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Evidence for a Singularity in Ideal Magnetohydrodynamics:
Implications for Fast Reconnection
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Numerical evidence for a finite-time singularity in ideal 3D magnetohydrodynamics is presented. The
simulations start from two interlocking magnetic flux rings with no initial velocity. Curvature shrinks
the rings until they touch and current sheets form between them. The evidence for a singularity in
a finite time tc is that the peak current density behaves like kJk` � 1��tc 2 t� for a range of sound
speeds and initial conditions. For the incompressible calculations kvk`�kJk` ! const. In resistive
reconnection the magnetic helicity is nearly conserved while energy is dissipated.

PACS numbers: 52.30.Jb, 52.65.Kj
To date it is not known whether or not the ideal,
incompressible magnetohydrodynamic (MHD) and Euler
equations are regular. Regularity means that for arbitrary
smooth initial data the velocity u and/or magnetic field
B and all of its derivatives remain finite for all times.
If regularity is not established, one cannot rule out the
possibility of a finite time singularity, which for ideal
MHD implies satisfying a new mathematical constraint
that the vorticity v � === 3 u and current density J �
=== 3 B must obey [1]

I�tc� �
Z tc

0
�kvk`�t� 1 kJk`�t�� dt ! ` , (1)

for there to be a singularity. Singularities associated with
shocks are also possible, but are not considered here, be-
cause they would not occur in the incompressible limit.
The physical significance of a finite-time singularity is
that fast vortex and/or magnetic field reconnection could
be possible once viscous and resistive effects are restored.
A theoretical demonstration of a mechanism for fast mag-
netic reconnection would be significant in a variety of
problems in plasma physics including experimental stud-
ies related to magnetically confined fusion [2], dynamos,
the earth’s magnetic field and the solar corona, where
reconnection is associated with flares [3,4], and coronal
heating [5,6]. This Letter will show preliminary evidence
for a possible singularity for ideal MHD using numeri-
cal simulations of three-dimensional linked magnetic flux
rings and the possibility of resistivity-independent dis-
sipation leading to fast magnetic reconnection.

Significant progress has been made recently for the
incompressible Euler case where a numerical study of
a pair of antiparallel vortex tubes has produced strong
evidence for the formation of a singularity in the Euler
equations in a finite time [7]. The numerical evidence
was consistent with an analytic constraint for Euler [8]
that no singularity can occur in a finite time t � tc in
any quantity (e.g., in any derivative of u, however high)
unless
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I�tc� �
Z tc

0
kvk`�t� dt ! ` . (2)

Here k . . . k` is the L` norm, or maximum, in space. This
theorem shows that when searching for a singularity in
the 3D Euler equations, the only quantity that needs to
be monitored numerically is kvk`. Furthermore, if a
singularity of the form kvk` � �tc 2 t�2g is observed in
a numerical experiment, then g must obey g $ 1 for the
observed singular behavior to be genuine. The numerical
comparisons [7] found g � 1, a scaling that is consistent
dimensionally in addition to being consistent with (2).
The generalization to MHD is (1).

An important feature of the analysis of the Euler
calculations that should be used when analyzing other
flows with possible singularities is that singular behavior
should be demonstrated by several independent tests. One
set of tests predicted mathematically is that in addition
to the 1��tc 2 t�g behavior of kvk`, all components of
k===uk` should diverge as 1��tc 2 t�g [9]. Again, g � 1
is expected. Another test that was found numerically [7]
is that the rate of enstrophy production is

dV�dt �
Z

vieijvj dV � 1��tc 2 t� , (3)

where enstrophy is 1
2V �

R
jvj2 dV .

The question of fast magnetic reconnection has been
addressed using both time evolving calculations and
steady-state analyses. In two-dimensional calculations,
fast reconnection is inhibited by material that cannot
escape easily from between thin current sheets. This
led to early suggestions that a singularity in 2D MHD
is precluded by the formation of current sheets [10]
and is consistent with a recent result that there can
be no singularity at 2D nulls [11]. New experimental
evidence [2] designed to test two-dimensional steady-
state theories shows a slow resistive time scale [12–
14] instead of a faster time scale resulting from slow
shocks [15] and related theories [16]. In three dimensions,
the extra degree of freedom could allow material to
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escape more readily from the current sheets. This has
prompted reconnection simulations in three dimensions,
for example, starting with orthogonal, straight flux tubes
in pressure equilibrium and a small velocity field to push
them together [17]. Explosive growth of kJk has been
seen before [18], but not in the context of singularities.

We consider the equations for an isothermal, compres-
sible gas for a given sound speed cs with a magnetic field
of the form

≠u
≠t

� 2u ? ===u 2 c2
s=== ln r

1
J 3 B

r
1

m

r
�=2u 1

1
3====== ? u� ,

≠ ln r

≠t
� 2u ? === ln r 2 === ? u , (4)

≠A
≠t

� u 3 B 1 h=2A ,

where B � === 3 A is the magnetic field in terms of
the magnetic vector potential A, u is the velocity, and
r is the density. In the ideal limit, the resistivity h

and the viscosity m are set to zero. The magnetic field
is measured in units where the permeability is unity.
Periodic boundary conditions are adopted in a domain of
size �2p�3. Our time unit is the sound travel time over a
unit distance. The equations are advanced in time using a
variable third-order Runge-Kutta time step and sixth-order
explicit centered finite differences in space.

The equations for the incompressible case are the
same except that the equation for r is replaced by the
divergence-free condition on velocity === ? u to determine
the pressure. The magnetic field B, rather than the
vector potential A, is used as a fundamental variable.
The equations are advanced in time using a spectral
colocation method with the 2�3 rule and variable third-
order Runge-Kutta time step. The maximum resolution
used 3843 mesh points.

The incompressible, ideal MHD equations conserve
total energy E � 1

2

R
�u2 1 B2� dV , magnetic helic-

ity HB �
R

A ? B dV and the cross helicity HC �R
u ? B dV . The helicities can be used to describe as-

pects of the topology [19]. Since HB has one less spatial
derivative than the energy, spectrally it should dissipate
more slowly than energy [20] when m, n fi 0.

The initial conditions used in the present study will all
be of two linked, magnetic flux rings. This condition
is chosen because it has the advantage that no velocity
field needs to be imposed in the initial conditions since
the tension from the curvature of the rings induces a
velocity by shrinking the rings. Because of the initial
linkage, it also yields nearly maximal HB and therefore
is an excellent choice for studying the dissipation of HB

versus energy [19].
A variety of different ring thicknesses and angles be-

tween the initial rings have been investigated. This Letter
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will discuss in detail only cases where the rings are or-
thogonal and are just touching. There are three distances
that determine the initial condition that evolved into the
structures in Fig. 1: the radii of the rings R, the thickness
r0 where the flux goes smoothly to zero, and the separa-
tion of their centers from the origin D. The separation
of the rings is 2�R 2 D�. An initial profile across the
ring that gives jBj � 1 in the center and goes smoothly
to jBj � 0 at r � r0 is taken from the Euler calculations
[7]. R � 1 and D � 0.5 for all the cases, so that they
go through each other’s centers. The initial condition for
the compressible calculations to be reported used r0 � 0.5.
r0 � 0.5, 0.65, and 0.8 for the ideal incompressible cases.
Following the example from the Euler case [7], the fol-
lowing hyperviscous filter was applied in Fourier space
to the initial condition only: exp�2�k�kmax�4�, where kmax

is between 14 and 20. As a result, the maximum initial
magnetic field B0 is slightly less than one. For the com-
pressible calculations, cs is varied between 0.1 and 10,
so the initial plasma beta, b0 � 2c2

s �B2
0, varied between

0.02 and 200. Only nearly incompressible b0 � 2 cal-
culations are presented. The initial density was uniform
and equals one. While what is being presented is nearly
incompressible, preliminary low plasma beta calculations
as well as compressible vortex reconnection [21] suggest

FIG. 1. Resistive calculation using compressible code. t � 2
shows evolution during the nearly ideal phase, t � 3 shows a
partially reconnected state with HB converted more into new
twist between the remnants of the original tubes than into
writhe within reconnected tubes.
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that compressibility might enhance reconnection rates and
singularity formation.

All of the compressible, resistive calculations were
straightforward runs from t � 0 with viscosities and re-
sistivities chosen for a given resolution. The strategy for
reaching the highest possible resolution for the ideal cal-
culations followed the example of how a possible sin-
gularity in incompressible Euler was demonstrated [7].
First, the ideal calculations do not contain any numeri-
cal smoothing and have been run only so long as numeri-
cal dissipation was insignificant. This approach was used
because experience has shown that artificial smoothing re-
sults in artificial dissipation which can obscure the dynam-
ics of the ideal case. The lower resolution calculations
were started from t � 0. Since it would be too expensive
to run higher resolution calculations from t � 0, they are
being remeshed at intermediate times.

There was no initial velocity field. The first, and
shortest, phase after initialization was that due to the
curvature of the flux rings their diameter R shrinks. This
automatically brings the flux tube rings into contact and
the current of one ring begins to overlap the magnetic
field of the other. This is necessary for the Lorentz force
to be significant and for a strong interaction to begin.

To give an overall view of the flow, Fig. 1 shows
the three-dimensional structure from a b � 0.5, 1923

resistive, compressible calculation, just before and after
the estimated singular time. t � 2 shows nearly ideal
evolution from the initial motionless, perfectly tubular
flux tubes. The dominant feature is the indentation in each
ring. This is because in the cores of the flux rings the field
is strongest and the magnetic curvature force largest. The
region going singular appears in Fig. 2 as twisted current
sheets within the center of Fig. 1. A surprising property
of the reconnection process is that slices show that the
size of the entire structure shrinks. Some perspective on
this can be obtained by comparing the structures at t � 2
and t � 3.

By t � 3 some reconnection has occurred. Magnetic
helicity HB is nearly conserved, decreasing linearly at
a very slow pace as it is converted into writhe [22] or
new twist, while the energy is dissipated more rapidly.

FIG. 2. Three-dimensional level surfaces of the magnitude of
the current density in the resistive calculation. t � 2 shows a
double saddle surface, which at t � 3 is broken up into two
disjoint pieces.
A detailed examination of this structure will be studied
elsewhere.

In a resistive calculation, the dissipation is concen-
trated on a current sheet that forms where the two flux
rings come into contact. Level surfaces of the current
density near its peak value (Fig. 2) show a twisted, saddle
shaped structure before the estimated singular time,
which separates into two disjoint sheets centered around
the points of maximum current density after the singu-
lar time.

Figure 3 shows 1�kJk` and 1��kJk` 1 kvk`� for
the resistive calculations. There is a strong tendency in
favor of linear behavior similar to that observed for 3D
Euler [7]. Extrapolating from before t � 2.3 to 1�Jmax �
0 suggests that tc � 2.5. For cs . 0.5, that is more
incompressible, roughly the same singular time would
be predicted. For cs , 0.5, that is more compressible,
different behavior is indicated, but the trend toward
1�kJk` � �tc 2 t� remains.

For Euler, recall that stronger evidence for a possible
singularity was obtained by monitoring the L` norm for
an additional strain term and the enstrophy production,
as well as kvk` [7]. Following that reasoning, we
need to know the behavior of two first derivatives of
the magnetic or velocity fields plus a global production
term. Therefore, we propose looking at the behavior of
kJk`, kvk`, and the production of Vv1J � 1

2

R
�jvj2 1

jJj2� dV ,

PVJ �
Z

�vieijvj 2 vidijJj 1 2´ijkJidj�e�k� dV ,

(5)

where eij �
1
2 �ui,j 1 uj,i� and dij �

1
2 �Bi,j 1 Bj,i� are

the hydrodynamic and magnetic strains. The terms in
PVJ , in order, are the vortex stretching already known for
Euler, a new vorticity production term, and a new current

FIG. 3. Evolution of 1�kJk` and 1��kJk` 1 kvk`�. r � 0.5
for b0 � 2. Solid and dashed lines refer to ideal calculations
with different resolution and the dotted line is for a resistive
calculation with h � m � 0.002. The dash-dotted line gives a
linear fit to the data. Inset is 1�kJk`.
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FIG. 4. Comparison of the evolution of 1�kJk`, 1�kvk`, and
PVJ for r0 � 0.65. The inset shows kvk`�kJk` for r �0.5,
0.65, and 0.8, all of which are converging to kvk`�kJk` �
0.5, demonstrating possible self-similarity.

producing term. All three tests should go as 1��tc 2 t�
once sufficiently singular solutions are obtained, which we
have not yet achieved. Therefore, the present objective
is trends in the right direction, rather than conclusive
evidence for the existence of a singularity.

Figure 4 plots the three proposed tests for the r0 � 0.65
incompressible case. The 3843 run was used for the
1�kJk` and 1�kvk` tests for t . 1 and the 1923 run for
1�PVJ for all time.

In the case of Euler it was shown that ratios of all
L` norms of first derivatives were approaching constant
values [7], which would be consistent with self-similar
behavior near the point going singular. Therefore, we
expect that kvk`�kJk` should approach a constant value
here. Initially the velocity and vorticity are zero, so
these must build up before behavior for kvk` and PVJ

consistent with 1��tc 2 t� appears. The inset in Fig. 4
shows that all three cases appear to be converging to
a value of kvk`�kJk` � 0.5. r0 � 0.65 converges the
soonest, near t � 1.6, and together with the convergence
of kvk`�kJk` ! 0.5 is our best evidence to date for a
possible singularity in ideal MHD. In addition, 1�PVJ

appears to join the same �tc 2 t� near t � 1.9.
While 1�kJk` for the r0 � 0.5 incompressible case is

comparable to the compressible case and shows the largest
range of 1�kJk` � �tc 2 t� behavior, it is not strong
evidence for a singularity because the inset in Fig. 4 shows
that its 1�kvk` up to t � 2.0 does not have the same
value for tc. However, note that the production term for
J2 in (5), 2´ijkJidj�e�k , does not involve vorticity, but
only strain terms. Unlike Euler, vorticity seems to be
playing only a secondary role for ideal MHD. It is not
essential for vorticity to blow up for the compressible
cases, and it does not. Related to this, the current sheets
near kJk` in Fig. 2 are twisted. This also suggests that
similar hydrodynamic initial conditions should be revisited
1158
to determine their reconnection rates [23]. Further analysis
of local production terms in proposed 6003 calculations
should help answer these questions.

In conclusion, we have presented numerical evidence
for a finite-time blowup of the current density in ideal
MHD in the case of interlocked magnetic flux rings. In
the resistive case one would not expect there to be a sin-
gularity. Instead, arbitrarily thin current sheets will form,
depending on how small the resistivity is [24]. This can
lead to significant dissipation whose strength is virtually
independent of resistivity, which in turn could lead to fast
reconnection. The astrophysical significance of current
sheets as a consequence of tangential discontinuities of
the field has also been stressed in a recent book by Parker
[5]. However, the possibility of a finite time singularity
in ideal MHD is not commonly discussed in connection
with fast reconnection.
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