turbulenthember of a Taylor series, involving derivatives @fin
transport based on Green’s-function-like constructions callegivhich the successive terms are ordered by powers of the
transilient matrices and the approach has been applied tomean free patlfor correlation lengthdivided by the size of
study a variety of atmospheric and oceanic systems througte system. Turbulent diffusion corresponds to Weopera-
numerical simulations, empirical measurements, and laborder acting onc. Higher order terms have been calculated, for
tory experiment§4—6]. In this paper we extend this meth- example by Rdiger [7], who calculated thév* term for
odology and apply it for the first time to compressible astro-turbulent viscosity and found good agreement with the mea-
physical flows. In particular, we emphasize the diagnosticsured profiles in channel flow. However, the convergence of
capability of transilient matrices and use them to quantitathe series itself is open to question, although in specific ex-
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TABLE |. Descriptive summary of the simulations. The convec-
tively unstable layer is always in<0z< 1, and the horizontal extent
is always 2 in nondimensional units.

Case Horizontal Vertical Computational Density
resolution resolution domain contrast

1 63 63 O=z=<2 11

2 126 105 —0.15sz=<15 92

amples such as the related problem of turbulent diffusion in
a weakly turbulent medium driven by the Parker instability it
was found that the series does converge and that the local
approximation is adequaf8].

When the correlation lengths are large, a nonlocal de-
scription may be more accurate. The concentratiomy be
written in terms of a Green’s function for the initial value
problem

FIG. 1. Shown is a three-dimensional volume rendering of vor-
_ / ' ' ticity vectors at a particular timestep in the high-resolution simula-
C(r’t’tO)_f dr'G(r.r",tt)e(r’, o). © tiony(case 2in regFi)ons where their}?nagnitud(gJ exceeds four times
the root-mean-square value. The upper and lower overshoot layers
[The solution(2) can be written in this manner, with the are marked by dotted lines. There are two long vortex tubes, asso-
Green’s function given by an appropriaéefunction] If the  ciated with plumelike downflow lanes, extending vertically from
Green’s function is sharply peaked abostr’ then the local the top of the convection zone downwards where they merge into a
approximation holds. A variety of more general, nonlocalcomplex vortex tangle just above the lower overshoot layer.
descriptions have been proposed which are often based on
integrodifferential or transition-matrix representations of theflow in the convection zone is turbulent and exhibits a com-
particle flux(reviewed by[4,9]; see alsd10,11)). In particu-  plex vortical structure, as demonstrated in Fig. 1.
lar, Stull and collaboratorf4] have suggested a method for ~ The velocity field appearing in Eq1) can either be a
computing a discretized analog of the Green’s functionfixed snapshot at one particular time in the convection simu-
which they term thetransilient matrix from a numerical lations or a dynamic field which is evolved simultaneously
simulation of turbulence. A variety of quantitative descrip- according to the full MHD equations. We consider both pos-
tors of nonlocal, nondiffusive transport can be obtained di-sibilities, and solve Eq(1) using lagrangian particles to rep-
rectly from this matrix once it is computed for a given flow. resent the concentratian
In this paper we develop a variant of Stull’s technique and In the following section, Sec. I, we discuss the transilient
apply it to the three dimensional simulations of turbulentmatrix method and our implementation of it. In Sec. Il we
stellar convection presented by Brandenbetrgl.[3]. These introduce various matrix moments as quantitative descriptors
are fully compressible, MHD simulations which include of nonlocal transport and we describe how such moments
overshoot into stable layers above and below the convedan be used to derive a series of transport coefficients in a
tively unstable layer. The models employ a rotating cartesiageneralized, multiple-order diffusion equation. Throughout
geometry and are tailored to represent the lower parts of théhe discussion, applications are made to the stellar convec-
solar convection zone and part of the radiative interior betion simulations mentioned above, and we summarize the
neath. The boundary conditions in the two horizontal direcprimary results in Sec. IV. A preliminary version of this
tions are periodic, and the top and bottom boundaries ar&ork has appeared elsewhéS].
impenetrable and stress-free. The evolution of the magnetic
field is governed by the induction equation with a weak seed Il. THE TRANSILIENT MATRIX
initial field. The magnetic diffusivity is small enough so that
the amplitude of the field begins to grow exponentially in
time (dynamo action At small and intermediate scales the  Our goal in this paper is to describe the nonlocal transport
Lorentz force becomes exceedingly important and leads sulsf a passive scalar field.e., a collection of tracer particlgs
sequently to saturation of the dynamo. However, the magin simulations of convective turbulence in a manner analo-
netic energy here is just a few percent of the kinetic energygous to Eq(3). To this end, we can define a discrete version
and there is evidence that such weak fields do not greatlgf the Green’s function which describes the transport of
influence the probabilistic properties of the flow such as tharacer particles from one subvolume in the computational
local expansion rates of fluid particles and the topologicadomain to another as a function of time. Following Stull and
entropy[12]. collaborators[4], we refer to this discrete analogue of the
We consider data from two different simulations, summa-Green’s function as théransilient matrix of the flow. Al-
rized in Table |, that differ mainly in their resolution (63 though the system is deterministic, the transilient matrix can
meshpoints in case 1 and £26105 meshpoints in case 2 be regarded as describing the set of probabilities that a tracer
and Reynolds number€800 and 1200, respectivelyThe  particle originates in one subvolume and ends up in another.

A. Basic formulation
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Indeed, in text books on stochastic calcufdg] this is re-  horizontal distribution in all initial tracer fields is uniform
ferred to as the conditional probabilifg(r,t|r’,t’) that a  within each vertical bin. The prognostic capabilities of tran-
particle at positiorr’ at timet’ ends up at positiom at a  silient matrices and the consequences of horizontal averaging
later timet. This probability obeys the forward Kolmogorov will be discussed in more detail at the end of this section.
(or Fokker-Planckequation In principle, the transilient matrix for a flow can be com-
P puted by a series of numerical experiments, each measuring
—P(rt|r' t")+V,[v(r,t)P(r,t|r' ,t')]=0, (4)  the response of the system to different initial tracer concen-
at trations(usually resemblings functiong. However, this be-

where the effect of particle diffusion has been neglected?omes impractical for turbulence simulations because of the

This equation is identical to the equation for the par,[iclecomputatlonal expense. A more efficient alternative, used by

concentration per unit volume. Therefore the Green’s funcStull and colleagueit], is to solve a set of differential equa-

tion for the concentration per unit mass. is related®taia tions, each describing the time evolution of a passive scalar
P ' field with different 5-function-like initial conditions. We in-

G(r.r' tt)=p Xr, 0P Ar thp Xr' t"), (5 trodu_c_e here an even more efficient_ way of calculating the
transilient matrix G;; , which involves injecting a large num-

wherep is the density of the fluid. ber of passive tracer particles, initially uniformly distributed

The transilient matrix formalism is similar to other dis- among the levels, advecting them with the flow, and then
crete transition matrix approachés.g.,[10]) and is closely computing the matrix directly from their statistical behavior.
related to many analytical models such as nonlocal generaliFhis approach is only valid if microscopiainresolved dif-
sations of the more familiar concept of turbulent diffusion, in fusion of the tracer field can be neglected, or in other words,
which the turbulent flux of a passive scalar is assumed to b# the associated Peclet number is large. Such an approxima-
proportional to gradients in the mean concentrafibt]. For  tion is appropriate for the flows we are considering because
comparisons between transilient turbulence theory and othéhey are reasonably turbulent, with momentum and energy
transport models, sefet,15). However, note that many as- transport in general dominated by resolved convective mo-
pects of these comparisons concern the use of transilient méons. However, it should be kept in mind that large gradients
trices as a turbulent closure model, which we do not in gencan develop in localized, transient regions of the flow where

eral encouragésee the end of this sectipn diffusion can become important and the advective approxi-
When considering thermal convection, it is natural to firstmation may break down.
focus on transport in the verticat) direction, parallel to the In order for the transilient matrix to reflect the evolution

direction of the gravitational field. We therefore choose ourof the tracer particle concentration per unit mags,t), the
subvolumes to be horizontal layers. As a result, the corre-subvolumes” or “bins” used to construct it must each
sponding transilient matrix will represent the time evolutioncomprise an equal mass of fluid. Thus, the vertical extent of
of the horizontally averaged particle concentration, denote¢ach horizontal layer must systematically decrease as the
by c(z,t), or rather, its discrete analogug(t), wherei de- density increases toward the bottom of the computational
notes a horizontal layer, or bin. Following E() we can domain. Alternatively, bins of equal vertical exteabnstant

then express the temporal evolution of the mean concentr¥°/Ume could be used, but the resulting matrix would de-
tion per unit mass as scribe the evolution of the concentration per unit volupt,

and it would no longer strictly correspond to the Green’s
_ _ function for equation(1). Note that this was not an issue in
ci()= > Gy;(1,0)c;(0), (6)  previous applications of the transilient matrix technique,
which were concerned with Boussinesq flujds5]. Bins of
where the subscriptsandj again refer to vertical bins and constant mass have been used for the present work except
where we have chosen the origin of our time coordinate tovhere otherwise noted in Sec. Il B. The number of bins to
correspond to the instant at which tracer particles are inconsider is to some extent arbitrary, but here we choose it to
jected. For convenience, we will sometimes refer to thebe equal to the number of grid points in the vertical direc-
Green’s function in continuous spacg(z,z’,t,0), which is tion, so the width of a bin is larger than the grid spacing near

approximated by the transilient matrix as the top of the computational domain, where the density is
low, and smaller near the bottom.
G(z,z{ ,1,00=G;j;(1,0), (7) The temporal evolution of the transilient matrix for one of

the simulations(case 2, is exhibited in Figs. 2 and 3. Al-
wherez; andz; are the depths about which the destinationthough the spatial extent of each constant-mass bin increases
and source bing,andj, are centered. with depth, the matrices are plotted with respect emdz’

The horizontal averaging present in E¢®). and(7) does  [see Eq(7)] in order to simplify their physical interpretation
not compromise the accuracy of the matrices because it isnd to compare them with analogous matrices obtained using
performedafter the full three-dimensional evolution of the bins of constant volumésee Fig. 5 beloy If the mixing
tracer concentration is computed. In other words,occurred via classical diffusion in an infinite domain, cross
G(z,2',t,0) can only be obtained by computing the evolutionsections through the matrix would yield Gaussians which
of a fully three-dimensional tracer field(x,y,z,t) for all  would progressively decrease in amplitude and increase in
times between 0 and Once computed, the matrix can then dispersion with time.
be used to calculate the temporal evolution of other initial Note in the simulations the asymmetric spread away from
concentrations with different vertical profiles, provided thethe diagonal, which is the initial state. Although the peak
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concentration arising from a source level is typically ad- The transilient matrix, by its nature, must satisfy certain
vected upward, the downward moving particles tend toconstraint§4]. Among themG;; must lie between zero and
propagate away from the diagonal more rapidly, reflectinqunity, since it is a fractional measure. Also, particle conser-
the presence of broad upflows and relatively strong, narrowation requires that the sum over each colufioe., over all
downflows which are characteristic of turbulent compressgestinations for a particular source levetjual unity unless
ible convection(e.g.,[16]). This is in stark contrast to nu- tracer particles are allowed to escape the computational do-
merical simulations and laboratory experiments of atmo+ynain. If the mass fluxpv, is divergenceless, and if bins of

spheric boundary-layer convection, which generally exhibit.onqtant mass are used, then the sum of the matrix elements

narrow upflows and broader, weaker downflows, and the aS% each row must also equal unity, provided the tracer par-

sociated transilient matrices are skewed in the opposite Seng|e advection accurately traces the fluid motions. However,
as those presented here6]. in a fully compressible, time-dependent flow this need not be
the case and particle accumulation in a given mass bin is

g:zz ] Conzvection : : E possible(r_lote_ that_ this statement also applies if_a_l snapsh(_)t of
; one I the velocity field is used to compute the transilient matrix

~ 0.20F | ' ] Figure 4 demonstrates that there is little accumulation on any
3 : ; level for the simulations presented here, with the notable
< 0.15¢ | g E exception of the upper overshoot region in case 2.
&3 0.10F ' : 9 We emphasize that although the transilient matrices

005k m"'&hx ] shown in_ Figs. 2—4 and defined by Eaj_é) and_(?) describe

) : s only vertical transport, the full three-dimensional trajectory

of each tracer particle is computed for all times. Horizontal
averaging is only performed afterward in order to condense
the vast amount information contained in the particle trajec-
FIG. 3. A cross section through the transilient matiith bins ~ [Ori€s into a more manageable, reduced form represented by

of constant magsfor case 2 at the same times as in Fig. 1. Thethe transilient matrices.

concentration begins as &function at the source depth, marked  Still, the horizontal averaging has many implications, par-
with a dotted line, and the progressively more disperse curves coticularly concerning the prognostic capabilities of the transil-
respond to later times. Again, dotted lines mark the boundaries dfent matrix approach. First of all, although H@) is an exact
the convection zone. solution of Eq.(1), Eqg. (6) is not the solution of the horizon-

0.0 0.5 1.0 1.5
destination depth z
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1.40F most useful agliagnostictools, providing ana posteriori
130F | mean particle distribution description of average properties of the flow. They also pro-
case 2, t = 21 vide an efficient way to calculate the temporal evolution of a
o 1.20¢ variety of different(horizontally homogeneousnitial par-
W10k ticle concentrations, using simple matrix multiplications
rather than full three-dimensional simulations for each initial
1.00¢ profile.
0.90E. . . .
0.0 0.5 1.0 1.5
depth z B. Variations and extensions

FIG. 4. Shown is the sum over each row of the transilient matrix When computing the transilient matrix for a dynamical
for case 2 at timet=21. For uniform initial conditiongc;(0)  System such as turbulent convection, one has the option of
=1], this is equivalent to the total particle concentration on eacteither using a single, time-independent snapshot of the ve-
destination level, according to E¢f). locity field to advect particle&@s in Figs. 2—%or to continue

solving the full fluid equationsor in this case the full MHD
tal average of Eq(1), nor is it the horizontal average of Eq. equation$ and thus evolve the flow in time while the par-
(3) [note that the discretization in E¢p) is irrelevant to this  ticles are being advected. If the fluid has reached a statisti-
conclusior]. The fact that the average Green’s function wecally steady state then the naive expectation is that there will
compute is not a Green'’s function for the averaged dynamicbe little difference between the two approaches. However, as
means that the Green’s function cannot in general be “repointed out by Vincent, Michaud, and Menegu#i7], a
started.” To illustrate this, consider two timesandt,, such  “frozen” or “fixed” velocity field can produce too coherent
that 0<t,<t,. According to Eq.(6) an advection and thus overestimate the transport.

Figure 5 demonstrates that the use of a fixed rather than
an evolving velocity field has little influence on the transil-
ient matrices computed for the simulations presented here,
although there is some indication for slightly enhanced trans-
where the final equality treats;(t) as an initial condition. port in the lower overshoot region and at the upper-ridge-like
But, since Ej(tl):Eijk(tl,O)a((O), cf., Eq. (6), we “advection front.” This suggests that the use of a single
should have snapshot in order to mitigate the computational requirements

does not significantly alter the results and the subsequent
conclusions. In the remainder of this paper, therefore, we
Gij(t2,0)=2k Gik(t2,11)Gyj(t1,0). ©) present results obtained primarily with fixed velocity fields.
Figure 5 also demonstrates another variation in the way
Although Egs.(8) and (9) hold if the flow is horizontally the transilient matrix can be defined and computed. The ma-
homogeneousgand if the initial tracer concentration is hori- trix shown in Fig. %a) corresponds to the same fixed velocity
zontally homogeneouysthis is not in general the case. In field as in Figs. 2—4, but was obtained using bins of uniform
fact, Egs.(8) and(9) are generally not satisfied for our com- volume rather than bins of uniform mass. The results are
putations. The horizontal averaging represents a loss of ingualitatively similar, although the constant-volume binning
formation about horizontal particle positions, so if significantstrictly describes the evolution of the concentration per unit
horizontal inhomogeneities are present, such as coheremblume,pc rather than the concentration per unit mass,
downflow lanes, Eqs(8) and(9) are no longer satisfied. In A number of more sophisticated three-dimensional bin-
this context, it is important to point out that transilient ma- nings are also possible, producing a more general Green’s
trices do not provide @rognosticturbulence closure model function which depends on six spatial dimensioqsy, z,
in the usual sense, although they have been used for this, y’, andz’. However, computer memory storage and vi-
purpose[4,5]. Instead, transilient matrices are in generalsualization requirements become prohibitively large at high

E<t2>=§ Gij<t2,0>€j<0)=$ Gij(t2,t)gi(ty), (8
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FIG. 5. Two transilient matrices are compared, the first computed with respect to a fixed velocitpfiafdl the second with respect

to a time-evolving velocity fieldb), as discussed in the text. The contour levels are the same as those used in Fig. 2. A horizontal cross

section of each of these matrices is plotted in paigl with the solid and dotted lines denoting the fixed and evolving flow fields,
respectively. Both matrices correspond to case 2=a6.3. Unlike the matrices shown in all other figures, these were obtained using
constant-volume bins.
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resolutions unless some substantial coarse graining is impleectively stable and unstable regions break the symmetry.

mented. Alternatively, we can generalize the approach t&We therefore present the method here only for its potential

study horizontal transport without too much trouble if we interest.

simply include the average horizontal particle displacement Finally, it is straightforward to adapt the transilient matrix

as an extra dimension—that is, if we consi@j;(t), where  approach to study the passive advection of vector fields for

v is the root-mean-square horizontal displacement of a pawhich the flux through a material area element is conserved.

ticle which begins on level and ends up on levélafter a  Applications include the transport and amplification of weak

time t. In practice, even this reduced matrix can becomemagnetic fields in an infinitely conducting medium, which

prohibitively large, so here we select only particular sourcecould have relevance for convective dynamos and associated

levels,j, and use a more coarse binning for the destinatiorflux transport. Note that in the case of solenoidal fields such

levels. Results obtained using tfg,;; matrices will be pre-  as this, it is generally more practical to follow the advection

sented in Sec. Il of the corresponding vector potential in order to guarantee

An alternative way to describe the time evolution of ver-the divergence remains zero.

tical structuregin a rectangular geometrywhich can poten-

tially provide insight into the scale properties of the trans- Il. APPLICATIONS

port, is by introducing a transilient matrix, or equivalently a ]

Green's function, in Fourier space. For simplicity, we begin A. Matrix moments

with the continuous analogue of E): Once the transilient matrix is known for a given flow, a
number of quantitative measures of nonlocal transport can be

?(Z,t)=f G(z,2',t,0)c(z',0dZ". (10) obtained from it dirgctly. In this section we _con_sid<_ar the

moments of the matrix with respect to the destination indices

. . ) ] at each source level:
Multiplying Eq. (10) by expfk2), integrating overz, and in-

troducing the equations which define the Fourier transforma-

tion: M}”)=Z (j—D)"Gj; . (15
E(k,t)=fx E(Z,t)eikzdz (11) Analogqus_ moments can a!so be o!efined relative to the
—w source indices. We will restrict attention to the mean, vari-
ance, and kurtosis, which are the first, second, and normal-
and ized fourth-order moments, respectively,
— o __ o _dk M':M(l), d>=M®, and k,=M®*/o2. (16)
c(z,t)=f c(kitye "o, (12) b e b

For classical diffusion in an infinite domaip,;=0, «;=3,
and ojz increases linearly with time.
Because of the inherent anisotropy of the vertical trans-
5 x _ port, we generally split the even moments into upwaird (
c(k,t)zJ G(k,k’,t)c(k",00dk’, (13 <j) and downward i>]) components and consider them
o separately. Furthermore, E¢L5 can be generalized in a
straightforward way to the transilient matrix for horizontal
transport,G,;;(t) discussed in Sec. Il B, to yield moments
with respect to the destination sheld{"V=3 "G ;. In
1 (= . . I J
é(k,k’,t,0)=—f G(z,z' 1,00k K'2)qzd7. what follows, when computing the horizontal moments and
27 ) similar quantities, we only consider several selected injection
(14 levels for particlesj, and for each only consider destination
) o ) levels within 5 mass bins of the sourcB £ j|<5), which
Thus, the Green’s function descr~|b|ng the evolution of Fouye then combine to yield a matrix that is in effect only a
rier components through E@13), G(k,k’,t,0), is given by  function of horizontal displacement, source levelj, and
applying a Fourier transformation with respect to the destitime, t.
nation (first) index of the original Green’'s function, The destination means for a collection of tracer particles
G(z,z',t), and an inverse transformation with respect to theinitially uniformly distributed among mass bins are exhibited
source(second index. The realimaginary diagonal terms, in Fig. 6 as a function of depth and time for both simulations.
wherek=k’, describe the decay of individual cosif&ne The substantial difference in upward and downward trans-
modes, the imaginaryrea) diagonal terms describe phase port can be attributed to the effects of density stratification
shifts, and the off-diagonal terms, wheketk’, describe on the velocity field and deep convective penetration into the
mode mixing. lower stable region. Large-scale horizontal converging flows
This spectral approach is most useful when the system toear the top of the convection zone sweep particles into
be described is periodic in the dimension which is dividedstrong downflows which persist over several scale heights
into subvolumes. This is not the case for the present workand transport particles to deeper layers where the more tur-
which involves binning in the vertical dimension, where thebulent conditions and less efficient large-scale upward trans-
boundaries, the stratification and the transition between corport make a rapid return trip unlikely. Upward moving par-

we obtain

where
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2.0 indicates that there is no significant accumulation there. The
relatively inefficient mixing and particle accumulation in the
—————— topmost level in case PFigs. 4 and B indicates that once
S ———— particles are advected into the stably stratified region above
the convection zone, they tend to remain there.
N — ] N The square root of the variance is another measure of the
£ 10 =] typical particle displacement, or mixing length, measured in
g e mass bins if the transilient matrix is so constructed. The up-
0.5 ward, downward, and horizontal variances as a function of
time at several depths for both simulations are shown in Fig.
0.5 7. The axes are logarithmic so the linear behavior over some
Case 1 Case 2 time intervals apparent in the plots implies a power law re-
00— lationship of the formo?~tA. A similar power-law behavior
00 Lot B — is found for most levels, and the value of the best-fit expo-
o s t:rge 15 20 °© s t:rae 15 20 nents,, as a function of depth are shown in Fig. 8. The fits
typically yield a value close to two, with the notable excep-
(a) (b) tion of the vertical transport in upper half of the convection

zone.

FIG. 6. The mean destinatiop; is shown as a function of In many other physical systems as well, the variance is

s_ourc_e_depth and “”?e fc(a_) ca_se_l andb) case 2. The initial { . found to scale with time as?xt#, with 8=1 corresponding
=0) injection of particles is distributed equally among mass bins lassical diffusi | h . f
(not all bins are displaygdRecall that the convection zone lies in to classical diffusion. A value o greater than 1 is referred

the range 8<z=<1 in both simulations and that a convective turn- {0 @s superdiffusive doallistic behavior, whileg<1 is said
over timescale is roughly 20 in dimensionless time units. to be subdiffusive ostagnant18]. In practice, the value of

B can vary significantly between flows, with turbulent trans-
ticles, on the other hand, upon nearing the top of theport being generally superdiffusive. For incompressible,
convection zone, will quickly be swept into strong down- three-dimensional, isotropic, homogeneous turbulence, for
drafts and rapidly reverse direction in roughly half the turn-example, Richardson’s law predicf3=3. Bohr and Pik-
over timescalédepending on their initial heightThese ten- ovsky [20] found moderately superdiffusive behavigs,
dencies are particularly evident in Fig.ah =1.38, for the Kuramoto-Sivashinsky equation, which is a

The intersecting curves in case 1 suggest large-scalsjmple, nonlinear field equation exhibiting spatiotemporal
overturning motions while the more turbulent simulation,chaos. Laminar advection at a constant velocity, from, say, a
case 2, suggests less efficient transport, possibly dominatetivergent source, is also superdiffusive, characterizegB by
by more localized, less coherent velocity structures. The=2, although laminar convective rolls are subdiffusive, and
mean displacement in case 2 suggests a convergence of parvalue of 3=1/3 has been predicted and experimentally
ticles in the lower convection zone, although Fig. 4 aboveverified[19]. Lawrence and Schrijvg21] also found subdif-

: 10°F
10%F 102k
10F 10k
% 1k o 1k
; FIG. 7. The upward(dotted
107'E - 107k - 3 lines), downward (dashed ling
f Mid Convection Zone o - © Mid Convection Zone ), . ( . )5
107°E , 3 1072k ) 3 and horizontal(solid lineg vari-
0.1 1.0 10.0 0.1 1.0 10.0 ances, or mean square particle dis-
time i time placements, are shown for cases 1
102k Case 1 182_ and 2 as functions of time at a
P vase ok layer within the convection zone,
N 10% . L another in the stable region below
© 1F > - it, and another at their interface.
F o 10 .
107"k - 102k | The upward and downward vari-
10_2; Convection Zone Base ] 103k ’ Convection Zone Base | ances are the destination moments
- ’ o?, and are measured in mass
0.1 1.0 10.0 0.1 1.0 10.0 b'J hich b I ith
time time bins, which become smaller wi
E : increasing depth but are compa-
10F  Case 1 108 cCase 2 rable to the vertical grid spacing.
1F 3 The horizontal variances are given
% 10-'L oy 10“%— - in terms of the horizontal grid
102 1072 ad spacing.
_ Stable Region 10_3%’ Stable Region
107k L 107t .
0.1 1.0 10.0 0.1 1.0 10.0

time time
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6[ T ' ' which implies aB of 4. The generalization of this result to
Lo Case 1 ] more than one downward plume yields the same temporal
4r scaling. So, converging flows and downward plumes could
@ be responsible for the increase gffor downward moving
2F particles near the top of the convection zone, where such
L velocity features may dominate the transport. The small val-
ol . . . ] ues of B8 for the upward variance near the top can be attrib-
0.0 0.5 1.0 1.5 2.0 uted to the flattening of the?(t) curve as particles reach the
depth z top of the convection zone and reverse directieee Fig. 7.
6 ' ' ] While the variance provides a measure of the dispersion
AN Case 2 ] of the tracer particle distribution function, the kurtosis pro-
S RN ] vides a measure of its shape. The kurtosis values associated
@ AR ] with upward, downward, and horizontal transport are exhib-
2r . ited as functions of depth and time in Figs. 9 and 10. Sur-
i prisingly, apart from only a few exceptions, the results are
o] IS . . ] largely independent of time. The mid convection zone in
0.0 0.5 1.0 1.5 case 2, for example, exhibits a kurtosis variation of less than
depth z 25% (Fig. 9), over a time interval in which the variances

increase by three or four orders of magnitu@ég. 7). The
kurtosis therefore provides a useful quantitative measure for
the shape of the transilient matrix as it evolves away from
the diagonal. The valuge=3 is expected for diffusive pro-

fusive t 3~0.89. for ob d ic feat ._cesses. The larger values exhibited by both simulations, es-
usive transport~0.89, for observed magnetic eatures in ecially for downward transport, point to the importance of
the solar photosphere. Our results for the convection smulﬁ

FIG. 8. Best-fit power law exponents which satigfy<t? as a
function of depth. AgB value of two corresponds to advective be-
havior, while 3=1 implies classical diffusion.

. o cer i high-amplitude displacement events, likely produced by in-
tions pr_esented her_e |nd|cat_e su_perdlffuslve transport in bc_)t rmittent velocity structures such as strong, localized down-
the vertical and horizontal directions, which likely arises pri-

. ward plumes. However, horizontal transport, particularly in
marily from large-scale, coherent flow structures.

TH latively | | for the d d . the more turbulent simulation, case 2, exhibits kurtosis val-
e relatively large value g8 for the downward variance ues closer to 3.

near the top of the convection Zone can be undgrstood if the The kurtosis associated with downward transport in both
upper layers are modeled as horlz_ontal flows which converg imulations peaks sharply near the base of the convection
inta downward plumes. To see this, note that the downwar one, with less dramatic kurtosis peaks also occurring for

variance for a collection of tracer particles is given by upward moving particles in the lower overshoot region.

These large kurtosis values imply that penetrative convection
d¢ can efficiently transport a small fraction of passive tracer
N_o' particles deep into the underlying stable zone. In late-type
stars, such mixing processes are often invoked to explain
observed photospheric depletions of Lithium, Beryllium, and
other light element$22]. Most theoretical models of light-
element depletion rely on chemical transport during the
stars’ main sequence lifetimes from their convection enve-
lopes deep into their stable interiors, where light elements
are efficiently burned. The results presented here help to sup-
port the idea that penetrative convection can provide such a
transport mechanism.

o5= fo EPNG(L)

wherel=z—-2", Ny is the(initial or steady statenumber of
particles in the source level & 0), andN,({,t) is the num-
ber of particles located a distan¢ebelow the source level.
For simplicity, we consider a single downward plume with a
characteristic, approximately constant velocity. In this
case,N,(¢,t) will vanish for {>wyt and will equal R(t

— {lwyg) for {=wgt, whereR(t) is the rate at which particles
enter the downflow af=0. This rate is given by the time
derivative of the total number of particles which have en-
tered the downflow after a timehas elapsed, which in turn
is given by the(initial or steady stafeparticle concentration ) ] _ )
in the source levelg,, multiplied by the volume of fluid As discussed in the introduction, a common approach to
swept up by each downflowr(ugt)2Az, whereu, is a typi- the s_tudy of transport in f!wds centers arqund_ a Taylor ex-
cal horizontal velocity scale of the converging flow akzlis ~ Pansion of Eq(3), which yields turbulent diffusion and ad-

the thickness of the source layer. So, putting this all togetheection together with terms involving higher order deriva-
we haveR(t) = ZwugAzcot and tives of the tracer concentratioq, If the correlation length

of the velocity field is small compared to the gradient length
Wt dz scaleD of the system, the magnitude of these terms will in
crﬁ(t)=27-ru(2,Azc0f 22(t— Elwg) — (17) general decrease with increasing order as pow_erls/lbf
0 No Even if such a convergence occurs, one must still compute
the coefficients of the Taylor expansion up to the order at
which they become insignificant.
’ (18) Transilient matrices contain the information needed to
6Ny compute such Taylor expansion coefficients, and we now

B. Generalized diffusion equation

TUGWHAZG |,
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15:— Case 1, Mid Convection Zone - 15:— Case 2, Mid Convection Zone -
10F P 10F .
e ¥ ] e N ]
5L sE TN e e 3 FIG. 9. Shown is the kurtosis
" ] P e T S e in the upward, downward, and
ot : : : - ot : : : ] horizontal directions, x, repre-
0 S 10 15 20 Y 5 10 15 20 sented, respectively, by dotted,
time time

dashed, and solid lines, for cases 1
15:— Case 1, Convection Zone Base - 15:— Case 2, Convection Zone Base - and 2 at three selected levels in
r ~~ ] r ] the computational domain. The
100Fc~=--" ] 10F ~ . e upward and downward kurtosis
[ 1 e ] values are the destination mo-
5F ] 5F ] mentsx; and are computed with

. ] respect to mass bins. The horizon-

OO 5 10 15 20 OO 5 10 15 20 ta] kurtosis values are computgd
time time with respect to the horizontal grid
. . - . spacing. The artificial cutoffs at
15 Case 1, Stable Region b 15 Case 2, Stable Region b early times are imposed because
: ] f ] there are initially too few levels
e OF 1 o 'oF ] populated €5) to give a reliable
E T 1 [ o~ - ___ 1 result.
5t P kil St T B
0 . . . ] 0 . . . .
0 5 10 15 20 0 5 10 15 20
time time

proceed to derive them, following a procedure described b¥q. (7)], {=z—2z' and the angular brackets denote an aver-
Van Beijeren 23]. The first step is to write the Fourier trans- age over all tracer particles. The Green’s function can then
form of the Green’s functiorihere we use the continuous be expanded in the Taylor series for Efj9) and written as

version,G(z,z' ,t)=G(z,2’,t,0), for simplicity] as follows:
é(k,z',t)=fe*“@G(g,z’,t)d§:<e’”‘5>, (19 G(k,z' ,t)= n) (20)
wherez' andz are again the source and destination depths ® .iin
[corresponding to levelsandj in the transilient matrix; see =exp( D (ik) wl. 21)
20? Case 1 N\ E where they,, are cumulative moments, which can be found
15F . ,’ \ 9 by equating like powers df in the two serieg20) and(21)
" 10;_ " [23]:
5— x1=—({), (22
otz . o .
0.0 0.5 1.0 1.5 2.0 x2=(%)— ()%, (23
depth z 3 5 3
— . Xa= (%) + 304D 2%, (24)
20;‘ Case 2 ,I\\ 1
15E PR ] R (25
F 1 \
% ok [N 3 Taking a time derivative and applying an inverse Fourier
/ SN . .
sk _ AR transformation to Eq(21) then yields
ob._. . .
0.0 0.5 1.0 1.5 —G (2,2 t)= Z T2 ,)==G(z,2' 1),  (26)
depth z

FIG. 10. The kurtosis in the upwardotted liney, downward ~ Where the transport coefficients are given by
(dashed lines and horizonta(solid lineg directions are shown as a
function of depth for cases 1 and 2 at a titsel6.8. The cutoffs for T :i IXn
the upward kurtosis near the top of the convection zone and the " nl gt
downward kurtosis near the base are imposed because at levels
closer to the boundaries, there are too few data points to give Again, in the spirit of the Green’s function formalism, an
reliable value. expansion in terms of these transport coefficients yields the

(27)
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= 1of ol ]
N gs5F 10
i e 1074 -
~ 0.0 —c
E o ET 10701 ]
- —-0.5¢F Case 1 ] -8
~ [ Vertical Transport ] 10 - 4
= —1.0L . . . b _10 Case 1
0.0 0.5 1.0 1.5 2.0 10 C . . . . . ]
depth 2 1 2 3 4 5 8
-~ 1.0F P L] b n
O AR (©) R —
o 05F i _9
A i 10 °r ]
~ 0.0 _
R 0Tt -
E._ -0.5F = 10_6_ i
~ [ Vertical Transport -
- =1.0_. \ -8
0.0 0.5 1.0 1.5 1077 Case 2 1
depth z 10”101 ]
@ 1.0; \ ' ' ] 1 2 3 4 5 6
< E () ]
~ 0.5F % b n
] E*
& 00f ',-.,..L...,._.__._._._._. FIG. 12. The magnitude of each transport coefficigmt,, is
_E _osb 7 ] plotted for both simulations as a function of order, at time't
S F Horizonctzfe'r:ansport =3.36. Results are averaged over depth and include both vertical
= —1.0tL (asteriskgand horizontaldiamond$ transport. By construction, the
0.0 0.5 g 1£} 1.5 2.0 computed horizontal transport coefficients vanish for addilues.
epth z
= 1.0f conservation law. Similar relations also hold for horizontal
:I 0.5k transport, but note that the assumption of isotropy inherent in
o - our approach implies that the only nonzero horizontal trans-
T OO ] port coefficients are those witheven.
= o5 . . Case 2 ] The first three nonzero transport coefficients in the verti-
= F Ve . ] . . . . . .
> _4of .\, -  Horizontal Transport | cal and horizontal directions for both simulations are exhib-
0.0 0.5 10 15 ited in Fig. 11 as a function of source depth at tire
depth z =3.36. Note that, for the horizontal transport, only 13 and 14

depths were chosen respectively out of the 63 and 105 avail-
FIG. 11. The transport coefficient§;, T, and Ts (solid,  aple for the two different runs, so the curves are not com-
dashed, and dotted lines respectiyedgscribing vertical transport plete, but do show a definite tendency for the coefficients,
as afur_lction of depth are shown i_n pI(Q!ﬁ_and(b) for cases_l and_ especially in case 1, to decrease with defifth the excep-
2ata tlmet.=3.36. All are normalized with respecF to their maxi- tion of the uppermost level in case 2, which is located in the
?”meaa?r:‘c'it$d‘9(Za'iD(:°t§3t;';d (:3] ;Zi"ghtgg FS&?:Zfdoxz:ﬂestgf relatively quiescent, convectively stable overshoot region
hg;izo‘r‘]’tal tran5sp0rt for the same simulations and tirr?e g Some decrease in the efficiency of horizontal transport with
' depth is expected because the characteristic horizontal veloc-
ity decreases with increasing density, although this does not

particle fluxes that would arise in terms of local derivatives . : : :
o i . explain the more rapid decrease with depth of the higher
of the concentration if the initial concentration were a delta

function at levelz’. Thus, the time derivative of the concen- order coefficients. Note also that the hyperdiffus{osurth-

) . o S . ordep term for horizontal transport is negative in both simu-
tration for an arbitrary initial condition is again a sum over ,_. I e
S e lations, corresponding indeed to diffusive as opposed to an-
all the individual contributions:

tidiffusive behavior.

% n The first-order vertical coefficient can be regarded as a
Jd— J — . . . L . -
_C(Z’t):f > Tz .t)—==G(z,2' ,t)c(z',0/dZ, typical advection velocity, and exhibits positive and negative
ot n=1 Iz values in the upper and lower regions of the convection zone

(28 respectively. The second and third order coefficients peak in

the mid to lower convection zone, where vertical mixing is
most efficient. The secondary peaks in several of the coeffi-
cients just below the interface with the stable region indicate
a typical scale at which downward plumes penetrate, diverge
5 - o horizontally, then reverse direction due to buoyancy forces
iy 7= and transport particles back upward.
&tc(z’t) nzl T”(t)& nc(z). 29 The magnitudes of the transport coefficier{s,|, aver-
aged over depth for the same times as shown in Fig. 11, are
Whether the transport coefficients can be taken outside thglotted in Fig. 12 as a function of order, For both vertical
integral or not, the right hand side of E@8) is in the form  and horizontal transport, the expansion of E2f) is found
of the divergence of a generalized flux, as expected for & converge exponentially with increasing The relative

and if theT, are independent of depth, i.e., if the flow is
statistically uniform with depth, this reduces to the more fa-
miliar, but less general equation,
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dominance of theT; coefficient indicates that the vertical diffusion equation are found to converge exponentially with
transport is more advective than diffusive, which is consisdincreasing order of the differentiatidifrig. 12. The advec-

tent with Fig. 8 above. tive nature of transport in the convection zone can likely be
attributed to coherent flow structures such as downward-
IV. CONCLUSION directed vertical plumes and converging horizontal flows,

) N ~which lead to ballistic particle trajectories. Advective trans-
In this paper, we have extended the transilient matrixyort in the convectively stable layer could be due to over-

technique[4,5] for describing nonlocal transport and have shooting downward plumes and particle trapping in gravity
applied it to simulations of turbulent compressible coNvecyaves[25].
tion in stellar interiors. We have emphasized the diagnostic The destination kurtosis as a function of source depth pro-
capability of the approach, although we also demonstrate thgfides a useful measure of how the tracer particles disperse.
the transilient matrix cannot be applied recursively, whichgor horizontal transport, it is-3, but for vertical transport it
limits its utility as a prognostic turbullence closure modt_al. is generally larger and more depth-dependent. Both simula-
We have found little difference in the results obtainediions exhibit a sharp peak in the kurtosis associated with
using fixed or time-evolving velocity fields, which suggests ownward transport near the base of the convection zone
that the flow's transport properties are governed by its spatialhich may have implications for light-element depletion in

complexity, and that temporal changes are comparatively ursiars with convective envelopéSec. Il A).
important. There are examples of other flows where this is

not the case. Turbulent shear flows in rotating astrophysical
discs, for instance, show strong converging flow regions
which can lead to persistent particle accumulation, but time
evolving simulations show that the patterns evolve before This work was supported in part by the NASA Sun-Earth
particles have a chance to accumulgtd). Connection program, by the NSF Grant No. AST-9521779,

In both simulations considered, the turbulent transport i9y the Advanced Study Program at NCAR, and by the
found to be nonlocal, anisotropic, and more advective thaPPARC Grant No. GR/L 30268. We are happy to acknowl-
diffusive. Transport coefficients in a generalized, nonlocaledge useful discussions with Juri Toomre.
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