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Abstract. The mean electromotive force is considered in a diffhe particular source of inhomogeneity may be different (den-
ferentially rotating fluid taking into account stretching of theity stratification, gradient of turbulence intensity etc., see e.g.
turbulent magnetic field. Calculations are performed by maKrause & Radler 1980) but it is necessary because the pseu-
ing use of the second order correlation approximation. Nodescalara can be formed from the axial vecté? only as a
uniformity of the angular velocity leads to specific drift proscalar production df2 and some polar vector. Ifinhomogeneity
cesses in the azimuthal direction. Due to this drift the magneisoveak, the mean electromotive force reduces to the dissipative
field can rotate with a somewhat different angular velocity thaerm alone.
the fluid. Differential rotation can also lead in a new instability The situation may be quite different if the fluid rotates dif-
of a non-axisymmetric mean field. Regardless of the law of tferentially. In this case, rotation can be itself the source of a
differential rotation this instability can result in an exponentidarge scale inhomogeneity sin8&2 = 0. Differential rotation
amplification of the field. changes the intrinsic properties of turbulence because gradients
of the angular velocity enter the momentum equation together
Key words: accretion, accretion disks — Magnetohydrodynamvith the Coriolis force. These gradients can induce various drift
ics (MHD) —turbulence —stars: magnetic fields — ISM: magnetarocesses. Those are similar to temperature and partial number
fields density gradients that can are known to lead to thermal and or-
dinary diffusion, respectively. Therefore, the behaviour of the
mean field in a differentially rotating turbulent fluid may be
1. Introduction rather complex and may differ essentially from that predicted by

o ] _the simplified Eq. (1). The drift processes induced by a differen-
Itis widely believed that a turbulent dynamo may be responsih|g) rotation can be important for the evolution of the magnetic

for the origin of magnetic fields in various astrophysical bodiegg|q in many astrophysical bodies: galaxies, accretion discs,
Under certain conditions turbulent fluid motions can work igynvective zones of stars.

such a way that a magnetic field is generated from a weak seed, ihe present paper we consider the influence of differen-

field (e.g. Moffatt 1978, Parker 1979). Fluid motions that laciy) rotation on the mean electromotive force. For the sake of
mirror symmetry seem to be well suited for a generation ofgmpjicity we deal with the case where gradients of mean tur-
large scale magnetic field (Krause &&ler 1980). The mirror p,jience characteristics are small compared to gradients of the
symmetry of turbulence can be broken, for example, by @ qylar velocity. This allows to concentrate upon the new qual-
Coriolis force if the fluid rotates. If rotation is rigid and th&aiive effects caused by a differential rotation. The effects of a
angular velocity? = const, the mean turbulent electromotivyifferential rotation or€ in the presence of inhomogeneous tur-
force can conventionally be represented in the form bulence will be considered in a forthcoming paper. The paper is
E=(vxby=aB -7V xB +anisotropies (1) organized as foIIovys. In Sec.t. 2W¢ derive.the gene'ral expression
for the electromotive force in a differentially rotating fluid by
wherev andb are the fluctuating components of the velocitynaking use of the second order correlation approximation (e.g.
and magnetic field, respectively, af#l is the mean magnetic Krause & Radler 1980). The effects of the non-mirror symme-
field; (...) denote ensemble averaging. The coefficientd try caused by differential rotation and their influence&are

« describe respectively dissipative and non-dissipative conigbnsidered in Sect. 3. In Sect. 4 we discuss the obtained results.
butions to the mean electromotive force. Tdxterm is caused

by a departure from mirror symmetry and may be responsible
for turbulent dynamo. This coefficient vanishes if the angul&: The turbulent electromotive force

velocity goes to zero, however, rotation alone is not suf“ficien,]tthe second order correlation approximation the behaviour of
to induce then-effect. The conditionrx # 0 requires also the n ntities is qovern (Ijb bp )t(il N Iin luding n \r/]' "lrJ] )
presence of large scale inhomogeneity or anisotropy ofthefluriafea quantities 1S governed by equations inciuding non-linea

effects in fluctuating terms, whilst the linearized equation are

Send offprint requests 1. Urpin used for the fluctuating quantities. This approximation strictly
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applies in the case of turbulence with small ordinary and mdgsge scale frozen-in magnetic field, and the second term de-
netic Reynolds numbers, Re and,Reespectively (note, how- scribes the effect of differential rotation. We are now in a po-

ever, that in this case the field generation is possible onlysition to express the turbulent electromotive force in terms of
the magnetic Reynolds number based on the large-scale ith& velocity correlation tensor. Substitutihdrom Eq. (9) into

tion is large). This approximation may also be sufficiently a¢=q. (1) and taking into account that

curate for an ensemble of magnetohydrodynamic waves with . / ,

relatively high frequencies andgsmallémpli)t/udes when the 'lé(r’w)vj(r’w )) o< 8w+ o) (10)
called Strouhal number is small, 8r= vto /¢ < 1. Hereto and for quasi-stationary turbulence (see, e.gidRer & Kitchatinov
¢ are the correlation time and the length-scale of turbulend&®93), we obtain

respectively. In our considerations below we always assurpe

§ <1 =&+ &, (12)
The magnetic field3 and the velocityu can be separatedwhere
into the mean and fluctuating pa8 = B+bandu = V +v, 0 dw R
where B and V" are the mean field and velocity, respectivelyf1 = Z/ — (o(r,w) x A(r, —w)) , (12)
The induction equation for the fluctuating magnetic field reads -
T duw A
B X (Vxb)+V x(vxB) 2) 82:86“"X/_00 o (Bmw)Ve- A —w)) . (13)

ot

In this equation, we neglect the non-linear term in fluctuatirf§ rotation is rigid, the electromotive force is represented by
quantities in accordance with the spirit of the second order cén @lone. Differential rotation produces an additional contri-
relation approximation. We also neglect dissipative effects duition to the electromotive force. The density stratification or

suming that Rg, > 1 for small-scale motions (bt < 1). We the gradient of the turbulence intensity can influence the ef-
consider the rotating fluid with” = sQe,, whereQ = Q(s, z) fect of differential rotation. However, the main purpose of the

is the angular velocity(s, ¢, 2) are the cylindrical coordinates; Présent study is to consider new qualitative effects caused by
e., e,, ande, are the unit vectors in the corresponding diredifferential rotation. Therefore, in what follows, we will neglect

tions. Substituting” = sQe,, into Eq. (2), we have mhomogengities of density an_d turbulence intensity. _
Calculating the electromotive force we assume that rotation
ob 4 Qi ~ sey(b-VQ) = A, 3) is relat!vely s]ow, sdlty < 1, anq we restrict ourgelves only.to
ot dp terms linear irf2 andV <. For this reason, we split the velocity
and other Fourier amplitudes into two componefts; 9y+91,
where o . oo .
with 99 being the turbulent velocity in the absence of rotation,
A=(B-V)v—(v-V)B—-B(V-v), (4) andd, being a small departure i) caused by rotation. We as-
sume that the “zeroth” order approximation describes isotropic
and turbulence with mirror symmetry where the correlation tensor
b Obs db,, b, given by
87 = esa— 6@67 €, a . (5) 1 9
¥ ¥ ¥ ¥ <’UO7',(’I",W)’UO]' (r, —(.A})> = ng('r’)&] (14)
Introducing the shifted azimuthal coordinage with dy) = por instance, the velocity field, can be represented by an
dp — Qdt, and making use of Fourier transformationtifor  ensemple of sound or any other waves existing in a non-rotating
fluctuating quantities as in fluid. Note that our consideration does notapply to inertial waves
+00 o (see, e.g., Moffatt 1970) which can exist only in a rotating fluid.
b(r,t) = / dwe™'b(r, w), (6) Calculations of€, require only the zeroth order approxi-
- mation in the turbulent velocity, thus we have for homogeneous
where the subscript labels the Fourier amplitude, we can exturbulence
pressb(r,w) in terms ofd(r, w) from Eq. (3) £y = —slPe, x V(B -VQ) — (B- V)V, (15)
- 1 A S N
b= —;A - Eeg‘,(m -A), 7 wherei .
) P = 7/7‘;172(7«,@) (16)
A=(B-V)o—(v-V)B—-B(V-9). (8) 3 w

is the square of the correlation length of the turbulence. We
assume that the spectral powerwf goes to zero at low fre-

+oo g, . R guencies, thus there is no singularity in the integral (16). The
b(r,t) = —i/ (A — —e,sVQ- A) .
w

Then the fluctuating magnetic field is given by

—e't (9) componentofthe electromotive force (15) operates in the merid-

ional plane and cannot produce areffect. It only leads to a
The first term in brackets represents the contribution to the fludrift of the magnetic field with the drift velocity being dependent
tuating field caused by turbulent motions in the presence oba the rotation law.

o W
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3. The effect of non-mirror symmetry by Eq. (14),€, also contains correlators of the tygéy;p:).

Calculations o€ require a more detailed consideration takinAII these correlators have to vanish because of the propertigs of

into account a small departure fradg. Generally, rotation can gymmetry. Actually, thgy are components of a polar vector since
: ' ¥ is a polar vector andlis a scalar. On the other hand, these cor-

influence the properties of turbulence providing the non-mlrr(r)éIators should be proportional@or V< becaus, is a small

symmetry to its distribution. If one neglects this influence an rturbation induced by rotation. In our simplified model tur-

substitutes the correlation tensor in the form (14) into Eq. agglence is assumed to be homogeneous. Therefore there are no

then, to zgroth order ift andV 2, this part of the_elgctrqmotlve other vectors characterizing the fluid exc€pandV2. Hence,
force vanishes. Note that we neglected the dissipative term 'I?correlators(ﬁ 51) should be equal to zero
0:P1 .

) ; : e . a
the induction Eq. (2) in our simplified analysis. Thus the term Using Eq. (14), non-zero terms & can be represented in
representing the turbulent diffusion should not appedhirTo ' ’

. . . . . the form
obtain the expression f@r;, with the accuracy to linear terms in
QandV (2, we should take into account the influence of rotatiop, — ¢2 {2B x (V x Q) — VQ x (0B/dyp) + 40V B,

on the turbulent velocity.
- B - Q—(VQ-V)B|+4(B-V)Q}. (21
The momentum equation for the fluctuating velocity reads sep x [(B-V)V (VQ-V)B]+4(B - V)2} . (21)

v v Vp Substituting this expression ing excluding the gradient terms
N ‘*‘Q% +2Qxv+eys(v-VQ)+(v-V)v = 5 (17)  which lead to polarization of the fluid but do not influence the
magnetic evolution, and taking into account thatx ©Q =

where_p is the fluctuat.ing cpmpor_lent_ of the pressure. In th_i§e<p(8Q/c‘*)s), we finally have after some arrangements
equation we neglect viscosity, which is usually unimportant in

this kind of consideration. Following the spirit of the secon 9 {E)Q e, x B—se, x (B-V)VQ

order correlation approximation, we will also neglect the non- 0s
linear advective terrfw - V)wv in Eq. (2). Introducing the shifted 9B
time coordinate- and making Fourier transformation in we —VQ x 0 sVQ(V x B)sa} : (22)
obtain v
Vp All terms on the r.h.s. of Eq. (22) contain derivatives of the an-

iwd + 20 X D+ e,s(0 - VQ) = gular velocity; hence the electromotive force vanishes for the

P rigid rotation. Note that our expression f6rdoes not contain

Eq. (18) can be solved by making use of the method similgissinative effects, because they were excluded from the con-
to the approach of “original turbulence” suggested idiRer ¢;qeration at the very beginning.
(1989; see also®liger & Kitchatinov 1993). However, instead

of introducing a rather uncertain non-potential part of the ran- .
dom force ¢ in the notation of Rdiger & Kitchatinov 1993), 4- Discussion

which is not influenced by rotation according to the assumpy this section we discuss the physical meaning of different
tion, we calculate this force assuming that rotation is relativel¥yms in Eq. (22) and their contribution to the evolution of the
slow and the perturbations of turbulent velocity caused by rof@ean field. In the induction equation for the mean field, the
tion are small. Under this assumption, calculations can be dQfigctromotive forc€ should be added to the electromotive force
by making use of a standard perturbation procedure. The Wyced by the mean motiol, x B.

perturbed velocity,.,, is governed by the momentum Eq. (17) - The behaviour of the mean field is determinedWbyx £
with €2 = 0. The perturbatiod, may generally have non-mirror yhich can be represented as

symmetry caused by rotation. Solving the momentum equation

for ¥, we have VxS:eV,EQL(BS,BZ)—%%—B—%Waa{f@
) i TV ) A s 0p s 4
by =~ [51 +2Q X Dy + e,s(0 - VQ) | . (19) 2l 99 0°B, e 90 9B,
. _ "0z 0s0p  © 0s 0z0¢
Note that Eq. (19) applies only for a slow rotation withy < 1 90 928 90 92 9B
when the perturbation of velocity is small, > ;. Ple 22 28 Lo 207 P2 46 (VQ-V ey (23
ap : D5 9505 9z 020y Tl )% (23)
Restricting ourselves to the terms linearirand V{2, we § 0809 z 0z0p g
obtain Here we have introduced the drift velocities
dw "
81 = Z./7<A()(’I",w) X 141(’1"7 —(.U) 2 829 629 289
= sl [ ==+ = === 24
w ) ) Wi sl 952 + 9.2 ) Wo =1 s (24)
+01(r,w) x Ag(r, —w)). (20)

The linear operatol(Bs, B,) acts only on the poloidal field

Substituting®, given by Eqg. (19) into Eq. (20), we represen&omponents

the expression fo€ in terms of various correlation functions
of second order. Apart from the unperturbed velocity corre- ) = ( oo o000

lators, (0; (7, w)dg, (r, —w)), which are assumed to be givenL 8 92 05 &s@z) s(V x B),
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0 (8329 ) 0 <58m3 ) The electromotive force induced by differential rotation may
0z \ 0s0z ° 0s \ 050z~ drive a particular sort of waves in a fluid. These waves exist due
190 9 [ 92Q to the joint action of coupling and anomalous diffusion of a
+sB -V (8 88) ~ s (883238> non-axisymmetric field represented by the last term in Eq. (23).

5 920 For the purpose of illustration we consider the waves in the
_ = <32Bz> ) (25) idealized cas&(2=const and neglect dissipative effects. Under
9z \ 0z these assumptions, the mean field induction equation for the
This operator describes the generation of a toroidal magneaRjoidal field components reads
field from a poloidal one. Note that the stretching term du
P 9 §B, ,008°B. ,009%B,

i itati imi 2= — 27

to the mean m_opon leads to_ a qualltgtlvely S|mllar but usualryﬁT 9z 950 D5 950’ (27)
much more efficient generation of azimuthal field.

The second and third terms on the r.h.s. of Eq. (23) have am, 200 9% B, ,00 0°B, (28)

obvious interpretation: they describe the drift of different com-p; — * 955 529, 0z 0200
ponents of the magnetic field in thedirection. All three field o ) ] )
components experience the drift with the velodity. This ve- Oscillations of the poloidal field components are accompanied
locity depends generally onandz, so, at any poiht, the mag- by oscillations of the azimuthal field due to the stretching effect.
netic field rotates with a somewhat different angular velocifyoWever,B, does not influence the behaviour Bf and B,
than the fluid. Of course, the drift in the-direction can mani- SO the dispersion properties of waves are entirely determined
festitself only for non-axisymmetric magnetic configurations. BY Eds- (27) and (28). In our consideration the coefficients in
Q depends on the cylindrical radius alone, an#fif2/ds> > 0, Egs. (27) and (28)'are con;tant, so the solution can k_)e taken in
thenV; < 0, and the field lags behind the fluid. Converselyh€ formexp(yt —iq -r — imy), whereq = (¢;,0, ¢.) is the

if 92Q/8s2 < 0 then the field advances the fluid. Since botRoloidal wave vector. Substituting this solution into Egs. (27)
Q andW; do not depend om in our simplified analysis, the @nd (28) we obtain the dispersion equation,

azimuthal shift between the field and the fluily, increases N = ,mg2(q VQ). (29)

linearly with time, . o o
Obviously, the waves should have similar properties in the case

Ap = (2 < 4+ 23 (26) ©of a more complex rotation law, provided the wavelength is
ds* = 022 small compared to the the outer scale, iB.>> 1. The only
and can reach a large value if the fluid has spun for asuﬁicienqgﬁerence is that the field can experience a drift, if the rotation
long time. law is sufficiently complex. Thus one should add the drift terms
The drift associated with the velocity; is the same for On the r.h.s. of Egs. (27) and (28). The azimuthal drift of a non-
all components of the magnetic field. On the other hand, tpgisymmetric magnetic field adds an imaginary contribution to
drift in the -direction caused by the term proportionalif is  7: SO
anisotropic: only the--component experiences this drift. Apart 920 620
from being involved in the mean motion and the isotropic az-= —imf? (asg + 9.2
imuthal drift with the velocitiesV' and IW;, respectively, the
azimuthal field moves in the-direction with the velocityV,. Dueto the drift, the solution takes the form of travelling waves.
This anisotropic drift is determined by the first derivative of thi both cases the instability of the mean field arisesu{fg -
angular velocity. Note that the two drift velocitidd]; andW,, VQ) < 0. This instability is driven by differential rotation and
can generally be comparable in astrophysical bodies. is qualitatively different from that associated with the alpha-
In a turbulent fluid differential rotation can induce not onhgffect. However, this instability resembles in some ways the
drift processes, but it can also lead, under some conditionsdiiamo effect due to &iler (1968; see also Krause &gller
coupling between different components of the magnetic fief80), which is proportional t62 x J, whereJ is the electric
The fourth term on the r.h.s. of Eq. (23) provides an example @rent. The two effects have in common that the important term
such coupling. Like other effects caused by differential rotatid the electromotive force involves derivativesBf and notB
this coupling can manifest itself only if the magnetic field i§self.
non_axisymmetric_ Coup"ng resu'ts in an exchange Of energ?/ The electromotive force driven by diﬁerential rOtation can
betweenB, and B. on a time scale- Q~!(L//)%, whereL Play an important role in the evolution of the magnetic field
is an outer length scale, which can be the size of the body, f}#€n if one takes into account dissipative effects. The rate of
example. Sincd, > /, this time scale is long compared to thélissipative processes is determined by the turbulent magnetic
rotation period. Generally, the azimuthal field is also involvediffusivity 7,
inthe exchange of energy due to the stretching terminthe mean | ,+o Wi B (K, w)
field induction equation, although it does not exert a feedbagk= 3 3
on the meridional field. Therefore the link between the field -
components owing to differential rotation is quite different fronrwherew,,, = v,,,k? with v,,, being the magnetic diffusivity, and
that caused by the alpha-effect. E(k,w)isthe spectrum function of turbulence (see, e.g., Krause

9% 029)

) —ml*(q- V). (30)

k 1
) dwdk, (31)
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& Radler 1980, Kitchatinov et al. 1994). The spectrum functian;, V,, 1. B; k., (35)

is related to the turbulent velocity by ) ) o )
and the corresponding terms with transposed indices. Taking

oo into account that’, = ¢,,,,Q., in a rotating fluid one can

v’ = / E(k, w)dwdk. (32) optain the genereﬁ expr?ession for electromotive force in terms
. . of Qi,j andBk,l.

For acoustic turbulence the spectrum funct|0n usually goes to The significance of the new effect found here cannot be fully
0 whenw — 0. Therefore, when calculating one must take assessed unless we can calculate all other effects that would
into account the contri_bution of magnetic d_iffusivity. Since iRpme into play, such as anisotropic turbulent diffusion and
our model the magnetic Reynolds number is large,.Re 1,  effect for the same turbulence model. Nevertheless, the new
we can restrict ourselves to terms linearjpand neglectinthe ormg point towards the possibility of an instability that could
integral (31)w;, compared m"Q; Introducing the average dis-gestabilise even the field-free state for sufficiently strong differ-
sipative frequencyy, characterizing the ensemble of acoustigntja| rotation. This could then constitute an additional source of

— 00

waves, we have large scale field generation. However, our preliminary estimates
1 oo Bk, w) ) su_ggest that| VQ/Q| ha; to be of. order unity for interesting

RS gw(z/ 2 dwdk ~ wyl”. (33) thingsto happen. For ordinary vortical turbulence Wity > 1,

e the basic turbulence is to be affected by the differential rotation
The effects caused by differential rotation dominates the eled our perturbative approach will break down. Nevertheless, it
tromotive force if is likely that the general form of the expression is not going to

9 change and that our results may still be valid qualitatively. Our

mb* | q-VQ|>n (q2 + T;) . (34) results would therefore provide a good framework for analysing

numerical simulations of differentially rotating turbulence to
Forg ~ m/s we simply haves | VQ |> w,. This condition g€t independent quantitative estimates for the various turbulent

can hold for many cases of astrophysical interest. transport coefficients.
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