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Abstract. The mean electromotive force is considered in a dif-
ferentially rotating fluid taking into account stretching of the
turbulent magnetic field. Calculations are performed by mak-
ing use of the second order correlation approximation. Non-
uniformity of the angular velocity leads to specific drift pro-
cesses in the azimuthal direction. Due to this drift the magnetic
field can rotate with a somewhat different angular velocity than
the fluid. Differential rotation can also lead in a new instability
of a non-axisymmetric mean field. Regardless of the law of the
differential rotation this instability can result in an exponential
amplification of the field.
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1. Introduction

It is widely believed that a turbulent dynamo may be responsible
for the origin of magnetic fields in various astrophysical bodies.
Under certain conditions turbulent fluid motions can work in
such a way that a magnetic field is generated from a weak seed
field (e.g. Moffatt 1978, Parker 1979). Fluid motions that lack
mirror symmetry seem to be well suited for a generation of a
large scale magnetic field (Krause & Rädler 1980). The mirror
symmetry of turbulence can be broken, for example, by the
Coriolis force if the fluid rotates. If rotation is rigid and the
angular velocityΩ = const, the mean turbulent electromotive
force can conventionally be represented in the form

E = 〈v × b〉 = αB − η∇ × B + anisotropies, (1)

wherev andb are the fluctuating components of the velocity
and magnetic field, respectively, andB is the mean magnetic
field; 〈...〉 denote ensemble averaging. The coefficientsη and
α describe respectively dissipative and non-dissipative contri-
butions to the mean electromotive force. Theα-term is caused
by a departure from mirror symmetry and may be responsible
for turbulent dynamo. This coefficient vanishes if the angular
velocity goes to zero, however, rotation alone is not sufficient
to induce theα-effect. The conditionα /= 0 requires also the
presence of large scale inhomogeneity or anisotropy of the fluid.
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The particular source of inhomogeneity may be different (den-
sity stratification, gradient of turbulence intensity etc., see e.g.
Krause & R̈adler 1980) but it is necessary because the pseu-
doscalarα can be formed from the axial vectorΩ only as a
scalar production ofΩ and some polar vector. If inhomogeneity
is weak, the mean electromotive force reduces to the dissipative
term alone.

The situation may be quite different if the fluid rotates dif-
ferentially. In this case, rotation can be itself the source of a
large scale inhomogeneity since∇Ω /= 0. Differential rotation
changes the intrinsic properties of turbulence because gradients
of the angular velocity enter the momentum equation together
with the Coriolis force. These gradients can induce various drift
processes. Those are similar to temperature and partial number
density gradients that can are known to lead to thermal and or-
dinary diffusion, respectively. Therefore, the behaviour of the
mean field in a differentially rotating turbulent fluid may be
rather complex and may differ essentially from that predicted by
the simplified Eq. (1). The drift processes induced by a differen-
tial rotation can be important for the evolution of the magnetic
field in many astrophysical bodies: galaxies, accretion discs,
convective zones of stars.

In the present paper we consider the influence of differen-
tial rotation on the mean electromotive force. For the sake of
simplicity we deal with the case where gradients of mean tur-
bulence characteristics are small compared to gradients of the
angular velocity. This allows to concentrate upon the new qual-
itative effects caused by a differential rotation. The effects of a
differential rotation onE in the presence of inhomogeneous tur-
bulence will be considered in a forthcoming paper. The paper is
organized as follows. In Sect. 2 we derive the general expression
for the electromotive force in a differentially rotating fluid by
making use of the second order correlation approximation (e.g.
Krause & R̈adler 1980). The effects of the non-mirror symme-
try caused by differential rotation and their influence onE are
considered in Sect. 3. In Sect. 4 we discuss the obtained results.

2. The turbulent electromotive force

In the second order correlation approximation the behaviour of
mean quantities is governed by equations including non-linear
effects in fluctuating terms, whilst the linearized equation are
used for the fluctuating quantities. This approximation strictly
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applies in the case of turbulence with small ordinary and mag-
netic Reynolds numbers, Re and Rem, respectively (note, how-
ever, that in this case the field generation is possible only if
the magnetic Reynolds number based on the large-scale mo-
tion is large). This approximation may also be sufficiently ac-
curate for an ensemble of magnetohydrodynamic waves with
relatively high frequencies and small amplitudes when the so
called Strouhal number is small, orS = vt0/` < 1. Heret0 and
` are the correlation time and the length-scale of turbulence,
respectively. In our considerations below we always assume
S < 1.

The magnetic fieldB and the velocityu can be separated
into the mean and fluctuating parts,B = B+b andu = V +v,
whereB andV are the mean field and velocity, respectively.
The induction equation for the fluctuating magnetic field reads

∂b

∂t
= ∇ × (V × b) + ∇ × (v × B). (2)

In this equation, we neglect the non-linear term in fluctuating
quantities in accordance with the spirit of the second order cor-
relation approximation. We also neglect dissipative effects as-
suming that Rem � 1 for small-scale motions (butS � 1). We
consider the rotating fluid withV = sΩeϕ whereΩ = Ω(s, z)
is the angular velocity;(s, ϕ, z) are the cylindrical coordinates;
es, eϕ, andez are the unit vectors in the corresponding direc-
tions. SubstitutingV = sΩeϕ into Eq. (2), we have

∂b

∂t
+ Ω

∂b

∂ϕ
− seϕ(b · ∇Ω) = A, (3)

where

A = (B · ∇)v − (v · ∇)B − B(∇ · v), (4)

and

∂b

∂ϕ
= es

∂bs
∂ϕ

+ eϕ
∂bϕ
∂ϕ

+ ez
∂bz
∂ϕ

. (5)

Introducing the shifted azimuthal coordinateψ, with dψ =
dϕ − Ωdt, and making use of Fourier transformation int for
fluctuating quantities as in

b(r, t) =
∫ +∞

−∞
dωeiωtb̂(r, ω), (6)

where the subscriptω labels the Fourier amplitude, we can ex-
presŝb(r, ω) in terms ofv̂(r, ω) from Eq. (3)

b̂ = − i

ω
Â − s

ω2 eϕ(∇Ω · Â), (7)

Â = (B · ∇)v̂ − (v̂ · ∇)B − B(∇ · v̂). (8)

Then the fluctuating magnetic field is given by

b(r, t) = −i
∫ +∞

−∞

dω

ω
eiωt

(
Â − i

ω
eϕs∇Ω · Â

)
. (9)

The first term in brackets represents the contribution to the fluc-
tuating field caused by turbulent motions in the presence of a

large scale frozen-in magnetic field, and the second term de-
scribes the effect of differential rotation. We are now in a po-
sition to express the turbulent electromotive force in terms of
the velocity correlation tensor. Substitutingb from Eq. (9) into
Eq. (1) and taking into account that

〈v̂i(r, ω)v̂j(r, ω′)〉 ∝ δ(ω + ω′) (10)

for quasi-stationary turbulence (see, e.g., Rüdiger & Kitchatinov
1993), we obtain

E = E1 + E2, (11)

where

E1 = i

∫ +∞

−∞

dω

ω
〈v̂(r, ω) × Â(r,−ω)〉 , (12)

E2 = seϕ ×
∫ +∞

−∞

dω

ω2 〈v̂(r, ω)[∇Ω · Â(r,−ω)]〉 . (13)

If rotation is rigid, the electromotive force is represented by
E1 alone. Differential rotation produces an additional contri-
bution to the electromotive force. The density stratification or
the gradient of the turbulence intensity can influence the ef-
fect of differential rotation. However, the main purpose of the
present study is to consider new qualitative effects caused by
differential rotation. Therefore, in what follows, we will neglect
inhomogeneities of density and turbulence intensity.

Calculating the electromotive force we assume that rotation
is relatively slow, soΩt0 < 1, and we restrict ourselves only to
terms linear inΩ and∇Ω. For this reason, we split the velocity
and other Fourier amplitudes into two components,v̂ = v̂0+v̂1,
with v̂0 being the turbulent velocity in the absence of rotation,
andv̂1 being a small departure tôv0 caused by rotation. We as-
sume that the “zeroth” order approximation describes isotropic
turbulence with mirror symmetry where the correlation tensor
given by

〈v0i(r, ω)v0j(r,−ω)〉 = 1
3v

2
ω(r)δij . (14)

For instance, the velocity field̂v0 can be represented by an
ensemble of sound or any other waves existing in a non-rotating
fluid. Note that our consideration does not apply to inertial waves
(see, e.g., Moffatt 1970) which can exist only in a rotating fluid.

Calculations ofE2 require only the zeroth order approxi-
mation in the turbulent velocity, thus we have for homogeneous
turbulence

E2 = −s`2eϕ × [∇(B · ∇Ω) − (B · ∇)∇Ω], (15)

where

`2 =
1
3

∫
dω

ω2 v̂2(r, ω) (16)

is the square of the correlation length of the turbulence. We
assume that the spectral power ofv0 goes to zero at low fre-
quencies, thus there is no singularity in the integral (16). The
component of the electromotive force (15) operates in the merid-
ional plane and cannot produce anα-effect. It only leads to a
drift of the magnetic field with the drift velocity being dependent
on the rotation law.
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3. The effect of non-mirror symmetry

Calculations ofE1 require a more detailed consideration taking
into account a small departure from̂v0. Generally, rotation can
influence the properties of turbulence providing the non-mirror
symmetry to its distribution. If one neglects this influence and
substitutes the correlation tensor in the form (14) into Eq. (12)
then, to zeroth order inΩ and∇Ω, this part of the electromotive
force vanishes. Note that we neglected the dissipative term in
the induction Eq. (2) in our simplified analysis. Thus the term
representing the turbulent diffusion should not appear inE1. To
obtain the expression forE1 with the accuracy to linear terms in
Ω and∇Ω, we should take into account the influence of rotation
on the turbulent velocity.

The momentum equation for the fluctuating velocity reads

∂v

∂t
+Ω

∂v

∂ϕ
+2Ω×v +eϕs(v ·∇Ω)+(v ·∇)v = −∇p

ρ
, (17)

wherep is the fluctuating component of the pressure. In this
equation we neglect viscosity, which is usually unimportant in
this kind of consideration. Following the spirit of the second
order correlation approximation, we will also neglect the non-
linear advective term(v ·∇)v in Eq. (2). Introducing the shifted
time coordinateτ and making Fourier transformation inτ , we
obtain

iωv̂ + 2Ω × v̂ + eϕs(v̂ · ∇Ω) = −∇p̂
ρ
. (18)

Eq. (18) can be solved by making use of the method similar
to the approach of “original turbulence” suggested by Rüdiger
(1989; see also R̈udiger & Kitchatinov 1993). However, instead
of introducing a rather uncertain non-potential part of the ran-
dom force (̂f

s
in the notation of R̈udiger & Kitchatinov 1993),

which is not influenced by rotation according to the assump-
tion, we calculate this force assuming that rotation is relatively
slow and the perturbations of turbulent velocity caused by rota-
tion are small. Under this assumption, calculations can be done
by making use of a standard perturbation procedure. The un-
perturbed velocity,v0ω, is governed by the momentum Eq. (17)
withΩ = 0. The perturbation̂v1 may generally have non-mirror
symmetry caused by rotation. Solving the momentum equation
for v̂1, we have

v̂1 =
i

ω

[∇p̂1

ρ
+ 2Ω × v̂0 + eϕs(v̂0 · ∇Ω)

]
. (19)

Note that Eq. (19) applies only for a slow rotation withΩt0 < 1
when the perturbation of velocity is small,v̂0 > v̂1.

Restricting ourselves to the terms linear inΩ and∇Ω, we
obtain

E1 = i

∫
dω

ω
〈v̂0(r, ω) × Â1(r,−ω)

+v̂1(r, ω) × Â0(r,−ω)〉. (20)

Substitutingv̂1 given by Eq. (19) into Eq. (20), we represent
the expression forE1 in terms of various correlation functions
of second order. Apart from the unperturbed velocity corre-
lators,〈v̂0i(r, ω)v̂0j(r,−ω)〉, which are assumed to be given

by Eq. (14),E1 also contains correlators of the type〈v̂0ip̂1〉.
All these correlators have to vanish because of the properties of
symmetry. Actually, they are components of a polar vector since
v̂ is a polar vector and̂p is a scalar. On the other hand, these cor-
relators should be proportional toΩ or∇Ω becausêp1 is a small
perturbation induced by rotation. In our simplified model tur-
bulence is assumed to be homogeneous. Therefore there are no
other vectors characterizing the fluid exceptΩ and∇Ω. Hence,
all correlators〈v̂0ip̂1〉 should be equal to zero.

Using Eq. (14), non-zero terms inE1 can be represented in
the form

E1 = `2 {2B × (∇ × Ω) − ∇Ω × (∂B/∂ϕ) + 4Ω∇Bz

−seϕ × [(B · ∇)∇Ω − (∇Ω · ∇)B] + 4(B · ∇)Ω} . (21)

Substituting this expression intoE, excluding the gradient terms
which lead to polarization of the fluid but do not influence the
magnetic evolution, and taking into account that∇ × Ω =
−eϕ(∂Ω/∂s), we finally have after some arrangements

E = `2
{
∂Ω
∂s

eϕ × B − seϕ × (B · ∇)∇Ω

−∇Ω × ∂B

∂ϕ
− s∇Ω(∇ × B)ϕ

}
. (22)

All terms on the r.h.s. of Eq. (22) contain derivatives of the an-
gular velocity; hence the electromotive force vanishes for the
rigid rotation. Note that our expression forE does not contain
dissipative effects, because they were excluded from the con-
sideration at the very beginning.

4. Discussion

In this section we discuss the physical meaning of different
terms in Eq. (22) and their contribution to the evolution of the
mean field. In the induction equation for the mean field, the
electromotive forceE should be added to the electromotive force
induced by the mean motion,V × B.

The behaviour of the mean field is determined by∇ × E
which can be represented as

∇ × E = eϕ`
2L(Bs, Bz) − Wi

s

∂B

∂ϕ
− eϕ

Wa

s

∂Bϕ

∂ϕ
+

`2
{

es
∂Ω
∂z

∂2Bz

∂s∂ϕ
+ ez

∂Ω
∂s

∂2Bs

∂z∂ϕ

}
+

`2
{

es
∂Ω
∂s

∂2Bs

∂s∂ϕ
+ ez

∂Ω
∂z

∂2Bz

∂z∂ϕ
+ eϕ(∇Ω · ∇)

∂Bϕ

∂ϕ

}
. (23)

Here we have introduced the drift velocities

Wi = −s`2
(
∂2Ω
∂s2

+
∂2Ω
∂z2

)
, Wa = `2

∂Ω
∂s
. (24)

The linear operatorL(Bs, Bz) acts only on the poloidal field
components,

L(Bs, Bz) =
(
∂Ω
∂z

∂

∂s
− ∂Ω
∂s

∂

∂z

)
s(∇ × B)ϕ
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− ∂

∂z

(
s
∂2Ω
∂s∂z

Bs

)
− ∂

∂s

(
s
∂2Ω
∂s∂z

Bz

)

+sB · ∇
(

1
s

∂Ω
∂s

)
− ∂

∂s

(
s
∂2Ω
∂s2

Bs

)

− ∂

∂z

(
s
∂2Ω
∂z2 Bz

)
. (25)

This operator describes the generation of a toroidal magnetic
field from a poloidal one. Note that the stretching term due
to the mean motion leads to a qualitatively similar but usually
much more efficient generation of azimuthal field.

The second and third terms on the r.h.s. of Eq. (23) have an
obvious interpretation: they describe the drift of different com-
ponents of the magnetic field in theϕ-direction. All three field
components experience the drift with the velocityWi. This ve-
locity depends generally ons andz, so, at any point, the mag-
netic field rotates with a somewhat different angular velocity
than the fluid. Of course, the drift in theϕ-direction can mani-
fest itself only for non-axisymmetric magnetic configurations. If
Ω depends on the cylindrical radius alone, and if∂2Ω/∂s2 > 0,
thenWi < 0, and the field lags behind the fluid. Conversely,
if ∂2Ω/∂s2 < 0 then the field advances the fluid. Since both
Ω andWi do not depend onϕ in our simplified analysis, the
azimuthal shift between the field and the fluid,∆ϕ, increases
linearly with time,

∆ϕ = `2
(
∂2Ω
∂s2

+
∂2Ω
∂z2

)
t, (26)

and can reach a large value if the fluid has spun for a sufficiently
long time.

The drift associated with the velocityWi is the same for
all components of the magnetic field. On the other hand, the
drift in theϕ-direction caused by the term proportional toWa is
anisotropic: only theϕ-component experiences this drift. Apart
from being involved in the mean motion and the isotropic az-
imuthal drift with the velocitiesV andWi, respectively, the
azimuthal field moves in theϕ-direction with the velocityWa.
This anisotropic drift is determined by the first derivative of the
angular velocity. Note that the two drift velocities,Wi andWa,
can generally be comparable in astrophysical bodies.

In a turbulent fluid differential rotation can induce not only
drift processes, but it can also lead, under some conditions, to
coupling between different components of the magnetic field.
The fourth term on the r.h.s. of Eq. (23) provides an example of
such coupling. Like other effects caused by differential rotation
this coupling can manifest itself only if the magnetic field is
non-axisymmetric. Coupling results in an exchange of energy
betweenBs andBz on a time scale∼ Ω−1(L/`)2, whereL
is an outer length scale, which can be the size of the body, for
example. SinceL � `, this time scale is long compared to the
rotation period. Generally, the azimuthal field is also involved
in the exchange of energy due to the stretching term in the mean
field induction equation, although it does not exert a feedback
on the meridional field. Therefore the link between the field
components owing to differential rotation is quite different from
that caused by the alpha-effect.

The electromotive force induced by differential rotation may
drive a particular sort of waves in a fluid. These waves exist due
to the joint action of coupling and anomalous diffusion of a
non-axisymmetric field represented by the last term in Eq. (23).
For the purpose of illustration we consider the waves in the
idealized case∇Ω=const and neglect dissipative effects. Under
these assumptions, the mean field induction equation for the
poloidal field components reads

∂Bs

∂t
= `2

∂Ω
∂z

∂2Bz

∂s∂ϕ
+ `2

∂Ω
∂s

∂2Bs

∂s∂ϕ
, (27)

∂Bz

∂t
= `2

∂Ω
∂s

∂2Bs

∂z∂ϕ
+ `2

∂Ω
∂z

∂2Bz

∂z∂ϕ
. (28)

Oscillations of the poloidal field components are accompanied
by oscillations of the azimuthal field due to the stretching effect.
However,Bϕ does not influence the behaviour ofBs andBz,
so the dispersion properties of waves are entirely determined
by Eqs. (27) and (28). In our consideration the coefficients in
Eqs. (27) and (28) are constant, so the solution can be taken in
the formexp(γt− iq · r − imψ), whereq = (qs, 0, qz) is the
poloidal wave vector. Substituting this solution into Eqs. (27)
and (28) we obtain the dispersion equation,

γ = −m`2(q · ∇Ω). (29)

Obviously, the waves should have similar properties in the case
of a more complex rotation law, provided the wavelength is
small compared to the the outer scale, i.e.qL � 1. The only
difference is that the field can experience a drift, if the rotation
law is sufficiently complex. Thus one should add the drift terms
on the r.h.s. of Eqs. (27) and (28). The azimuthal drift of a non-
axisymmetric magnetic field adds an imaginary contribution to
γ, so

γ = −im`2
(
∂2Ω
∂s2

+
∂2Ω
∂z2

)
−m`2(q · ∇Ω). (30)

Due to the drift, the solution takes the form of travelling waves.
In both cases the instability of the mean field arises ifm(q ·
∇Ω) < 0. This instability is driven by differential rotation and
is qualitatively different from that associated with the alpha-
effect. However, this instability resembles in some ways the
dynamo effect due to R̈adler (1968; see also Krause & Rädler
1980), which is proportional toΩ × J , whereJ is the electric
current. The two effects have in common that the important term
in the electromotive force involves derivatives ofB, and notB
itself.

The electromotive force driven by differential rotation can
play an important role in the evolution of the magnetic field
even if one takes into account dissipative effects. The rate of
dissipative processes is determined by the turbulent magnetic
diffusivity η,

η =
1
3

∫ +∞

−∞

ωmE(k, ω)
ω2 + ω2

m

dωdk, (31)

whereωm = νmk
2 with νm being the magnetic diffusivity, and

E(k, ω) is the spectrum function of turbulence (see, e.g., Krause
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& Rädler 1980, Kitchatinov et al. 1994). The spectrum function
is related to the turbulent velocity by

v2 =
∫ +∞

−∞
E(k, ω)dωdk. (32)

For acoustic turbulence the spectrum function usually goes to
0 whenω → 0. Therefore, when calculatingη one must take
into account the contribution of magnetic diffusivity. Since in
our model the magnetic Reynolds number is large, Rem � 1,
we can restrict ourselves to terms linear inνm and neglect in the
integral (31)ω2

m compared toω2. Introducing the average dis-
sipative frequencyωd characterizing the ensemble of acoustic
waves, we have

η ≈ 1
3
ωd

∫ +∞

−∞

E(k, ω)
ω2 dωdk ∼ ωd`

2. (33)

The effects caused by differential rotation dominates the elec-
tromotive force if

m`2 | q · ∇Ω |> η

(
q2 +

m2

s2

)
. (34)

For q ∼ m/s we simply haves | ∇Ω |> ωd. This condition
can hold for many cases of astrophysical interest.

5. Conclusions

In the present paper we have established the general form of the
expression for the electromotive force governing the effects of
differential rotation on the mean magnetic field in a turbulent
medium. Here we have adopted acoustic turbulence as a model
for the small scale motions, so the form of the expression for the
electromotive force may change in the case of ordinary vortical
turbulence. The basic elements from which this expression is
constructed are linear combinations of the vectorsB, ∇Ω and
eφ together with the∇ operator. The mean electromotive force
contains only terms proportional to∇Ω and not toΩ, because
the turbulence is assumed to be homogeneous, so there are nei-
therα nor Ω × J effects. In tensor form, components of the
polar vectorE can be formed from the spatial derivatives ofV
andB, for instance as a linear combination of

εijpVp,kBj,k, (35)

and the corresponding terms with transposed indices. Taking
into account thatVp = εpmnΩmxn in a rotating fluid one can
obtain the general expression for electromotive force in terms
of Ωi,j andBk,l.

The significance of the new effect found here cannot be fully
assessed unless we can calculate all other effects that would
come into play, such as anisotropic turbulent diffusion andα-
effect for the same turbulence model. Nevertheless, the new
terms point towards the possibility of an instability that could
destabilise even the field-free state for sufficiently strong differ-
ential rotation. This could then constitute an additional source of
large scale field generation. However, our preliminary estimates
suggest thats|∇Ω/Ω| has to be of order unity for interesting
things to happen. For ordinary vortical turbulence withΩt0 ≥ 1,
the basic turbulence is to be affected by the differential rotation
and our perturbative approach will break down. Nevertheless, it
is likely that the general form of the expression is not going to
change and that our results may still be valid qualitatively. Our
results would therefore provide a good framework for analysing
numerical simulations of differentially rotating turbulence to
get independent quantitative estimates for the various turbulent
transport coefficients.
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