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Abstract. We study the changes in the dynamical behaviour observed to exhibit large scale structure, related to the shape of
axisymmetric spherical mean-field dynamo models productt object, and thus can only be captured fully by global dy-
by changes in their geometry and topology, by consideringhamo models (Tobias 1998). In some cases it has been possible
two parameter family of models, ranging from a full spher® show that, for fully three-dimensional turbulence simulations,
to spherical shell, torus and disc—like configurations, withinthe dependence of the results (parity, time dependence, cycle pe-
unified framework. We find that the two parameter space of thied, etc.) on global properties including boundary conditions
family of models considered here separates into at least thizeemarkably similar to that of the corresponding mean-field
different regions with distinct characteristics for the onset dfynamo models (Brandenburg 1999a,b). This lends some sup-
dynamo action. In two of these regions, the most easily excitpdrt to the validity of mean-field theory, which is used in the
fields are oscillatory, in one case with dipolar symmetry, and fallowing.
the other with quadrupolar, whereas in the third region the most Mean field dynamo models, which attempt to capture such
easily excited field is steady and quadrupolar. In the nonlineggometric features, have been employed extensively in order
regime, we find that topological changes can alter significantly study various aspects of the dynamics of solar, stellar and
the dynamical behaviour, whilst modest changes in geomegiglactic dynamos (see for example, Steenbeck & Krause 1969,
can produce qualitative changes, particularly for thin disc—likRoberts & Stix 1972). Often the dimensionality of the under-
configurations. This is of potential importance, since the exdging partial differential equations has been reduced by assum-
shapes of astrophysical bodies, especially accretion discs amgdaxisymmetry. As the presence of strong differential rota-
galaxies, are usually not precisely known. tion tends to destroy non-axisymmetric fieldsagier 1986),

this restriction has some astrophysical justification, but nev-
Key words: accretion, accretion disks — chaos — magnetic fieléstheless some galaxies and types of stars are known to have
— Magnetohydrodynamics (MHD) — Sun: magnetic fields = non-axisymmetric fields and so this simplification cannot be
universally valid (see Moss et al. 1995, Beck et al. 1996, and
references therein).

A great deal of effort has gone into studying the behaviour
of both highly truncated as well as axisymmetric global mean
The magnetic fields observed in stars, accretion discs and gatédd dynamo models. Such models have been shown to be ca-
ies are generally considered to be generated by magnetohyghable of producing a spectrum of modes of behaviour, includ-
dynamic dynamo action. The complexity of the physics of sudfig solutions with pure and mixed parities (Brandenburg et al.
dynamos has meant that a fully self-consistent model is beyat@B89a,b), as well as complicated types of behaviour, includ-
the range of the computational resources currently availakileg quasiperiodicity, chaos and intermittency (see for example
although important attempts have been made to understand Jores et al. 1985, Schmalz & Stix 1991, and Knobloch et al.
bulent dynamos in stars (Nordlund et al. 1992, Brandenburgl®98 in low dimensional ODE models; Brooke & Moss 1994,
al. 1996) and accretion discs (Brandenburg et al. 1995, Hawle395, Torkelsson & Brandenburg 1994b, Tavakol et al. 1995,
et al. 1996), for example. Such studies have had to be restricBghmitt et al. 1996, Roald & Thomas 1997, Weiss & Tobias
to the geometry of a Cartesian box, thus they are in essence |d@97, Tobias 1997, Beer et al. 1998, Covas et al. 1998a,b in
dynamos. However, magnetic fields in astrophysical objects gitebal axisymmetric models).

1. Introduction
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An important shortcoming of these models is that they in- In Sect. 2 we briefly introduce the equations for the axisym-
volve severe approximations, which essentially fall into twmetric mean-field dynamo models together with the relevant
broad categories. There are those concerning the underhimyindary conditions. Sect. 3 contains a discussion of our re-
physics, such as approximations involved in the parameterisalts and finally Sect. 4 contains our conclusions.
tion of the turbulent processes in solar and stellar convective
zones (which are not known precisely), and there are the SiE]'The model
plifications assumed in modelling the phenomenological fea-
tures of these systems, such as the details of their geometriése standard mean-field dynamo equation (cf. Kraus&&l&
These shortcomings are often ignored, the assumption bei®80) is of the form
that changing the details of these models should not chan

their behaviours qualitatively. A priori, however, there are n =V x (uxB+aB -V x B), (1)
reasons why this should be so and it is therefore important th t
this assumption be checked. whereB andu are the mean magnetic field and the mean veloc-

Recently, an attempt was made to study the robustness ofiaxrespectively. The quantities(the« effect) and the turbulent
isymmetric mean-field dynamos in spheres and spherical shetlagnetic diffusivityy;;, appear in the process of the parameteri-
with respect to changes in the functional form of theffect sation of the second order correlations between the velocity and
(Tavakol et al. 1995) and also by considering ér@uenching magnetic field fluctuationsu{ and B’). For the sake of sim-
to be dynamic (Covas et al. 1998a). Here we shall employ tpkcity, and to facilitate comparison with the majority of previ-
usual algebraier—quenching and focus on the second featutsis work, we shall ignore anisotropies and takandr, to be
discussed above, namely the assumptions regarding the topoklars. We assume that= Q x r = u¢<;3. Nondimensional-
ogy and geometry of these models. This is important for two reiaation of the equations in terms of a lengtrand a timeR? /7,
sons. Firstly, these are the two important features differentiatipgpduces the two usual dynamo parameteé;s= oo R/n; and
the astrophysical situations in which such dynamos are thought = QyR? /7, wherea, and(), are typical values ofr and
to be operative. Thus spherical and spherical shell models gg. For the sake of comparison with existing results (e.g., Covas
considered in connection with solar and stellar variability (witet al. 1998a), we seC,,| = 10* throughout (except briefly, in
the sphere or shell representing convectively unstable regionsné particular case). We use spherical polar coordirfatése)
stars), whereas disc (Torkelsson & Brandenburg 1994a,b, 198h) consider axisymmetric solutions only. In order to satisfy the
and torus (Brooke & Moss 1994; 1995) models are considereshditionV - B = 0 we solve Eq.[(IL) by splitting the field into
in connection with modelling accretion discs and galaxies. Seneridional and azimuthal componeriB = B, + B, and ex-
ondly, the geometries of these models are often only appr@tessing these components in terms of scalar field functions, so
imations to the true shapes of the astrophysical systems, @matB, = V x ad, B, = bop.
so it is important to know the sensitivity of the dynamo solu- We consider the usual algebraic form af-quenching
tions to modest changes in geometry. This is particularly tra@amely
for dynamo models in accretion discs and galaxies.

In this paper we study the qualitative nature of the dynam. — , (2)
ical behaviour of axisymmetric mean-field dynamo models as 1+ B?

a function of changes in their topology, following transitiongith o, = constant. However, other nonlinearities could also
from sphere to shell to torus, and as a function of changesy@included, for example-quenching (e.g., Bdiger et al. 1994,
their geometry resulting from alteration of the shapes of the dyitchatinov et al. 1994b, Rdiger & Arlt 1996), magnetic buoy-
namo region, whilst retaining the topology. We consider theg@cy (e.g., Noyes etal. 1984, Schmitt & Sskler 1989, Moss et
changes within a unified framework, using the same numegk: 1990, Torkelsson & Brandenburg 1994b, Moss et al. 1999),
cal code with the same boundary conditions, to solve the sagigeedback from the large scale motions (e.g., Malkus & Proc-
dynamo equations. In the context of disc-like models, we algg 1975, Kitchatinov et al. 1994a, Muhli et al. 1995, Moss et
consider changes in the rotation law. al. 1995, Tobias 1997). Here we concentratenequenching

The models considered here include geometric features syeldause our aim was to make a comparative study of the effects
as curvature, which are naturally present in astrophysical sg$changes in topology and geometry against the background of
tems. There have also been studies of more idealized modelg ithiform set of assumptions, and to compare our conclusions
Cartesian geometry, and of low order models, which aim to dgith the most extensive body of pre-existing results in which
scribe generic features of axisymmetric dynamo solutions (e8quenching was the most commonly used form of nonlinearity.
Weiss, Cattaneo & Jones 1984, Jennings et al. 1990, Jenninggn this connection it may be noted that there is an ongo-
& Weiss 1991, Jennings 1991, Tobias et al. 1995). It is of intqug controversy regarding the strengthefjuenching. There
est to determine whether such features persist across changesme evidence that andn, may be several orders of mag-
in geometry and topology and in the highly nonlinear regimegtude smaller than that usually assumed (e.g., Vainshtein &
considered here. We shall briefly return to this issue below @attaneo 1992, Cattaneo & Hughes 1996). This would lead to
the light of our findings. serious difficulties explaining the observations in the framework

of ordinary mean field dynamo theory. Several solutions to this

g cos 6
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problem have been suggested, namely that the functional form 9,
of the dynamo equation is different andis really an integral f
kernel (Brandenburg 1999a, Brandenburg & Sokoloff 1999),| >\
that « originates not from thermal convection, but from mag- |
netically driven fluid motions (Brandenburg et al. 1998, Bran- 1 /
denburg & Schmitt 1998), or that cannot be estimated fromo_( —5s
simulations using projections onto the= 0 wavenumber, but \
instead projections onto the smallestnvanishingvavenum- \
ber should be used (Brandenburg 1999a, see also Beck et al.
1996). Whatever the eventual outcome of this debate, 3-D tur- -
bulence simulations do seem to produce magnetic fields whosg
?f:gks)zlerz:sg;gf?rc()ﬂr‘r?I((:jorr)rirgg(’)zg;ﬁgdrizear:f?glzeé)?r::n?;mr:? ﬁ? 1A schematip representation of the dynamo region produced by
€ cuts characterised by the model parametgend6,.

(Brandenburg 1999b).

In our calculations we consider two types of rotation laws, N ) )
one with constant shear and the other with approximately rigid The specific shape of the excised region was chosen for
rotation close to the rotation axis and tending to Keplerian rotgimplicity of implementation with our code, written in spherical
tion at larger radii. Hereafter we refer to the latter as a “gendiolar coordinates. Most disc dynamo models have assumed a
alized Keplerian” rotation law. The first constant shear profiftt disc geometry, so we can only make qualitative comparisons
has been used extensively in studies in many different georR§fween such work and our results for large valueg,ofVe
tries. We recognise that helioseismological evidence indicaft€ in passing that both galactic and accretion discs are believed
that the rotational profile of the sun gives a shear in a very cdf-flare (¢.g. Moss etal. 1998 and references therein, Frank etal.
centrated region. Our main aim is to allow comparison with992)- Inany case, dynamo models with rigid boundaries can all
a range of published models, hence we chose this simple Bspenly a_tpproxmanons to astrophysical objects with indistinct
widely used form. The second profile has been extensively ufQyndaries. . -
in studies of accretion discs. In that it gives a differential rota- !N order to solve the dynamo equations, boundary conditions
tion that decreases with radius it might be considered to givéged to be imposed on the surfaces of the dynamo region created
generic representation of the rotation in a galactic disc, althougjh Fémoving the cones (denoted Y), on the inner surface
rotation profiles in galaxies are certainly not Keplerian. r = ro (denoted by5;), and also on the outer curved boundary

For the rotation profiles that we will consider here, we tak&enoted byS,), as depicted in Fig]1. N
. We adopt a perfect conductor boundary condition,
u = Qwa, 3)

o(rd) d(ra)
wherew = rsin  is the distance from the rotation axis. Forthe¢ =0, —= =a—5= on 5 (5)
first profile mentioned above, we shall, consistent with Bra
denburg et al. (1989a), take = Qqr, where(), is constant,
and for the second profile, we shall take

Ia)ther choices are possible (see, e.g., Tworkowski et al. 1998),
but this has been used commonly in earlier investigations.

On S, a vacuum boundary condition has often been used.

qnq —1/n However this, although appealing, is actually quite arbitrary as,

=10 [1 + (?ﬂ()) } ) ) for example, there is no evidence that the solar poloidal field is
curl-free immediately above the surface. Witgr> 0, imple-

menting an essentially non-local vacuum boundary condition
son & Brandenburg (1994a), we take to be0.3 andn = 10.  j5 hot straightforward, and so we have chosen a plausible lo-

Relation [4) approximates solid body rotation for smalend o condition. Other authors have previously taken a radial field

approaches Keplerian rotation far > w,. Note that for this condition, d(ar)/dr = 0, (e.g. Gilman & Miller 1981). We
profile 9€2/0r < 0 whenC,, > 0, whilst for profile [3) with o

constant shear the signs are reversed,d&/0r > 0 when

Cy > 0. da/Or =0, b=0, (6)

The models we shall consider here are all constructed fro.%ﬁich results in a poloidal field ofi, which is typically near to

cohmprletefs;pf(;?re ofi;ad:gEthVe can ;r?mct)r\:le ?rn Irr:lner C?]ncrer;m?adial over most of the boundary. We stressthat, in the absence of
sphere of radius, (in order to go smoothly from a sphere to aa(iietailed model of processes above a stellar surface, all choices

spherical shell)._ The_z changg from_ a s_phere ora spherlcql ?%‘? boundary condition o, are more-or-less arbitrary, within
to a torus- or disc-like configuration is produced by excisin neral restrictions of plausibility

a cone of semi-angl&, about the rotation axis, from the north If a perfect conductor boundary condition is used on the

and south polar region_s. The configurationis iIIu§trated irmi.giél’ufacessc then ag)y — 0 the model does not tend to that used
where the dynamo region is produced by rev'olvmg.the meridi | the full sphere, where = b — 0 on the axis. Thus we set
section shown about the vertical dotted rotation axis through the

origin O. a=b=0 on S @)

whereq = 3/2 for accretion discs. In conformity with Torkels-
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to ensure continuity of behaviour é&s — 0; again other choices r=0.0 r=0.2 r=0.5 r=0.7
are possible.

In the following, as is customary, we shall discuss the be-
haviour of the solutions by monitoring the total magnetic en-
ergy, E = 1 fBQdV taken over the dynamo region glvenO
byrg <r < Rand&o <0 < 7—0y. We sphtE into two
parts,E = E(4) 1+ BS), whereEY) andE(S) are respectlvely
the energies of those parts of the field whose toroidal field is
antisymmetric and symmetric about the equator. The overall

parity P is given byP = [E(®) — E(4)]/E (Brandenburg et

al. 1989a), sa® = —1 denotes an antisymmetric (dipole- I|ke)7-0
pure parity solution an® = +1 a symmetric (quadrupole-like) ”
pure parity solution.

For the numerical results reported in the following secuons
we used a modified version of the axisymmetric dynamo code
of Brandenburg et al. (1989a). We took a grid sizebfx 81
mesh points in the dynamo region. To test the robustness ofﬂla_h,s
code we verified that no qualitative changes were produced
employing a finer grid, different temporal step length (we used B
step length o10~4 R /n, in the results presented in this paper)‘:D

We considered a family of models ranging from a full sphere
through spherical shells to torus- and disc-like configurations.

3. Results

. . S
We present the results of our comparative studies of dynal

solutions in regions that are produced by variationg@ndd,

inthe ranges < ro < 1 (in dimensionless units) and< t < Fig. 2. Schematic representation of the dynamo regions and their cor-
7 /2 respectively. In particular, we took the following values: responding onset parity with,, — —10* and a constant rotational

ro = 0, 0.2, 0.5, 0.7 8) shear profile.
0y = 0, 4.5°, 22.5°, 45°, 75° 9

@@@@
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3.1. The onset of dynamo action
To present our results, we use the following notation in the y

figures: the prefix “steady” denotes a constant energy, whilse summarise our onset results by considering the two types of
“A’ and “S” on their own respectively represent pure antideformation of the basic sphere in turn. Starting with the case
symmetric (dipolar) P = —1) and symmetric (quadrupolar)where an inner sphere is removed, giving a spherical shell, we
(P = +1) solutions with periodically oscillating energy, “OM” note that Roberts (1972) found numerically (but for different
represents solutions which possess periodic oscillations in bbtlundary conditions) that for amw dynamo with a negative
parity and energy, and “C” and “I" denote chaotic and intedynamo number, the most easily excited mode has dipole-like
mittent behaviours respectively. By intermittent behaviour wsymmetry forrg < 0.7, whereas for, > 0.7 the most easily
loosely mean irregular switchings between two or more diffeexcited mode has quadrupole-like symmetry. Our correspond-
ent dynamical regimes characterised by different statistics. (Fog results are summarised in Hig. 2. In particular, the top row
a precise characterisation of this type of behaviour in some ayf-this figure, summarizing the behaviour of a sphere and spher-
namo models see Covas et al. 1998a.) We should add here ittt shells without polar cones removed, agrees qualitatively
the computational cost of our calculations limited the resolutiavith the results of Roberts (1972).
to which we were able to search the parameter space. Conse-The next three rows in this figure correspond to the re-
quently all our results regarding the sequence of parity changegval of cones of semi-anglés = 4.5°,22.5° and45° re-
are subject to this limitation. spectively. These results indicate that despite the removal of the
Since many previous authors have discussed behavioupalar cones, the onset behaviour still remains the same as that
the onset of dynamo action, we shall present our results in tgiven in Roberts (1972). In this way we may say that the onset
subsections. First we present our results concerning the onssults for spheres are quite robust with respect to the polar cuts
of dynamo action as we go from a sphere through sphericainsidered here.
shells to torus- and disc-like structures, and then we consider To compare our results further with those in previous studies,
the dynamical behaviour for each configuration as the dynarfow example of dynamo action in tori by Brooke & Moss (1994,
number isincreased. Our detailed results are presented ifTall635) and in discs by Torkelsson & Brandenburg (1994a,b,
and Figd. P t 15. 1995), we also studied the case of a large polar cut angle
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Steady S Steady S Steady S A } c=1d As can be seen from a comparison of Higs. 2[dnd 3, the onset
behaviour in these models changes from oscillatory to steady so-

0 lutions as the cut angl increases. Such a change in behaviour
~ <) <) Q U has also been found in oblate spheroidal geometry as a sphere
o flattens to a disc-like configuration (Stix 1975, Soward 1992a,b

and Walker & Barenghi 1994). According to these authors, the
Steady A Steady A Steady A Steady Ay C,=+10' crucial factor in the change from oscillatory to steady behaviour
is the aspect ratio of the spheroids, defined as the ratio of the
minor to the major axis. They speculated that this was because
Steady A Steady A Steady A Steady A} c,=-10' dynamo waves were restricted from propagating in the vertical
direction (i.e. parallel to the minor axis). In this context it is

I interesting to note that in our case the only oscillating solution
n for 8y = 75° occurs wheny = 0.7 and the above aspect ratio
o is O(1), as for a sphere.

In Tablel we summarise the values@f corresponding to
Steady S Steady S Steady S Steady 3} C~+10"  the onset of dynamo action in each configuration. Except for the

Fig. 3. Schematic representation of the dynamo regions and their cBRse with generalized Keplerian rotation law, this shows that for

responding onset parity. The top and bottom panels are for const@f<€dro the values of’, atthe onsetof dynamo actionincrease
shear and generalized Keplerian rotational profiles respectively. ~ as the cut ar?9|éo increases for almost all configurations as the
shells get thicker.

Table 1. Values ofC, for the onset of dynamo action as a function e should also note that the steep increase in the onset value

of the shell radius, and the cut anglé, with C., = —10*. The row ©0fC, aswegofronfy, = 45°tofy = 75°, may berelated tothe
labeled is produced using the generalized Keplerian rotation profiféansition from shell-like to disc-like configurations. Table 1 in
given by Eq.[(4) withC,, = —10*. HereS'S indicates a Steady S state.conjunction with Figd. 2 arf{d 3 confirm that in the constant shear
case configurations with smaller polar cut angles follow the

0 r70=00 r0=02 1ro=05 1ro=0.7 linear results due to Roberts (1972), while those with larger cut
0 0.45 A 038 A 031A 0425 anglesy Z 49°) do not, thus su_ggesting the possible existence
45° 0.45 A 038 A 032 A 042S of atransmon as _the cut z_angle is mcre_ased.
22.5°  0.70A 0.60 A 0.42 A 0.50 S For the disc—like configurations (with = 70°), the onset
45° 17A 13A 09A 10S of dynamo action is to a steady state when< 0.7, when
48° 1.86 A 1.48 A 1.04 A 1.07S the symmetry is determined by the signa®/or. If this is

. positive, that is for the constant shear with = +10* and for
490 1.98 A 1.58 A L10A  1.113A the generalized Keplerian rotation profile with, = —10%, the
50 21A 1.679 A 1.15A 1.17A . . .
550 30A 237 A 156 A 1493 A onset modes are antlsym_metnc. For the negative case the onset
60° 445A 3545A 227A  198A mode is always symmetric.
65° 72A 572 A 3.57A 2.77A
67° 95A 71A 4.4 A 3.24 A 3.2. Nonlinear regime
70° 11SS 8.05 SS 3.09SS 4.295A

We present our results in the nonlinear regime in three stages.
First we consider the transition from the full sphere to a spher-
75°% 4.0 SA 3.7SA 35SA 115SA ical shell, then from a full sphere to that with axial cones re-
moved and finally we study a full sphere with both an inner
core and axial cones removed simultaneously. Our detailed re-
(6o = 75°), with both constant shear and generalized KeplgUlts are presented in Figs$. - 8, corresponding to five different
rian rotation profiles, and these results are summarized iajFigvalues oftl,. Each contains four panels for each of the values
We point out that the code used by Torkelsson & Brandenbu#§ro considered, the panels from top to bottom corresponding
(1994a,b, 1995) is also a modified version of the axisymmetfRro values 0f0.7,0.5, 0.2 and0.0 respectively. We have con-
dynamo code of Brandenburg et al. (1989a), and thus sharé€atrated mostly on the more usual case of negative dynamo
common heritage with the code we used, whereas that of Brodkénber C., = —10%), but for comparison we also consider, for
& Moss (1994, 1995) was written independently. All these cod&9edo, the case of a positive dynamo numbeg,(= +10*; see
use the same time stepping scheme (Dufort-Frankel) and Gi@[9). as well as the case with generalized Keplerian differen-
second order accurate in space. tial rotation, which is relevant for accretion discs (FIgs.[10-12).
Note that, as commented after Eg. (4), with the generalized Before discussing our results in detail we emphasise that
Keplerian rotation lam{{4)C., > 0 corresponds loosely to thethe sequence of parity changes reported below are those that we

constant shear law witfi,, < 0. However equal values of’,| found to within the resolution of thé', parameter employed
do not imply equal values of the rotational shear. here. It is therefore important to bear in mind that unless there

75° 13.0SS 10.1SS 5.8 SS 7.6 A
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with constant (negative) shedr,, = —10*.

%Pansients. With these qualifications we proceed to discuss our
results in more detail.

The results concerning the transition from a full sphere to
spherical shells are shown in Fig. 4. This shows that the tran-
sitions, from the onset of dynamo action into the nonlinear
regimes ag’, increases, are the same for the full sphere and
the two thickest shells (i.ex = 0.0,0.2,0.5). All possess the
same initial sequence of parity changes given by

A,OM, S, A. (10)

The only difference is that, as the shells become thinngr (
increases), the sequence is compressed to a narrower interval
of C,. For the thinnest shell-{ = 0.7), however, the initial
sequence is

S, A, S, A. (11)

When a polar cone is removef} (> 0), the initial sequence
of parity changes is the same for the full sphere and the two
thickest shells fof, < 45°. The behaviour for the thinnest shell
(ro = 0.7) and the largest polar cut angl® (= 75°) differ. We
also observe that the removal of the polar cones causes more

Partial bifurcation diagram, as F[g. 4, for the case of a polar cghangeable and varied behaviour, as does the removal of the

with a very small anglé, = 4.5° and with constant (negative) shearinner cores, providing that the first bifurcation is to an oscillating

C, = —10%.

solution.
Figs[D to[T show that there are similarities in the initial
sequences of parity changesfgshanges. The configurations

is a clear theoretical reason for believing in the presence offn g, = 4.5°,22.5° and45° andr, = 0.0,0.2 and0.5 all

particular sequence of parity changes in the nonlinear regimggye the same initial sequence, namely,
it is always possible to miss finer details of such sequences for

any given finite resolution ig,,. Our standard step ifi,, is 0.5, A4,0M, S, 4,

but on occasion this was very much reduced (see, e.g[ Hig.

(12)

o ) 4 jVﬁ)ﬂlst configurations withry = 0.7 and these same angles have
In addition, although we have attempted to integrate over ti & g 0 g

long enough to eliminate any transient effects, nonetheless, it Is
not possible to always rule out the presence of very long-livé A, S, A.

sequence

(13)
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Fig. 7. Partial bifurcation diagram, as FIg. 4, for the caéige= 45°, Fig.9. Partial bifurcation Qiagram, as FE4 for the case of a large
with constant (negative) shedr,, = —10*. polar cut angledy, = 75°, with constant (positive) sheat., = +10*.
A 10 F C A L G i . .
Tt b R S & KT oemman] 1 Fange of values af', . At some point an oscillator§ mode takes
v S : Gecllaing & over. Forry = 0.5 OM modes appear and only fo5 = 0.7
10 - ‘ ‘ ‘ ‘ ‘ T are oscillatory modes observed for all valueggf studied.
i i i i i i i vSteays | We also studied the effects of changing the sigiCgfon
vy . . -
A 10F . ONOMEMEIMLENA  gur results and this is shown in Fig. 9. As can be seen, a steady
Wit b o steady's 1 A mode is first excited for alty. The general behaviour is also
00 Bt s s s s s s 1 1 less complex and more uniform, particularly if we compare the
panel corresponding tg = 0.7 for both signs ofC',,.
10 F ' ' ' ' ' ' ' ' ' E The effects of changing the rotation law to the generalized
E%’: . T 5 Keplerian rotation law are depicted in Aigl10 and, as can be
10" F ea 9 ;
v 1o 7 ’ seen, the steady mode and the subsequent oscillatSrgnode
10° ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ are stable for all values aof', considered. Only in the case
Y Y Y Y Y T T T T ro = 0.7 is new behaviour seen, in that there is an interval
A 10F 1 (C, =~ 15) where only the trivial solution with zero magnetic
T e s 1 fieldexists. Such a gapin the bifurcation diagram has been found
107 L ‘ ‘ ‘ ‘ ‘ ‘ ‘ earlier in connection with torus and accretion disc dynamos
0 10 20 30 4 c50 60 70 8 9 100 (e.g. Brooke & Moss 1995, Torkelsson & Brandenburg 1994b,
o see also Ruzmaikin et al. 1980 and Stepinski & Levy 1991
Fig. 8. Partial bifurcation diagram, as FIg. 4, for the case of a large polfar linear results). Immediately after this gap an antisymmetric
cut anglefo = 75°, with constant (negative) shedr,, = —10*. mode appears. The existence of this gap does not appear to be a

peculiarity associated with the particular valueCdf we used,

as we also found it whefi,, = 2.7 x 10%, a value chosen to give
These two initial sequences agree with the corresponding otfess same value of the rotational shear at the mean radius of the
in the full sphere cased{ = 0°). Differences in the bifurca- shell ¢- = 0.85) as the constant shear model wity = —10?,
tion sequences tend to appear at larger valugs,oivhere the shown in FigB. We show these results in Eig. 11. Itis clear from
dynamo becomes more non-linear. Also at these higher valgemparing Fig- 10 and Fig1 that the bifurcation sequence is
of C,, more exotic behaviours such as intermittency and chasensitive to the value of’,,, but the gap in which no field is
can appear, for example fé§ = 0° and4.5° withrp = 0.2and excited remains.

0.5, 6y = 22.5° with ry = 0.2,0.5 and0.7, andf, = 45° for When the sign of the generalized Keplerian rotational shear
all values ofry considered here, whilst chaotic and intermittens reversed (Fi§.12), a steady mode is again first excited,
behaviour only occurs faty = 75° whenry = 0.7. similar to the case of linear shear. Only fay = 0.7 is the

Whend, = 75° (Fig.[8) the behaviour is totally different. behaviour slightly different in that there issanode that appears
The steady quadrupole mode)(emains stable for a very largefor C,, ~ 22.
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Fig. 10. Partial bifurcation diagram, as F[g. 4, for the case of a lardég. 12. Partial bifurcation diagram, as F[d. 4, for the case of a large
polar cut angled, = 75°, with the generalized Keplerian rotation law,polar cut angled, = 75°, with negative generalized Keplerian rotation
C, = +10* (9Q/9r < 0), wo = 0.3. law, C,, = —10* (092/9r > 0), wo = 0.3.

10°

v Steady S given in Fig[IB, where we have used an exceptionally fine res-
- Oscillating A olution inCl,.
= Oscillating S 1 In this case we found with, = 4.2868 andC,, = 4.2869
+ Oscillating M that although initially the parities rapidly approach values close
to +1, nevertheless even after hundreds of diffusion times the
parities do not seem to get closertd than P = +0.9999633
and P = —0.9999967 respectively. This then still leaves the
possibility of the existence of a mixed mode in the neighbour-
hood of these twda’,, values. Note that we worked in single
1 precision arithmetic.
M A conclusive resolution of this question requires a more
¥ substantial study, and we intend to return to this pointin a future
102 i ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ publication.
0 10 20 30 40 50 60 70 80 90 100 OQurresults also indicate that overall the behaviour appears
Ca to be more complicated in shells than in the full sphere dynamo
Fig. 11. Partial bifurcation diagram, as FIg. 4, for the case of a Iard@Odels' a featurg also obse_rved_ In COYaS et _al. 1998_a.
polar cut angled, = 75°, with the generalized Keplerian rotation law, Also, the nonlinear solu_t|ons in co_nf|gurat|ons which corre-
C., = +2.7 x 10% (9Q/8r < 0), wo = 0.3. spond most closely to a thick torus, ik. = 22.5°, rg = 0.2,
0.5 and als@ = 45°, 1y = 0.5, display chaotic behaviour at
the lowest values of’,,. This corresponds with the findings of
In the above figures, the nature of the solutions (and thus BBmoke & Moss (1994, 1995), that chaotic behaviour was ex-
symbols shown) are all determined only to within the numericaited at modestly supercritical dynamo numbers in tori, whereas
resolutions chosen and for the length of of time during whiahaotic behaviour only occurred at highly supercritical dynamo
solutions were followed and thus in which transients could deumbers in disc and shell configurations.
cay. In particular, near the bifurcation points (as in the case of To obtain an overview of the behaviour of the two parameter
transitions from pure parity A to S (or vice versa)), we find aamily of models considered here, we recall that Table 1 sug-
expected extremely long transients (at times of more than hgests the presence of three different regions with distinct onset
dreds of diffusion times). Bearing all this in mind, we do findbehaviours in the parameter spécg 0, ). In the constant shear
some evidence which suggests that the conjecture by Jennirggation law case two of these regions possess oscillatory dipo-
& Weiss (1991), according to which transitions from one putar and quadrupolar onset symmetries respectively and in the
parity to the opposite are mediated by a mixed parity reginmtbjrd the most readily excited field is steady and quadrupolar.
may not always hold. An example of this type of transition ihese regions could also be interpreted from a different point of
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Fig.13. Parity versus time diagram for two runs with same initiafig 14. Transition from sphere/shell to disc-like behaviour for a con-
conditions except the value @f.. The other parameters used Wergtant shear profile as a function 6§ for Co, = 10, ro = 0.5,

Cwﬂ: —10%, 7o = 0.2, 6o = 45°, with a constant shear rotationc;, = —10*. The inset gives the corresponding behaviour of the parity.

profile.

view by considering the behaviour observed in previous dynamo#.0 | Transition
region

models. Viewed in this way, there are at least two transitions in
the(ro, 6y) parameter space. The first corresponds to a transition
from a region which is consistent with Roberts’ (1972) results 54|
(characterised by ad onset mode fory < 0.7 and by anS

onset mode withry > 0.7) to one that does not (i.e. one withA,
antisymmetric onset modes for a}f). The second transition isio’

from a disc—like regime in which steady modes are commonYy

found to one in which they are absent. In order to elucidate this . Other modes
second transition we have made two studies of the parameter 5 0 1

space at a finer resolution, by fiximg and varyingd, and vice 10} -os} -

versa. These results are depicted in Figk. 14 ahd 15 respectively Ll ‘ ‘ ]

at fixed values of’,. (We note that changing the value @f, 0 02 0.4 06 0.8

does not qualitatively change our conclusions.) Those results) ‘ ‘ ‘ ‘ ‘ ‘ ‘

indicate the presence of two sharp transitions in mean energy ¢ 0¢ 02 03 04 05 06 07 08

and/or parity at around, ~ 70° for ry ~ 0.5 andfy ~ 75°

for ro ~ 0.6. These features are also corroborated by the tirRgy. 15. Transition from disc-like to planar like behaviour for a constant

series of energy and parity. shear profile as a function of for C, = 60, 8y = 75°, C., = —10*.
Finally, we have also examined the behaviour of our sollihe inset gives the corresponding behaviour of the parity.

tions as a function of the aspect ratio, which we defined as

A= (1—=r)/[(m—200)(1+70)/2] . (14) 4 Conclusions

With this definition, the smallest aspect ratio corresponds \(}ée have made a comparative study of the dynamical behaviour

the configuration with, — 0.7 andfy — 0 (A = 0.11), and of a two parar_neterfamily of axisymmetric mean-field dynar_no
the largest to that with, — 0 andf, — 75° (A = 3.82). r_nodels,.ranglr)g from_a_full sphgre to shel!s to torus- and disc-
We find that at large values ., for exampleC,, > 30, the like configurations, within a un|f|¢d num_encal fra.mework..We
averaged energyF (1)) per unit volume of the dynamo regionhave, found ovgrall agreement with previous studles'of axisym-
is largest for the configuration with the smallest aspect rat etric mean-f_leld dynamos for spheres,_ shells, tori and dl_scs.
and vice versa. In addition, for these value€hf we find that e note that since the other references cited here employ differ-

the average energy per unit volume decrease dscreases ent codes and to some extent, different physical assumptions,

(i.e. the cuts get larger) and as decreases (i.e. the shells geEhe fact that similar overall qualitative results are observed in
tr;ic.ker) o similar configurations demonstrates the robustness of our results

with respect to differences between the codes. More precisely
we find the following:
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1. Our results show that changes in both topology and geomedityprus exhibit chaotic behaviour atlower dynamo numbers com-
affect the dynamical properties of our models, although thesared to spherical, shell-like or disc-like configurations. This
two factors are inevitably interlinked. Specifically, we have thramncurs with the results of Brooke & Moss (1994,1995), who
topologically distinct configurations, sphere-like, shell-like anbund transition to chaotic behaviour for a dynamo in a toroidal
torus-like. Each of these topological configurations can undergglume at dynamo numbers that were approximately three times
a continuous sequence of geometric changes, from flat objexipercritical. Given that the solar (and possibly some stellar)
where the vertical extent is much less than the horizontal, to abagnetic cycle exhibits irregularity on a variety of time scales,
jects where the vertical and horizontal extents are similar. Camd that many authors have speculated that such behaviour is a
principal findings are that torus-like topologies seem to praanifestation of deterministic chaos, this result may have some
duce more complex behaviour and that, within a given topologstrophysical significance. It therefore seems worthwhile to in-
ical configuration, modest changes in geometry can give riseviestigate such dynamos, with a variety of rotational profiles,
different bifurcation sequences. These findings may have c@ossibly corresponding to different types of stars, and using
siderable astrophysical significance, in that the actual shapedifferent forms of nonlinearity to saturate the field. Since it is
galaxies and accretion discs often do not conform to the simthe restriction of the dynamo active volume to a toroidal con-
geometric shapes used in many studies of mean-field dynanfiggiration that appears to be important, these dynamos could be
Also, since our study concerns the geometry and topology of ttensidered as embedded in convective shells representing the
dynamo-active region, restrictions of the dynamo-active regionter regions of stars.

in stellar convection zones may have important consequences

for the behaviour of the dynamo and these should be taken iAgknowledgementsEC s supported by grantBD /5708/95—Program
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