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Abstract. We study the changes in the dynamical behaviour of
axisymmetric spherical mean-field dynamo models produced
by changes in their geometry and topology, by considering a
two parameter family of models, ranging from a full sphere
to spherical shell, torus and disc–like configurations, within a
unified framework. We find that the two parameter space of the
family of models considered here separates into at least three
different regions with distinct characteristics for the onset of
dynamo action. In two of these regions, the most easily excited
fields are oscillatory, in one case with dipolar symmetry, and in
the other with quadrupolar, whereas in the third region the most
easily excited field is steady and quadrupolar. In the nonlinear
regime, we find that topological changes can alter significantly
the dynamical behaviour, whilst modest changes in geometry
can produce qualitative changes, particularly for thin disc–like
configurations. This is of potential importance, since the exact
shapes of astrophysical bodies, especially accretion discs and
galaxies, are usually not precisely known.

Key words: accretion, accretion disks – chaos – magnetic fields
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1. Introduction

The magnetic fields observed in stars, accretion discs and galax-
ies are generally considered to be generated by magnetohydro-
dynamic dynamo action. The complexity of the physics of such
dynamos has meant that a fully self-consistent model is beyond
the range of the computational resources currently available,
although important attempts have been made to understand tur-
bulent dynamos in stars (Nordlund et al. 1992, Brandenburg et
al. 1996) and accretion discs (Brandenburg et al. 1995, Hawley
et al. 1996), for example. Such studies have had to be restricted
to the geometry of a Cartesian box, thus they are in essence local
dynamos. However, magnetic fields in astrophysical objects are
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observed to exhibit large scale structure, related to the shape of
the object, and thus can only be captured fully by global dy-
namo models (Tobias 1998). In some cases it has been possible
to show that, for fully three-dimensional turbulence simulations,
the dependence of the results (parity, time dependence, cycle pe-
riod, etc.) on global properties including boundary conditions
is remarkably similar to that of the corresponding mean-field
dynamo models (Brandenburg 1999a,b). This lends some sup-
port to the validity of mean-field theory, which is used in the
following.

Mean field dynamo models, which attempt to capture such
geometric features, have been employed extensively in order
to study various aspects of the dynamics of solar, stellar and
galactic dynamos (see for example, Steenbeck & Krause 1969,
Roberts & Stix 1972). Often the dimensionality of the under-
lying partial differential equations has been reduced by assum-
ing axisymmetry. As the presence of strong differential rota-
tion tends to destroy non-axisymmetric fields (Rädler 1986),
this restriction has some astrophysical justification, but nev-
ertheless some galaxies and types of stars are known to have
non-axisymmetric fields and so this simplification cannot be
universally valid (see Moss et al. 1995, Beck et al. 1996, and
references therein).

A great deal of effort has gone into studying the behaviour
of both highly truncated as well as axisymmetric global mean
field dynamo models. Such models have been shown to be ca-
pable of producing a spectrum of modes of behaviour, includ-
ing solutions with pure and mixed parities (Brandenburg et al.
1989a,b), as well as complicated types of behaviour, includ-
ing quasiperiodicity, chaos and intermittency (see for example
Jones et al. 1985, Schmalz & Stix 1991, and Knobloch et al.
1998 in low dimensional ODE models; Brooke & Moss 1994,
1995, Torkelsson & Brandenburg 1994b, Tavakol et al. 1995,
Schmitt et al. 1996, Roald & Thomas 1997, Weiss & Tobias
1997, Tobias 1997, Beer et al. 1998, Covas et al. 1998a,b in
global axisymmetric models).
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An important shortcoming of these models is that they in-
volve severe approximations, which essentially fall into two
broad categories. There are those concerning the underlying
physics, such as approximations involved in the parameterisa-
tion of the turbulent processes in solar and stellar convective
zones (which are not known precisely), and there are the sim-
plifications assumed in modelling the phenomenological fea-
tures of these systems, such as the details of their geometries.
These shortcomings are often ignored, the assumption being
that changing the details of these models should not change
their behaviours qualitatively. A priori, however, there are no
reasons why this should be so and it is therefore important that
this assumption be checked.

Recently, an attempt was made to study the robustness of ax-
isymmetric mean-field dynamos in spheres and spherical shells
with respect to changes in the functional form of theα effect
(Tavakol et al. 1995) and also by considering theα–quenching
to be dynamic (Covas et al. 1998a). Here we shall employ the
usual algebraicα–quenching and focus on the second feature
discussed above, namely the assumptions regarding the topol-
ogy and geometry of these models. This is important for two rea-
sons. Firstly, these are the two important features differentiating
the astrophysical situations in which such dynamos are thought
to be operative. Thus spherical and spherical shell models are
considered in connection with solar and stellar variability (with
the sphere or shell representing convectively unstable regions of
stars), whereas disc (Torkelsson & Brandenburg 1994a,b, 1995)
and torus (Brooke & Moss 1994; 1995) models are considered
in connection with modelling accretion discs and galaxies. Sec-
ondly, the geometries of these models are often only approx-
imations to the true shapes of the astrophysical systems, and
so it is important to know the sensitivity of the dynamo solu-
tions to modest changes in geometry. This is particularly true
for dynamo models in accretion discs and galaxies.

In this paper we study the qualitative nature of the dynam-
ical behaviour of axisymmetric mean-field dynamo models as
a function of changes in their topology, following transitions
from sphere to shell to torus, and as a function of changes in
their geometry resulting from alteration of the shapes of the dy-
namo region, whilst retaining the topology. We consider these
changes within a unified framework, using the same numeri-
cal code with the same boundary conditions, to solve the same
dynamo equations. In the context of disc-like models, we also
consider changes in the rotation law.

The models considered here include geometric features such
as curvature, which are naturally present in astrophysical sys-
tems. There have also been studies of more idealized models in
Cartesian geometry, and of low order models, which aim to de-
scribe generic features of axisymmetric dynamo solutions (e.g.
Weiss, Cattaneo & Jones 1984, Jennings et al. 1990, Jennings
& Weiss 1991, Jennings 1991, Tobias et al. 1995). It is of inter-
est to determine whether such features persist across changes
in geometry and topology and in the highly nonlinear regimes
considered here. We shall briefly return to this issue below in
the light of our findings.

In Sect. 2 we briefly introduce the equations for the axisym-
metric mean-field dynamo models together with the relevant
boundary conditions. Sect. 3 contains a discussion of our re-
sults and finally Sect. 4 contains our conclusions.

2. The model

The standard mean-field dynamo equation (cf. Krause & Rädler
1980) is of the form

∂B

∂t
= ∇ × (u × B + αB − ηt∇ × B) , (1)

whereB andu are the mean magnetic field and the mean veloc-
ity respectively. The quantitiesα (theα effect) and the turbulent
magnetic diffusivity,ηt, appear in the process of the parameteri-
sation of the second order correlations between the velocity and
magnetic field fluctuations (u′ andB′). For the sake of sim-
plicity, and to facilitate comparison with the majority of previ-
ous work, we shall ignore anisotropies and takeα andηt to be
scalars. We assume thatu = Ω × r = uφφ̂. Nondimensional-
ization of the equations in terms of a lengthR and a timeR2/ηt

produces the two usual dynamo parametersCα = α0R/ηt and
Cω = Ω0R

2/ηt, whereα0 andΩ0 are typical values ofα and
|Ω|. For the sake of comparison with existing results (e.g., Covas
et al. 1998a), we set|Cω| = 104 throughout (except briefly, in
one particular case). We use spherical polar coordinates(r, θ, φ)
and consider axisymmetric solutions only. In order to satisfy the
condition∇ · B = 0 we solve Eq. (1) by splitting the field into
meridional and azimuthal components,B = Bp +Bφ, and ex-
pressing these components in terms of scalar field functions, so
thatBp = ∇ × aφ̂, Bφ = bφ̂.

We consider the usual algebraic form ofα–quenching
namely

αa =
α0 cos θ

1 + B2 , (2)

with α0 = constant. However, other nonlinearities could also
be included, for exampleη-quenching (e.g., R̈udiger et al. 1994,
Kitchatinov et al. 1994b, R̈udiger & Arlt 1996), magnetic buoy-
ancy (e.g., Noyes et al. 1984, Schmitt & Schüssler 1989, Moss et
al. 1990, Torkelsson & Brandenburg 1994b, Moss et al. 1999),
or feedback from the large scale motions (e.g., Malkus & Proc-
tor 1975, Kitchatinov et al. 1994a, Muhli et al. 1995, Moss et
al. 1995, Tobias 1997). Here we concentrate onα-quenching
because our aim was to make a comparative study of the effects
of changes in topology and geometry against the background of
a uniform set of assumptions, and to compare our conclusions
with the most extensive body of pre-existing results in which
α-quenching was the most commonly used form of nonlinearity.

In this connection it may be noted that there is an ongo-
ing controversy regarding the strength ofα-quenching. There
is some evidence thatα andηt may be several orders of mag-
nitude smaller than that usually assumed (e.g., Vainshtein &
Cattaneo 1992, Cattaneo & Hughes 1996). This would lead to
serious difficulties explaining the observations in the framework
of ordinary mean field dynamo theory. Several solutions to this
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problem have been suggested, namely that the functional form
of the dynamo equation is different andα is really an integral
kernel (Brandenburg 1999a, Brandenburg & Sokoloff 1999),
that α originates not from thermal convection, but from mag-
netically driven fluid motions (Brandenburg et al. 1998, Bran-
denburg & Schmitt 1998), or thatα cannot be estimated from
simulations using projections onto thek = 0 wavenumber, but
instead projections onto the smallestnonvanishingwavenum-
ber should be used (Brandenburg 1999a, see also Beck et al.
1996). Whatever the eventual outcome of this debate, 3-D tur-
bulence simulations do seem to produce magnetic fields whose
global properties (field parity, time dependence) are similar to
those expected from corresponding mean-field dynamo models
(Brandenburg 1999b).

In our calculations we consider two types of rotation laws,
one with constant shear and the other with approximately rigid
rotation close to the rotation axis and tending to Keplerian rota-
tion at larger radii. Hereafter we refer to the latter as a “gener-
alized Keplerian” rotation law. The first constant shear profile
has been used extensively in studies in many different geome-
tries. We recognise that helioseismological evidence indicates
that the rotational profile of the sun gives a shear in a very con-
centrated region. Our main aim is to allow comparison with
a range of published models, hence we chose this simple and
widely used form. The second profile has been extensively used
in studies of accretion discs. In that it gives a differential rota-
tion that decreases with radius it might be considered to give a
generic representation of the rotation in a galactic disc, although
rotation profiles in galaxies are certainly not Keplerian.

For the rotation profiles that we will consider here, we take

u = Ω$φ̂, (3)

where$ = r sin θ is the distance from the rotation axis. For the
first profile mentioned above, we shall, consistent with Bran-
denburg et al. (1989a), takeΩ = Ω0r, whereΩ0 is constant,
and for the second profile, we shall take

Ω = Ω0

[
1 +

(
$

$0

)qn]−1/n

, (4)

whereq = 3/2 for accretion discs. In conformity with Torkels-
son & Brandenburg (1994a), we take$0 to be0.3 andn = 10.
Relation (4) approximates solid body rotation for small$ and
approaches Keplerian rotation for$ � $0. Note that for this
profile ∂Ω/∂r < 0 whenCω > 0, whilst for profile (3) with
constant shear the signs are reversed, i.e.∂Ω/∂r > 0 when
Cω > 0.

The models we shall consider here are all constructed from a
complete sphere of radiusR. We can remove an inner concentric
sphere of radiusr0 (in order to go smoothly from a sphere to a
spherical shell). The change from a sphere or a spherical shell
to a torus- or disc-like configuration is produced by excising
a cone of semi-angleθ0 about the rotation axis, from the north
and south polar regions. The configuration is illustrated in Fig. 1,
where the dynamo region is produced by revolving the meridian
section shown about the vertical dotted rotation axis through the
origin O.

So

Sc

Sc

Si
r0

θ0

O

Fig. 1. A schematic representation of the dynamo region produced by
the cuts characterised by the model parametersr0 andθ0.

The specific shape of the excised region was chosen for
simplicity of implementation with our code, written in spherical
polar coordinates. Most disc dynamo models have assumed a
flat disc geometry, so we can only make qualitative comparisons
between such work and our results for large values ofθ0. We
note in passing that both galactic and accretion discs are believed
to flare (e.g. Moss et al. 1998 and references therein, Frank et al.
1992). In any case, dynamo models with rigid boundaries can all
be only approximations to astrophysical objects with indistinct
boundaries.

In order to solve the dynamo equations, boundary conditions
need to be imposed on the surfaces of the dynamo region created
by removing the cones (denoted bySc), on the inner surface
r = r0 (denoted bySi), and also on the outer curved boundary
(denoted bySo), as depicted in Fig. 1.

We adopt a perfect conductor boundary condition,

a = 0,
∂(rb)
∂r

= α
∂(ra)
∂r

on Si. (5)

Other choices are possible (see, e.g., Tworkowski et al. 1998),
but this has been used commonly in earlier investigations.

On So a vacuum boundary condition has often been used.
However this, although appealing, is actually quite arbitrary as,
for example, there is no evidence that the solar poloidal field is
curl-free immediately above the surface. Whenθ0 > 0, imple-
menting an essentially non-local vacuum boundary condition
is not straightforward, and so we have chosen a plausible lo-
cal condition. Other authors have previously taken a radial field
condition,∂(ar)/∂r = 0, (e.g. Gilman & Miller 1981). We
used

∂a/∂r = 0, b = 0, (6)

which results in a poloidal field onSo which is typically near to
radial over most of the boundary. We stress that, in the absence of
a detailed model of processes above a stellar surface, all choices
of boundary condition onSo are more-or-less arbitrary, within
general restrictions of plausibility.

If a perfect conductor boundary condition is used on the
surfacesSc then asθ0 → 0 the model does not tend to that used
for the full sphere, wherea = b = 0 on the axis. Thus we set

a = b = 0 on Sc, (7)
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to ensure continuity of behaviour asθ0 → 0; again other choices
are possible.

In the following, as is customary, we shall discuss the be-
haviour of the solutions by monitoring the total magnetic en-
ergy,E = 1

2µ0

∫
B2dV , taken over the dynamo region given

by r0 ≤ r ≤ R andθ0 ≤ θ ≤ π − θ0. We splitE into two
parts,E = E(A) +E(S), whereE(A) andE(S) are respectively
the energies of those parts of the field whose toroidal field is
antisymmetric and symmetric about the equator. The overall
parity P is given byP = [E(S) − E(A)]/E (Brandenburg et
al. 1989a), soP = −1 denotes an antisymmetric (dipole-like)
pure parity solution andP = +1 a symmetric (quadrupole-like)
pure parity solution.

For the numerical results reported in the following sections,
we used a modified version of the axisymmetric dynamo code
of Brandenburg et al. (1989a). We took a grid size of41 × 81
mesh points in the dynamo region. To test the robustness of the
code we verified that no qualitative changes were produced by
employing a finer grid, different temporal step length (we used a
step length of10−4R2/ηt in the results presented in this paper).
We considered a family of models ranging from a full sphere
through spherical shells to torus- and disc-like configurations.

3. Results

We present the results of our comparative studies of dynamo
solutions in regions that are produced by variations ofr0 andθ0
in the ranges0 ≤ r0 < 1 (in dimensionless units) and0 ≤ θ0 <
π/2 respectively. In particular, we took the following values:

r0 = 0, 0.2, 0.5, 0.7 (8)

θ0 = 0, 4.5◦, 22.5◦, 45◦, 75◦ (9)

To present our results, we use the following notation in the
figures: the prefix “steady” denotes a constant energy, whilst
“A” and “S” on their own respectively represent pure anti-
symmetric (dipolar) (P = −1) and symmetric (quadrupolar)
(P = +1) solutions with periodically oscillating energy, “OM”
represents solutions which possess periodic oscillations in both
parity and energy, and “C” and “I” denote chaotic and inter-
mittent behaviours respectively. By intermittent behaviour we
loosely mean irregular switchings between two or more differ-
ent dynamical regimes characterised by different statistics. (For
a precise characterisation of this type of behaviour in some dy-
namo models see Covas et al. 1998a.) We should add here that
the computational cost of our calculations limited the resolution
to which we were able to search the parameter space. Conse-
quently all our results regarding the sequence of parity changes
are subject to this limitation.

Since many previous authors have discussed behaviour at
the onset of dynamo action, we shall present our results in two
subsections. First we present our results concerning the onset
of dynamo action as we go from a sphere through spherical
shells to torus- and disc-like structures, and then we consider
the dynamical behaviour for each configuration as the dynamo
number is increased. Our detailed results are presented in Table 1
and Figs. 2 to 15.
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Fig. 2. Schematic representation of the dynamo regions and their cor-
responding onset parity withCω = −104 and a constant rotational
shear profile.

3.1. The onset of dynamo action

We summarise our onset results by considering the two types of
deformation of the basic sphere in turn. Starting with the case
where an inner sphere is removed, giving a spherical shell, we
note that Roberts (1972) found numerically (but for different
boundary conditions) that for anαω dynamo with a negative
dynamo number, the most easily excited mode has dipole-like
symmetry forr0 < 0.7, whereas forr0 ≥ 0.7 the most easily
excited mode has quadrupole-like symmetry. Our correspond-
ing results are summarised in Fig. 2. In particular, the top row
of this figure, summarizing the behaviour of a sphere and spher-
ical shells without polar cones removed, agrees qualitatively
with the results of Roberts (1972).

The next three rows in this figure correspond to the re-
moval of cones of semi-anglesθ0 = 4.5◦, 22.5◦ and45◦ re-
spectively. These results indicate that despite the removal of the
polar cones, the onset behaviour still remains the same as that
given in Roberts (1972). In this way we may say that the onset
results for spheres are quite robust with respect to the polar cuts
considered here.

To compare our results further with those in previous studies,
for example of dynamo action in tori by Brooke & Moss (1994,
1995) and in discs by Torkelsson & Brandenburg (1994a,b,
1995), we also studied the case of a large polar cut angle
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Fig. 3. Schematic representation of the dynamo regions and their cor-
responding onset parity. The top and bottom panels are for constant
shear and generalized Keplerian rotational profiles respectively.

Table 1. Values ofCα for the onset of dynamo action as a function
of the shell radiusr0 and the cut angleθ0 with Cω = −104. The row
labeled∗ is produced using the generalized Keplerian rotation profile
given by Eq. (4) withCω = −104. HereSS indicates a Steady S state.

θ r0 = 0.0 r0 = 0.2 r0 = 0.5 r0 = 0.7

0 0.45 A 0.38 A 0.31 A 0.42 S
4.5◦ 0.45 A 0.38 A 0.32 A 0.42 S
22.5◦ 0.70 A 0.60 A 0.42 A 0.50 S
45◦ 1.7 A 1.3 A 0.9 A 1.0 S
48◦ 1.86 A 1.48 A 1.04 A 1.07 S

49◦ 1.98 A 1.58 A 1.10 A 1.113 A
50◦ 2.1 A 1.679 A 1.15 A 1.17 A
55◦ 3.0 A 2.37 A 1.56 A 1.493 A
60◦ 4.45 A 3.545 A 2.27 A 1.98 A
65◦ 7.2 A 5.72 A 3.57 A 2.77 A
67◦ 9.5 A 7.1 A 4.4 A 3.24 A

70◦ 11 SS 8.05 SS 3.09 SS 4.295 A
75◦ 13.0 SS 10.1 SS 5.8 SS 7.6 A

75◦∗ 4.0 SA 3.7 SA 3.5 SA 11.5 SA

(θ0 = 75◦), with both constant shear and generalized Keple-
rian rotation profiles, and these results are summarized in Fig. 3.
We point out that the code used by Torkelsson & Brandenburg
(1994a,b, 1995) is also a modified version of the axisymmetric
dynamo code of Brandenburg et al. (1989a), and thus shares a
common heritage with the code we used, whereas that of Brooke
& Moss (1994, 1995) was written independently. All these codes
use the same time stepping scheme (Dufort-Frankel) and are
second order accurate in space.

Note that, as commented after Eq. (4), with the generalized
Keplerian rotation law (4),Cω > 0 corresponds loosely to the
constant shear law withCω < 0. However equal values of|Cω|
do not imply equal values of the rotational shear.

As can be seen from a comparison of Figs. 2 and 3, the onset
behaviour in these models changes from oscillatory to steady so-
lutions as the cut angleθ0 increases. Such a change in behaviour
has also been found in oblate spheroidal geometry as a sphere
flattens to a disc-like configuration (Stix 1975, Soward 1992a,b
and Walker & Barenghi 1994). According to these authors, the
crucial factor in the change from oscillatory to steady behaviour
is the aspect ratio of the spheroids, defined as the ratio of the
minor to the major axis. They speculated that this was because
dynamo waves were restricted from propagating in the vertical
direction (i.e. parallel to the minor axis). In this context it is
interesting to note that in our case the only oscillating solution
for θ0 = 75◦ occurs whenr0 = 0.7 and the above aspect ratio
is O(1), as for a sphere.

In Table 1 we summarise the values ofCα corresponding to
the onset of dynamo action in each configuration. Except for the
case with generalized Keplerian rotation law, this shows that for
a fixedr0 the values ofCα at the onset of dynamo action increase
as the cut angleθ0 increases for almost all configurations as the
shells get thicker.

We should also note that the steep increase in the onset value
ofCα, as we go fromθ0 = 45◦ toθ0 = 75◦, may be related to the
transition from shell–like to disc–like configurations. Table 1 in
conjunction with Figs. 2 and 3 confirm that in the constant shear
case configurations with smaller polar cut angles follow the
linear results due to Roberts (1972), while those with larger cut
angles (θ0 >∼ 49◦) do not, thus suggesting the possible existence
of a transition as the cut angle is increased.

For the disc–like configurations (withθ0 >∼ 70◦), the onset
of dynamo action is to a steady state whenr0 < 0.7, when
the symmetry is determined by the sign of∂Ω/∂r. If this is
positive, that is for the constant shear withCω = +104 and for
the generalized Keplerian rotation profile withCω = −104, the
onset modes are antisymmetric. For the negative case the onset
mode is always symmetric.

3.2. Nonlinear regime

We present our results in the nonlinear regime in three stages.
First we consider the transition from the full sphere to a spher-
ical shell, then from a full sphere to that with axial cones re-
moved and finally we study a full sphere with both an inner
core and axial cones removed simultaneously. Our detailed re-
sults are presented in Figs. 4 – 8, corresponding to five different
values ofθ0. Each contains four panels for each of the values
of r0 considered, the panels from top to bottom corresponding
to r0 values of0.7, 0.5, 0.2 and0.0 respectively. We have con-
centrated mostly on the more usual case of negative dynamo
number (Cω = −104), but for comparison we also consider, for
largeθ0, the case of a positive dynamo number (Cω = +104; see
Fig. 9), as well as the case with generalized Keplerian differen-
tial rotation, which is relevant for accretion discs (Figs. 10–12).

Before discussing our results in detail we emphasise that
the sequence of parity changes reported below are those that we
found to within the resolution of theCα parameter employed
here. It is therefore important to bear in mind that unless there
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Fig. 4. Partial bifurcation diagram, showing the energy in the stable
solution, for the case of complete spherical shells (θ0 = 0), with con-
stant (negative) shear,Cω = −104. For oscillatory modes, the mean
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is a clear theoretical reason for believing in the presence of a
particular sequence of parity changes in the nonlinear regimes,
it is always possible to miss finer details of such sequences for
any given finite resolution inCα. Our standard step inCα is 0.5,
but on occasion this was very much reduced (see, e.g., Fig. 13).
In addition, although we have attempted to integrate over times
long enough to eliminate any transient effects, nonetheless, it is
not possible to always rule out the presence of very long-lived
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Fig. 6. Partial bifurcation diagram, as Fig. 4, for the caseθ0 = 22.5◦

with constant (negative) shear,Cω = −104.

transients. With these qualifications we proceed to discuss our
results in more detail.

The results concerning the transition from a full sphere to
spherical shells are shown in Fig. 4. This shows that the tran-
sitions, from the onset of dynamo action into the nonlinear
regimes asCα increases, are the same for the full sphere and
the two thickest shells (i.e.r0 = 0.0, 0.2, 0.5). All possess the
same initial sequence of parity changes given by

A, OM, S, A. (10)

The only difference is that, as the shells become thinner (r0
increases), the sequence is compressed to a narrower interval
of Cα. For the thinnest shell (r0 = 0.7), however, the initial
sequence is

S, A, S, A. (11)

When a polar cone is removed (θ0 > 0), the initial sequence
of parity changes is the same for the full sphere and the two
thickest shells forθ0 ≤ 45◦. The behaviour for the thinnest shell
(r0 = 0.7) and the largest polar cut angle (θ0 = 75◦) differ. We
also observe that the removal of the polar cones causes more
changeable and varied behaviour, as does the removal of the
inner cores, providing that the first bifurcation is to an oscillating
solution.

Figs. 5 to 7 show that there are similarities in the initial
sequences of parity changes asθ0 changes. The configurations
with θ0 = 4.5◦, 22.5◦ and45◦ andr0 = 0.0, 0.2 and0.5 all
have the same initial sequence, namely,

A, OM, S, A, (12)

whilst configurations withr0 = 0.7 and these same angles have
the sequence

S, A, S, A. (13)
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These two initial sequences agree with the corresponding ones
in the full sphere case (θ0 = 0◦). Differences in the bifurca-
tion sequences tend to appear at larger values ofCα where the
dynamo becomes more non–linear. Also at these higher values
of Cα, more exotic behaviours such as intermittency and chaos
can appear, for example forθ0 = 0◦ and4.5◦ with r0 = 0.2 and
0.5, θ0 = 22.5◦ with r0 = 0.2, 0.5 and0.7, andθ0 = 45◦ for
all values ofr0 considered here, whilst chaotic and intermittent
behaviour only occurs forθ0 = 75◦ whenr0 = 0.7.

Whenθ0 = 75◦ (Fig. 8) the behaviour is totally different.
The steady quadrupole mode (S) remains stable for a very large
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Fig. 9. Partial bifurcation diagram, as Fig. 4, for the case of a large
polar cut angle,θ0 = 75◦, with constant (positive) shear,Cω = +104.

range of values ofCα. At some point an oscillatoryS mode takes
over. Forr0 = 0.5 OM modes appear and only forr0 = 0.7
are oscillatory modes observed for all values ofCα studied.

We also studied the effects of changing the sign ofCω on
our results and this is shown in Fig. 9. As can be seen, a steady
A mode is first excited for allr0. The general behaviour is also
less complex and more uniform, particularly if we compare the
panel corresponding tor0 = 0.7 for both signs ofCω.

The effects of changing the rotation law to the generalized
Keplerian rotation law are depicted in Fig. 10 and, as can be
seen, the steadyS mode and the subsequent oscillatoryS mode
are stable for all values ofCα considered. Only in the case
r0 = 0.7 is new behaviour seen, in that there is an interval
(Cα ≈ 15) where only the trivial solution with zero magnetic
field exists. Such a gap in the bifurcation diagram has been found
earlier in connection with torus and accretion disc dynamos
(e.g. Brooke & Moss 1995, Torkelsson & Brandenburg 1994b,
see also Ruzmaikin et al. 1980 and Stepinski & Levy 1991
for linear results). Immediately after this gap an antisymmetric
mode appears. The existence of this gap does not appear to be a
peculiarity associated with the particular value ofCω we used,
as we also found it whenCω = 2.7×104, a value chosen to give
the same value of the rotational shear at the mean radius of the
shell (r = 0.85) as the constant shear model withCω = −104,
shown in Fig. 8. We show these results in Fig. 11. It is clear from
comparing Fig. 10 and Fig. 11 that the bifurcation sequence is
sensitive to the value ofCω, but the gap in which no field is
excited remains.

When the sign of the generalized Keplerian rotational shear
is reversed (Fig. 12), a steadyA mode is again first excited,
similar to the case of linear shear. Only forr0 = 0.7 is the
behaviour slightly different in that there is aS mode that appears
for Cα ≈ 22.
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In the above figures, the nature of the solutions (and thus the
symbols shown) are all determined only to within the numerical
resolutions chosen and for the length of of time during which
solutions were followed and thus in which transients could de-
cay. In particular, near the bifurcation points (as in the case of
transitions from pure parity A to S (or vice versa)), we find as
expected extremely long transients (at times of more than hun-
dreds of diffusion times). Bearing all this in mind, we do find
some evidence which suggests that the conjecture by Jennings
& Weiss (1991), according to which transitions from one pure
parity to the opposite are mediated by a mixed parity regime,
may not always hold. An example of this type of transition is
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polar cut angle,θ0 = 75◦, with negative generalized Keplerian rotation
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given in Fig. 13, where we have used an exceptionally fine res-
olution inCα.

In this case we found withCα = 4.2868 andCα = 4.2869
that although initially the parities rapidly approach values close
to ±1, nevertheless even after hundreds of diffusion times the
parities do not seem to get closer to±1 thanP = +0.9999633
andP = −0.9999967 respectively. This then still leaves the
possibility of the existence of a mixed mode in the neighbour-
hood of these twoCα values. Note that we worked in single
precision arithmetic.

A conclusive resolution of this question requires a more
substantial study, and we intend to return to this point in a future
publication.

Our results also indicate that overall the behaviour appears
to be more complicated in shells than in the full sphere dynamo
models, a feature also observed in Covas et al. 1998a.

Also, the nonlinear solutions in configurations which corre-
spond most closely to a thick torus, i.e.θ0 = 22.5◦, r0 = 0.2,
0.5 and alsoθ = 45◦, r0 = 0.5, display chaotic behaviour at
the lowest values ofCα. This corresponds with the findings of
Brooke & Moss (1994, 1995), that chaotic behaviour was ex-
cited at modestly supercritical dynamo numbers in tori, whereas
chaotic behaviour only occurred at highly supercritical dynamo
numbers in disc and shell configurations.

To obtain an overview of the behaviour of the two parameter
family of models considered here, we recall that Table 1 sug-
gests the presence of three different regions with distinct onset
behaviours in the parameter space(r0, θ0). In the constant shear
rotation law case two of these regions possess oscillatory dipo-
lar and quadrupolar onset symmetries respectively and in the
third the most readily excited field is steady and quadrupolar.
These regions could also be interpreted from a different point of
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Cω = −104, r0 = 0.2, θ0 = 45◦, with a constant shear rotation
profile.

view by considering the behaviour observed in previous dynamo
models. Viewed in this way, there are at least two transitions in
the(r0, θ0) parameter space. The first corresponds to a transition
from a region which is consistent with Roberts’ (1972) results
(characterised by anA onset mode forr0 < 0.7 and by anS
onset mode withr0 ≥ 0.7) to one that does not (i.e. one with
antisymmetric onset modes for allr0). The second transition is
from a disc–like regime in which steady modes are commonly
found to one in which they are absent. In order to elucidate this
second transition we have made two studies of the parameter
space at a finer resolution, by fixingr0 and varyingθ0 and vice
versa. These results are depicted in Figs. 14 and 15 respectively
at fixed values ofCα. (We note that changing the value ofCα

does not qualitatively change our conclusions.) Those results
indicate the presence of two sharp transitions in mean energy
and/or parity at aroundθ0 ∼ 70◦ for r0 ∼ 0.5 andθ0 ∼ 75◦

for r0 ∼ 0.6. These features are also corroborated by the time
series of energy and parity.

Finally, we have also examined the behaviour of our solu-
tions as a function of the aspect ratio, which we defined as

A = (1 − r0) /[(π − 2θ0)(1 + r0)/2] . (14)

With this definition, the smallest aspect ratio corresponds to
the configuration withr0 = 0.7 andθ0 = 0 (A = 0.11), and
the largest to that withr0 = 0 and θ0 = 75◦ (A = 3.82).
We find that at large values ofCα, for exampleCα > 30, the
averaged energy〈E(t)〉 per unit volume of the dynamo region
is largest for the configuration with the smallest aspect ratio,
and vice versa. In addition, for these values ofCα, we find that
the average energy per unit volume decreases asθ0 increases
(i.e. the cuts get larger) and asr0 decreases (i.e. the shells get
thicker).
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4. Conclusions

We have made a comparative study of the dynamical behaviour
of a two parameter family of axisymmetric mean-field dynamo
models, ranging from a full sphere to shells to torus- and disc-
like configurations, within a unified numerical framework. We
have found overall agreement with previous studies of axisym-
metric mean-field dynamos for spheres, shells, tori and discs.
We note that since the other references cited here employ differ-
ent codes and to some extent, different physical assumptions,
the fact that similar overall qualitative results are observed in
similar configurations demonstrates the robustness of our results
with respect to differences between the codes. More precisely
we find the following:
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1. Our results show that changes in both topology and geometry
affect the dynamical properties of our models, although these
two factors are inevitably interlinked. Specifically, we have three
topologically distinct configurations, sphere-like, shell-like and
torus-like. Each of these topological configurations can undergo
a continuous sequence of geometric changes, from flat objects
where the vertical extent is much less than the horizontal, to ob-
jects where the vertical and horizontal extents are similar. Our
principal findings are that torus-like topologies seem to pro-
duce more complex behaviour and that, within a given topolog-
ical configuration, modest changes in geometry can give rise to
different bifurcation sequences. These findings may have con-
siderable astrophysical significance, in that the actual shapes of
galaxies and accretion discs often do not conform to the simple
geometric shapes used in many studies of mean-field dynamos.
Also, since our study concerns the geometry and topology of the
dynamo-active region, restrictions of the dynamo-active region
in stellar convection zones may have important consequences
for the behaviour of the dynamo and these should be taken into
consideration when comparing the predictions of dynamo mod-
els with observed magnetic behaviour in astrophysical objects.

2. We confirm that the full sphere and shell results of Roberts
(1972), concerning the symmetry of the onset modes, are robust
with respect to changes in the outer boundary condition, and we
extend them to the configurations with very small to medium
polar cut angles. Steady modes are found for the largest polar cut
angles, agreeing with results from oblate spheroidal geometry.
These modes are robust under a change in the rotation law, as
found by Walker & Barenghi (1994), except in the case where
the configuration resembles a thin torus rather than a disc. In this
case an oscillating dipolar solution occurs at onset for a constant
shear rotation law, but a steady quadrupolar solution is found
with a generalized Keplerian law. In the latter case the steady
solution disappears at higher values ofCα and there is a gap
before an oscillating antisymmetric solution appears. Such a gap
was previously observed with a generalized Keplerian rotational
profile in both disc (Torkelsson & Brandenburg 1994b) and torus
geometry (Brooke & Moss 1995). Stepinski & Levy (1991) also
found a similar gap in linear theory. It should be noted that the
presence of a gap does depend on the nature of the nonlinearity:
it is absent if magnetic buoyancy is the dominant nonlinearity
(Torkelsson & Brandenburg 1994a). Our results here indicate
the steady solution is also fragile with respect to changes in the
rotation law.

3. For the largest polar cut angle, we find evidence for a differ-
ent mode of behaviour in the thinnest shell (r0 = 0.7) from that
found in the thicker shells and full sphere, namely a more com-
plicated behaviour with denser bifurcation sequences, including
chaotic and intermittent solutions. Apart from the thinnest shells
(r0 = 0.7) the dynamics is qualitatively the same for each sign
of the shear. This is consistent with the observation that the
thinnest shell approximates a setting in which curvature plays a
smaller role.

4. We note a consistent finding in our results, that dynamo-
active regions corresponding topologically and geometrically to

a torus exhibit chaotic behaviour at lower dynamo numbers com-
pared to spherical, shell-like or disc-like configurations. This
concurs with the results of Brooke & Moss (1994,1995), who
found transition to chaotic behaviour for a dynamo in a toroidal
volume at dynamo numbers that were approximately three times
supercritical. Given that the solar (and possibly some stellar)
magnetic cycle exhibits irregularity on a variety of time scales,
and that many authors have speculated that such behaviour is a
manifestation of deterministic chaos, this result may have some
astrophysical significance. It therefore seems worthwhile to in-
vestigate such dynamos, with a variety of rotational profiles,
possibly corresponding to different types of stars, and using
different forms of nonlinearity to saturate the field. Since it is
the restriction of the dynamo active volume to a toroidal con-
figuration that appears to be important, these dynamos could be
considered as embedded in convective shells representing the
outer regions of stars.
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