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The possibility of dynamo action resulting from a pair of elongated vortex structures immersed in
an electrically conducting fluid is investigated. For elongated vortex structures, the critical magnetic
Reynolds number for dynamo action is about half that for the spherical rotors that have been studied
previously. When applied to Kolmogorov turbulence with vortex structures of scale comparable to
the dissipation length, this model can explain dynamo action only when the magnetic Prandtl
number(=kinematic viscosity/magnetic diffusivifyexceeds a critical value that is larger than unity.

It is argued that in astrophysical bodies where this condition is not satigfiexiellar convection
zones, for examp)edynamo action must instead result from motions on all scales up to the size of
the region. ©1999 American Institute of Physids$1070-664X99)01001-Q

I. INTRODUCTION two rigidly rotating spheres in an electrically conducting me-
dium at rest. Above a certain critical magnetic Reynolds

Over the last decade, the presence of coherent structurggmber a weak seed magnetic field begins to grow exponen-
in turbulent flows has been recognized as being a distinctivéially. The critical values for dynamo action, as determined
feature, clearly visible in visualizations of vorticity in hydro- numerically, agree well with the asymptotic thej(fr;or the
dynamical simulations performed by several grotifs. Herzenberg dynamo. In the paper of Brandentetrgl,® a
These structures consist of vortex filaments, whose diameteferzenberg-type process involving close fluid vortex pairs
is comparable with the dissipation scale and with lengthyas also briefly discussed as a possible model for dynamo
stretching to the integral length scale. The question of thection.
role of this tangle of vortices for the dynamics, and for the In the present paper we pursue this suggestion further.
statistical properties of the flow has attracted significantrirst of all we present the results of numerical simulations of
attention”® a modified Herzenberg-type dynamo, whose geometry is in-

In the present paper we address the question of whethesnded to approximate that of a vortex filament. Thus, in-
the vortex filaments in an electrically conducting fluid might stead of spherical rotors, we consider the case of elongated
play a direct role in the generation of magnetic fields byeg|lipsoids, whose major axes are much longer than the other
means of dynamo action. The generation of small-scale maggo and lie along the rotation vectors. We find that in this
netic field$’ has been seen in various turbulencemogified geometry the dynamo still operates and, further-
simulations~*? Here we attempt to determine whether the more, the critical magnetic Reynolds number for the onset of
vortex filaments themselves may interact with a seed Magdynamo action is smaller, being roughly one half of that of
netic field in order to produce small-scale dynamo action. the original Herzenberg model.

This study is motivated by recent work simulating dy-  Then, we apply those results to test the hypothesis of
namo action from two inclined rotor$.This type of dynamo  small-scale dynamo action resulting from the interaction of
was first studied by Herzenbéfgand, in fact, provided one yortex filaments in turbulent flows. In order to draw a con-
of the first two rigorous proofs of the existence of dynamopection between our vortex model and turbulence, we make
action. The original Herzenberg dynamo consists of two rigy;se of a scaling argument based on the Kolmogorov theory
idly rotating spheres within a solid body of finite but large of tyrbulence. We then finally compare our predictions with
extent. The electrical conductivity of rotor and container arejata from Brandenburgt al,2 who simulated convective
the same. In an experimental realization of this mddéhe dynamo action in a rotating bd%. Those simulations are
rotors were metal cylinders, embedded in a block of the samgyjiored to represent part of the sun near the bottom of the
material, using mercury as a conducting lubricator. Thesonyection zone. The model is compressible, and overshoot
three-dimensional simulatiotiswere carried out on a Carte- intg the stably stratified radiative interior beneath is included.

sian mesh using a smoothed velocity field representing thBespite the amount of detailed physics included, the main
features of dynamo action agree with earlier simulations for
dElectronic mail: Axel.Brandenburg@ncl.ac.uk simpler models:*°
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This paper is organized as follows. In Sec. Il we describeminor and major semi-axes, and the latter is also the rotation
our simulations of a kinematic Herzenberg-type rotor dy-axis. Thus, wherb>a, we will consider the two ellipsoids
namo and obtain an estimate for the value of the criticabhs a model of a pair of vortex tubes. In this paper, we only
magnetic Reynolds number for the onset of dynamo action iconsider the case of nonoscillatory dynamo action from pairs
this modified geometry. In Sec. Il we make use of Kolmog-of tubes. We note that a more detailed inspection of vortex
orov scaling to give an estimate for the conditions underpairs in hydromagnetic turbulence simulations does indeed
which a Herzenberg-type dynamo, resulting from the interseem to suggest that nearby tubes are more nearly antiparal-
action of vortex filaments, could be excited in Kolmogorov lel than parallel. We use a very similar setup to that de-
turbulence. In Secs. IV and V we test the hypothesis ofcribed in Ref. 13. We consider a medium of uniform con-
vortex-generated dynamo action, using data from simulationductivity ». A steady velocity field is constructed such that
of compressible hydromagnetic convection of Brandenburgwo ellipsoids centered &t ,X, with radiusa and major axis
et al,*2in which small-scale dynamo action is observed. Web, separated by a distancel 2are rigidly rotating with an-
are led to the conclusion that the role of vortex tubes in thegular velocitiesQ2, and 2, given by
generation of small-scale magnetic fields cannot be as N N - N
straightforward as suggested by Brandenbetrgl® There- Qi(x)=Qi(x)€;, Q,=(0,=sinzp,cos;3¢4). (4)
fore we consider in Sec. VI two possible modifications of the(ywe point out that the corresponding E8) in Ref. 13 con-
mechanism proposed in Sec. II: First, we consider a modehins a misprint; the 1/2-factor was moved outside the sin

with a spherical rotor and a vortex sheet, and subsequentlynd cos functions.In practice, we construct the velocity
we examine the possible role of vortex clusters in the genfield as

eration of large-scale magnetic fields.
U= 2 Q00X (x=x), 5)
Il. A HERZENBERG-TYPE DYNAMO ’
where (), Ax), are two profile functions that tend to zero
The Herzenberg dynamo consists of two rigidly rotatingoutside the rotors. We set
spheres in a conducting medium. The conductivity is finite, et — N
and the same inside and outside the spheres, which have Qi) =0 exg =107, ©)
radiusa and are separated by a distanak Zhe magnetic wheren=5 in our simulations and the scalar functidnsire
Reynolds number for the Herzenberg dynamo is defined asgiven by
Hz=0Qa?/ 7, 1) ¢ (X—Xi)XQ+ (x—x;)-
i(x)= .
where Q) is the angular velocity of the spheres apdthe ' a2 b2
magnetic diffusivity. For dyna}mo action to te}ke .place th'.SThe evolution of the magnetic field is governed by the linear
number has to exceed a certain threshold, which is a functlolr?1ducti0n equation
of the ratiod/a and of the angle between the rotation axes. q
Qualitatively, in this model each rotor winds up a local po-  dB )
loidal field, generates via field line stretching a strong toroi- E:VX(“X B)+7V°B. ®)
dal field that diffuses then to the other rotor, where it acts as L .
a new local poloidal field. In order for a self-excited dynamo!n Order to ensure the solenoidality conditiéh B=0 we
to exist, the two axes must not be exactly parallel or perpent//t¢ B=VxA and solve numerically the equation for the
dicular. In the particular case where the two rotation axes li/€ctor potential,

@)

in two parallel planes separated by a distanckahd are IA

tilted with respect to one another by the angle there is ot TUXB-7VXB+VO. 9

monotonic (non-oscillatory dynamo action whenp is be-

tween 90° and 180fRefs. 14, 16, 17 and 13 Adopting the gauged = »V-A, we can write
Hz>Hz,~6%(a/d) ~3f(4) ", 2 %=UX(V><A)+ 7V2A. (10)

where o

_ . Equation(10) is solved in a cartesian box using a compact
f(¢)=cos ¢sing. © sixth order scheme in spa€and third order time stepping.
For |¢|=<90° an oscillatory dynamo exists, with a marginal We adopt periodic boundary conditions in the horizontal
dynamo number that is 3-10 times larger than for theplane ,y) and vertical field conditions at the vertical
nonoscillatory dynamo present fog|=90°. boundaries, i.eB,=B,=0 onz=*L,. The aspect ratio is
A. The numerical simulations Ly:Ly:L,=1:1:1.
With the aim of connecting the Herzenberg mechanis
for dynamo action and the interaction of vortex filaments an
magnetic fields in turbulent flows, we generalize the geom- In Fig. 1 we show the behavior of the critical Herzen-
etry of the Herzenberg dynamo by replacing the spheres witherg number Hg;, as a function ob/a, the aspect ratio of
ellipsoids with aspect ratib/a>1, wherea andb are the the ellipsoids. For elongated structures whtkra, the criti-

. Results
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FIG. 1. Behavior of the critical magnetic Reynolds number Hz as a function™!C- :j The critical Reynolds number Hzs a function ofa/d, for ¢
of b/a for a=0.3, d=0.4 andé=125°. In the inset the same data are =125°,b=1.8, d=0.4. a is varied and takes the values 0.25;0.30;0.35.

The dotted lines give quadratien=—2) and cubic (h= —3) scalings for

plotted on a log-linear scale in the form (HHz,)/Hz,, where Hz -
comparison.

=160 is the estimated asymptotic valuetda—oo.

cal value of the dynamo number is smaller than for the case . ) - . .
_ . resulting field looks similar to that in the case of spherical
b=a for the same value o&. For the particular valueb

—125°, we find numerically that Hz approaches a limit as rotors,a=b, see Ref. 13, indicating that the elongated shape
b/a increasessee Fig. 1 In this limit Hz.., is about half the of the rotors has only a weak effect on the resulting field

value for spherical rotorga=b. For values of¢ closer to Struc‘i't#;eﬁehavior of the asymptotic critical value Hzas a
0°, 90° or 180° the critical value is larger, in accordance ymp "

. function of a/d is shown in Fig. 3 for the case=125°.
with £9. (2) Extrapolating from the figure, we obtain the scaling for th
The fact that the critical value of the dynamo number apoiating fro € figure, we obta € scaling for the

does not decrease further & increases can be explained critical asymptotic value,

if we note that dynamo action originates from the interaction lim Hz.=Hz,=Cx(a/d) %/, 11
of magnetic fields in those regions where the separation of b—=

the vortices is smallest. The size of these regions does n@fhich is similar to that of Eq(2). HereC is a function of¢
vary asb/a increases beyond a certain critical value, for anyang, possiblya/d; for ¢=125° anda/d=0.75 we haveC
given orientation. Also, the field twisting and stretching will <75

be most effective near the equatorial regions of the vortices.

A vector plot of the field structure, when the dynamo is

excited, for the case whelo/a==6, is given in Fig. 2. The Il THE HERZENBERG-TYPE DYNAMO IN

TURBULENT FLOWS

We have already mentioned that vortex tubes, as seen in
numerical simulations, have a typical length much greater
than their radius. So we use Ed.1) to estimate the critical
Herzenberg number Hg for a pair of vortex tubes. We
define the Herzenberg number Hz for such a pair in a fashion
analogous tql),

Hz=Qa? n=wa?/2y, (12

where the angular velocitf) is set at half the value of the
vorticity w at the center of the tube. Thus expresdib?) for
the Herzenberg number only contains quantities that can be
related to the properties of the flow. The size of the vortex,
a, and the magnitude of the vorticity, both depend on the
Reynolds number of the flow Re. If the scaling of those
guantities with Re is known we can calculate the scaling of
FIG. 2. Three dimensional visualization of the level surface of the magnetidHz. In the following we shall assume that Kolmogorov scal-
ﬁf'd V‘:Eer?thz?-&t \:/hichfctcr)]rrespondi_ tof_ ‘E% ‘?fdt_het ”&agimumo;vie'd ing holds for all the quantities related to the flow. The Rey-
stren . e orientation o e magnetic field Is Indicate arraws. H - H
=1259°, b=1.8,a=0.3, d=0.4, Hz=i80. Note that the field i: concen- nolds number R_e is defined II’_1 thze 1/gsua| W.ay as Re
UL/v, whereU is the rms velocityu<)~%, L the integral

trated about a central region around the two elongated rotors, where the ] A -
interaction is largest. scale of the flow, and the kinematic viscosity.
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A. Scaling for the tube radius a
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TABLE I|. Parameters of Runs A and [» andU are given in nondimen-
sional units, wherg=L=1.

In order to establish the scaling law for the diameter of

the vortex tubes in (12), we have to relate this quantity to

other characteristic scales in the flow whose scaling law iS™;oqn

known from the theory. This is in fact a topic over which
debate is still opeltsee, e.g., Ref. 2Gand we thus make use
in the following of the two most recurrent hypotheses,

namely that
a=/ or a=\, (13

/ is the dissipation scale and is the Taylor microscale,
defined as

A= 5(U2)/(w?), (14)

where angular brackets indicate volume averages. In Kol
mogorov turbulence;” scales with the Reynolds number as

/=L Re ¥ (15)
while A scales with Re like
A=LRe 12 (16)

These relations assume a Kolmogorov spectrum for the ki
netic energy,E(k)~k =3 While the relation(15) is well
known, we want to briefly sketch a derivation for E6). If

Run A Run D
63 126X 105
Box extent:L, XL XL, 2X2X2 2X2X1.65
L 1 1
Re 310 1200
v 4.0 0.5
(u?)¥2=y 0.065 0.036
(w?)? 0.74 0.78
/=L Re % Eq.(15 0.013 0.005
A=BU/{w?)Y? Eq.(14) 0.20 0.10

_Inthe second case, there is the possibility that the critical
Herzenberg number for dynamo action can be achieved by
increasing the Reynolds number of the flow, and not just by
changing the Prandtl number. We note here that, in the Sun,
Pry, is of the order 107, so that this mechanism cannot
provide a qualitative picture of the phenomena involved
there in the small scale dynamo. Moreover, whenevgr Pr
=1, the mechanism proposed here could not work because
then the typical length scale for magnetic diffusiop’(e)*/*
would be larger than the kinematic dissipation length so that

we calculate the mean square value of the vorticity, we hav@dvection of magnetic fields on the scales of the vorticity

4/3
max:

7

since Kma=271/, we find from Eq.(15) that (w?)~Re.
This, together with the definitio(il4), leads to Eq(16).

<w2)=f k2E(K)dk~k

B. The scaling of Hz with Re

The scaling law forw in (12) is obtained by putting
wal2=0a=u, whereu, is a typical velocity at scala. In
Kolmogorov turbulence the scaling

u,=U(a/L)¥? (18

tubes would be impossible.

IV. A COMPARISON WITH TURBULENT
HYDROMAGNETIC CONVECTION DATA

We now use our vortex model of dynamo action to try to
explain dynamo action seen in the numerical simulations of
Brandenburget al? In those simulations, the dynamo results
from turbulent convection that develops in a convectively
unstable layer of depth between two stably stratified layers.
The nondimensional units used are such that length and time
units are[x]=L and[t]=(L/g)*? whereL is the depth of
the unstable convection zone agdis the acceleration of
gravity. For further details see Ref. 12. In particular we look

holds. Dropping factors of order unity, as elsewhere in thisy; snapshots of velocities from two runs, Run A and Run D,

scaling argument, we thus obtain from E¢E2), (15), (16)
and(18) that

UL(/\43
Hz= 7(f) =Pn, (case), (19
and
Hz=7 T =Re®Pr, (casel), (20)

in the two cases whera scales either withy” or with \.
Here, Pf,= v/ 5 is the magnetic Prandtl number @nd »
are the kinematic and magnetic diffusivities

that differ from each other in resolution, Reynolds and
Prandtl numbergsee Table)l Run A has a smaller Reynolds
number and a larger magnetic Prandtl number than Run D.
In both cases, a turbulent magnetic field is sustained
against magnetic diffusion by dynamo action. Looking at the
flow pattern(Fig. 4), we can identify vortex pairs. We, there-
fore, measure the relevant parameters for the local magnetic
Reynolds(or Herzenbergnumber, as defined in E¢12), at
the scalea of the vortex tubes and compare this value with
the critical value for dynamo action as estimated in @9).
We display in Table Il the measured values of the pa-
rameters for two arbitrarily chosen vortex pairs in Runs A

Thus we see that, in the first case, the magnetic Reynoldsnd D. The value oé is taken to be the radius within which
number of a Herzenberg—type dynamo made of a pair ofhe vorticity exceeds three times the rms value. The value of

vortex tubes dependsot on the Reynolds number of the
flow, but just on its magnetic Prandtl number. A criterion of
this type was first suggested by Batchélarsing a qualita-

Q) is taken to baw,,/2. Given the value ofy (Table ) we
find the values of Hz to be 100 and 20 for Runs A and D,
respectively. The critical value, on the other hand, is around

tive argument based on the similarity between the equationg5. Here we have assumed tltht a, which is appropriate

governing magnetic field and vorticity.

for close vortex pairs. We have also assumge 125°,
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1 g BT T I T T T T 3 say, in the volume_®. This number is related to the frac-
tional volume occupied by the tubes which in turn is related
to the filling factor.

For the purpose of counting the number of tubes, we
may think of all tubes being rearranged such that they are all
parallel to each other and equally spaced, the distance be-
tween each tube being. To cover the whole surface of a
box of sizeL we needN, tubes such thall, D?=L2. There-
fore the number of those tubes is just

MESSaN

-
sl S
T

“L S

O

:?//;/
L=

N
e

—

: 1 3
0.70 BN %%%‘t N, =(D/L)"2. (21)

= 5 On the other hand, given the assumption about the size of
0-0E N 3 such tubes, the volume of each tube is roughly

3 i )

Eyviy 717 ~
0.50F ” 2t V=~a‘l, (22

0.10 020 0.30 0.40 050 060 so the number of tubes equals the total volume occupied by

z all tubes divided by the volume of each tube, whichvis
. . 3 .
FIG. 4. Run D. Velocity vectors in a part ofsa-z cross section through The total volume occupied by all tubesfis®, wheref is the
y=1.03. The two vortices seen near the bottom are considered in the rotdilling factor. Thus, we havéN, V~fL2, or

model of Sec. IV.
N ~fL3/V=f(a/L) 2. (23
S . . Eliminating N, from Eqgs. (21) and (23), we find thatD
which is the most optimistic case. However, even in thatcase_I Ll/zl 9 L _ as. (21) (23), we f
. " =af~ "4 or, sinceD=2d,
the vortex model would still be subcritical by a factor of

almost 4 when applied to Run D. Thus, although Herzenberg a/d=2fY2 (24)

dynamo action is possible in case A, this is hardly a viable

dynamo mechanism, because it does not work in case E;l:hus,a/d depends on the filling factor. The value fak not
where turbulent dynamo action is also observed. well defined, because vortex tubes do not have sharp bound-

Note that, in Run D the Prandtl number is less thand/i€s. If we define tubes as those regions wheseexceeds

unity. As we have already seen at the end of Sec. Il B this i€2% ©f the maximum value, then the filling factor is 0.05
an unfavorable condition for the mechanism that we havé"d fairly independent of resolution and Reynolds
proposed to explain dynamo action. This is simply becaus@Umbers:® This is because the probability density function
the diffusion length of the magnetic field is now larger than©f the vorticity is very nearly_exponentlal. In this case not
the dissipation scalé. Thus, on the scale of the vortex tubes ©NlY f, but alsoa/d would be independent of the Reynolds

the magnetic Reynolds number is too small for dynamo achUmber. There is however a problem, because in order to
tion to be possible. have dynamo action we would have to require, according to

Egs.(19) and (11), that Pf,=75f "1%°~6000. This clearly
cannot explain the results of the simulations wherg Pr
V. ON THE SCALING OF THE RATIO a/d WITH Re =0(1) (see Table)lL One possible explanation is that some
tubes may have much smaller separations than others, and

We have seen in Eq11) that the critical value of Hz S ) :
depends ona/d) 27 multiplied by a number that is around dynamo actlon is mainly accomplished by a small number of
close pairs of tubes. But even thér,, would have to ex-

75 for ¢=125°. We have so far assumed thatd) ~1. We A

. . . . . ceed a value of about 70, which is not the case.
are here interested in the possibility that this ratio depends
upon the Reynolds number. On the one handecreases as
Re increases, but on the other, the number of vortex tubes is
increased. In order to estimate the mean separation of thél. VARIATIONS ON THE MODEL

tubes,d=D/2, we first relateD to the number of tubes\ ) ) ) )
The considerations of the previous sections suggest that

the hypothesis of dynamo action from interactions of pairs of
TABLE II. Parameters measured in Runs A and D and the resulting HerzenVOrtex tubes can be rejected, if the magnetic Prandtl number
berg numbersQ, d and » are given in nondimensional units, whege: L is small. Many astrophysical bodies, including the Sun and
=1 other stars, have small magnetic Prandtl numbers, whereas it
is generally believed that in them a small-scale dynamo does

Run A Run D operate’? Of more immediate concern to us is the fact that in
0= wma/2 1 1.4 Run D, where we know that there is small-scale dynamo
2 8-8; 8-83 action, the numbers do not support the hypothesis that small-
” 5:0x 10°5 6.éx 10°5 scale dynamo action is due to interaction between pairs of
Hz, Eq.(12) 100 20 vortex tubes. Thus, we must look for other ways to explain

this.
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z FIG. 7. The magnetic field vectors for the vortex sheet model with one rotor

in a case where the dynamo is excited. Here the rotation axis of the sphere
and the vorticity vector of the sheet lie in parallel planes and the two vectors
are at an angle of=45° to each other.

FIG. 5. Run D. A close-up of velocity vectors inxa-z cross sectiony
=1.03) showing a vortex sheet together with part of a vortex.

A. Vortex sheets

Closer inspection of visualizations of vorticity suggestsrotor of radiusa whose rotation axis is inclined with respect
not only the presence of vortex tubes, but also of vortexto the direction of the vorticity vector of the sheet. The sheet
sheets due to regions of fluid moving in the form of down-is defined such that the vorticity takes the form
drafts. An example is shown in Fig. 5, where we show a
two-dimensional cross-section of the velocity field of Run D, _ __ oo 2
and the corresponding magnetic field of thg form shown in @~ x(@(1.0.0. o= —Zgzexp[—(z/a) L@

Fig. 6. The combined occurrence of vortex sheets and tubes

has also been noted earlfer. with the corresponding velocity of the forma=(0u,,0),
Although vortex sheets are probably not as prominent a¥/here
tubes when visualized using a threshold procedure, they may U, = g ext{ — (z12)2]. 26)

still be important for the dynamo because of the enhanced

area over which tubes interact with a sheet. We have perfhe rotor is placed a distanck=a from the sheet.

formed a simulation relevant for this case, in a similar fash-  For such a system, we can define a modified Herzenberg
ion to that used in the case of vortex tubes. We have consityymber Hzas the geometrical mean of the relevant magnetic
ered a system composed of a vortex sheet and a Sphe”(ﬁbynolds numbers for the rotor and the sheet,

’H\’ Ua Qaz 1/2 (27)
p z={|—||—
-l‘lll,lI,Y'lI‘Y‘II‘I‘YY‘Y{Y\YLI.YLI:IYIII-J‘I\I‘IIIIIIJ", / 77 7]
o A AU S N W U SN - - \\\\l// f/
AN PENN IR ZEAAN L
E NN NN L EAA4 . L i
0.60 EEER 0 wi:u - The growth rate of the magnetic field depends on the relative
NI ‘}I//,A .
?ﬁ%&{i },;ﬁgé g orientation of the rotation axis of the rotor and the vorticity
E N . .
0.50 o AR vector of the sheet, and can be positive. In our most favor-
........ " ?:}§t§§ 2 able case, when the two vectors lie in two parallel planes
- ;;it%}:::;;;;:::\ : with relative angle=45°, the critical value is
IR N
n PO S SN
i:c;t}'ﬁ'f}?:&“ Hz.;;= 30. (28)
SR
ARV IV
- v(fy_fﬁﬁ'f\ o (Note that, for¢=135°, for example, we found no dynamo
ST action) The structure of the magnetic field resulting from

dynamo action forp=45° is shown in Fig. 7. The relevant
RS ' parameters aréJ=0.08, a=0.05, Q=w/2=1.5 and 7
o " =6.2x10"°. Making use of the definitioi26) and measur-
AR TR R AT SRR IR ing the parameters at an arbitrarily chosen location in Run D,
0.10 0.20 0.30 0.40 0.50 0.60 0.70 we find that Hg,, =~ 60, which is twice the critical value.
£ We thus conclude that this vortex sheet model could possibly
FIG. 6. Run D. Magnetic field vectors in the same cross section as in Fig. scontribute to dynamo action in Run D.
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TABLE IV. Critical Herzenberg number Hg for the three rotor system
obtained from the numerical simulations. Three different configurations for
the boxes have been considered.

Configuration a Hzgii /'HZgun o
0) 0.37 41
(ii) 0.27 31
(i) 0.32 2.7

Due to mutual cancellations of nearly anti-aligned pairs
of vortex tubes the magnitude of the averaged vorticity is
smaller than the vorticity in the small individual vortex tubes
considered so fasee, e.g., Table )l Quantitatively, this can

be described considering the velocity structure function,
FIG. 8. Three dimensional visualization of the level surface of the vorticity 13
in Run D, where its value is 25% of the maximum. Three vortex clusters ~ OU,=U(r/L)", (30

be identified; see the th bvol id, dotted, and dashed li . L
may be identified; see the three subvolurfsedid, dotted, and dashed lines wheredu, is the transversal velocity difference between two
points separated by a distanceThe vorticity over a scale
is then
B. Vortex clusters: A three rotor dynamo 0= 5ur/r:(U/L)(r/L)’2’3. (31)

Another possibility for explaining dynamo action in Run
D is that dynamo action occurt on the smallest possible
scale, the diameter of tubes, but on larger scédither in
addition, or solely. The power spectrum of the magnetic
field supports the view that the magnetic energy contain
contributions from all scale¥. A close inspection of the vor-

:E:;ifggirc?glzgesréggeels:ﬁs th; tthe tubes group into two OTaround one. This is consistent with the direct measurement
9. of the value ofw for Run D (see Table I\

Clusters are in relative motion to each other and so this . .
. . . We now use the three vorticity vectors obtained above to
raises the question whether each cluster could be considered . . .
9 " . . . construct a system of three spherical rotors in which the an-
as a “super-rotor.” In the following we consider this sug-

gestion quantitatively. Looking at visualizations of the vor gular velocities of the rotor€Y; is such that; = {e);/2. For
e . : . : o " this system of vortex clusters we define a Herzenberg num-
ticity (Fig. 8 of Run D we identify three distinct clusters 'S Sy vortex clu W ! z gnu

where many vortex tubes accumulate. We construct frc; ber Hz=0a’/, where nowa is the size of the cluster and
y - " M is the geometric mean of the moduli of the angular veloci-
each cluster the mean vorticity vectan); , i=1,2,3, thatwe .. L
take in the form ties of the three rotors. In order to test the sensitivity of the
model to the choice of the boxes, we have performed the
sin; cosg; simulations for three different choices of the dimensions and
location of the clusters. The critical value for the magnetic
: (29) .
Reynolds numbers Hg for these three different cases are
cosd; given in Table IV and they are compared with the critical
whered and ¢ are polar angles 0¢w> with respect to the values calculated for the Run D. We can see that the three

vertical axis and=1,2,3 is a label for the three subvolumes rotor models are still subcritical by approximately a factor

encompassing the three vortex clusters. The definition of théhree.

boundaries of the subvolumes is somewhat arbitrary and we Instead of taking volume averages, we could have taken

have therefore considered different possibilities. Numericafverages over shells of different thickness. This, however,

values are given in Table Ill for one particular choice. does not seem to change the qualitative results that we have
obtained with the full boxes. A comparison between different
averaging procedures is given in Table V. From those results

) ) o we may conclude that the vortex cluster model cannot ex-
TABLE lll. Spherical coordinates of the averaged vorticity vectors for the

three rotor model of the dynamo. The values of the individual nondimen-plaln the dynamo action presen_t I_n Run D.
sional numbers that occur in the formula for the magnetic Reynolds number 1N summary, among the variations on the model the vor-
Hz of the system are also given. We usgd 6.18 107°, a=0.37. tex sheet model gives dynamo action for the smallest mag-

netic Reynolds number.

The vorticity on a length scale of the order of the integral
scaleL is just U/L. Using the data from Table | we have
U/L=0.036, which is consistent with the value given tagr
in Table Ill. On the other hand, making use (fl), we see
That the numerical value of the vorticity on the scale
=0.04 (which is the scale of the vortex tubes in Run i

(@)i=w;| SinY;sing,

i wj ﬂi [} wia2/27]

1 0.06 75° -90° 66 VII. IS TIME DEPENDENCE IMPORTANT?

2 0.03 91° 126° 33 . _ i . L

3 0.03 116° _179° 33 It is possible that a flow field that is evolving in time

may accelerate the transport of field between rotors. In the
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TABLE V. The components of the averaged vorticity vector when the av-
eraging is carried out over spheres and shells of different fgdien as
numbers of mesh points

lext Fint “’ U (3

14 0 0.48 59 40
17 0 0.38 49 44
28 0 0.078 61 32
14 12 0.46 52 57
17 16 0.32 33 57
28 13 0.12 50 70

traditional Herzenberg dynamo this is accomplished by dif-

fusion, which is a slow process. One could therefore imagine
that field adveCtlor(l.r?Stead of field dlfoSIOh between the. FIG. 10. Three dimensional visualization of the level surface of the mag-
th rotors could facilitate dynamo aCtlon' In order to Cla”fy netic field in the kinematic calculation using a frozen-in-time velocity field

this we now present the results of a kinematic calculationaken from Run D. The value of the level surface is 7% of the maximum
using a frozen-in-time Ve|0city field taken from the samefield strength. The time is the same as in the vorticity plot in Fig. 8. Note the
snapshot of Run D for which the vorticity is given in Fig. 8. concentration of field into structures.

The numerical resolution is 126126X 105 meshpoints,

which is identical to that of the original convection simula- the growth is oscillatory. The value of #/used in the origi-
tions. nal dynamical calculation was D6L0*. The fact that dy-
We find that, even in the kinematic case, the magnetiGamo action is found even for a time independent flow field
field organizes itself in the form of flux tubésee Fig. 1 syggests that time dependence is not essential for turbulent
Note that in order to see those structures, we have loweregynamo action. Moreover, even for 74+ 10* the growth
the level of the contour shown in this figure to only 7% of time was shortek6 turnover times than in the dynamical
the maximum valug(At 18% of the maximum, i.e., the value ¢ajculation with 1/=1.6x 10*, where the growth time was
used in Fig. 11, only a single spot would have been visibleghout 20 turnover times. Hence, in an evolving velocity field
Thus the field is much more strongly localized in the kine-the magnetic field growth is actually slower.
matic case.In Fig. 9 we show the growth of the magnetic For comparison, we show in Fig. 11 a snapshot of the
energy as a function of time for two different values o1/ magnetic field configuration from Run D at the instant at
(VgL% 7 in dimensional units For 1/p=2x10%, corre-  which we took our kinematic velocity field. When compared
sponding to a magnetic Reynolds number of about 700, Wgith Fig. 10, there are some broad similarities, but also ob-
found a growth rate of about 3200 inverse diffusion timesjous differences. In particular, there is a strong “hot-spot”
corresponding to are-folding time of about 0.2 turnover in Fig. 10, which is only marginally present in Fig. 11. The
times. For 1h= 10" (magnetic Reynolds number about 350 explanation seems reasonably straightforward. The growth
we found a grOWth rate of about 170 inverse diffusion timeS,time for the dynamo is Considerab|y greater than the charac-
corresponding to ae-folding time of about 6 turnover times.  teristic time scale of the dynamically driven motions of Run

Extrapolating on these two cases we expect the critical valug. Thus, in this case, there is never enough time for the
of 1/7 for dynamo action to be just below 40in both cases

107%

Magnetic energy

10~10

0.000 0.010 0.020 0.030 0.040 0.050 0.060
time in diffusion times

FIG. 9. The dependence of magnetic energy on time in a kinematic calcu-

lation using a frozen-in-time velocity field taken from Run D. Two cases areFIG. 11. Three dimensional visualization of the level surface of the mag-
plotted; one where the velocity was 18% larger than in the original dynami-netic field in the dynamical simulation of Run D. The value of the level
cal calculation (1=2x10% upper curv@and one where it was only 60% surface is 18% of the maximum field strength. The time is the same as in the
of the original value (1= 10 lower curve. vorticity plot in Fig. 8.
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magnetic field to approach the steadily growifigstanta- magnetic flux between vortices. More generally, and in some

neous eigenmode, which is illustrated in Fig. 10his also  ways encompassing both of these points, we might say that

plausibly explains why the evolving velocity field gives a turbulent motions occur on a large range of length scales and

slower growth rate for the magnetic fieldlhese compari- that essential contributions to dynamo action come from mo-

sons provide at least a hint that, although a time invariantions on larger scales. The geometry of the velocity field for

“frozen” velocity field can support a dynamo, it may not be a working dynamo is clearly very complésee Fig. 8 and

a valid way to investigate time dependent dynamo action. plausibly cannot easily be described by a simple vortex
A comparable difference between “frozen” and evolv- model, which only mimics selected local features of the flow

ing velocity fields has also been seen in particle advection bfield.

turbulent flows?® There, with the “frozen” velocity field,

particles continue to stream into the same points, while in tha\CKNOWLEDGMENTS
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