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A B S T R A C T
Axisymmetric mean-field dynamo models in spherical shells are shown to be capable of
producing temporally intermittent behaviour. This is of potential importance since (i) it is, as
far as we are aware, the first time such behaviour has been produced internally by a mean-field
dynamo model in a spherical shell, without requiring any additional assumptions or trunca-
tions, and (ii) it may be characteristic of the type of behaviour observed in the long-term record
of solar activity, such as Maunder minima. We also show that these types of behaviour persist
when the functional form of the alpha quenching is altered and also occur over intervals of the
shell thickness and the dynamo number.
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1 I N T RO D U C T I O N

There is evidence for solar and stellar variability on a variety of
time-scales. In particular, in addition to the (nearly) cyclic magnetic
solar cycles (with an average period of about 22 yr) these is also
evidence for longer time-scale variations, of the order of 102 yr, as
typified by the case of the Maunder minimum (Ribes & Nesme-
Ribes 1993), during which the amplitude of solar activity, as
measured by the sunspot number, was dramatically reduced for
about 70 yr. The evidence for this event comes from a number of
sources, including the historical data, based on the observations of
the sunspot cycles (Eddy 1976), as well as proxy evidence obtained
from the record of past 14C variations in the atmosphere, as deduced
from the analysis of tree rings (Damon 1976). More recent evidence
comes from the 10Be data of ice cores drilled in Greenland (Beer et
al. 1990, 1994a,b). The results are remarkable, because they show
that even during the Maunder minimum there was still a clear cyclic
modulation, indicating that the solar dynamo never shut off com-
pletely, but rather that it had become weak enough so that sunspots
could not emerge. Furthermore, analysis of sunspot observations
made at Meudon Observatory during the time of the Maunder
minimum revealed that sunspots erupted only on one hemisphere
(Ribes & Nesme-Ribes 1993). This type of behaviour can be
interpreted as a mixed parity mode (Nesme-Ribes et al. 1995). A

trend for long-term variations of the degree of asymmetry has
already been seen in the Greenwich sunspot data (see Brandenburg
et al. 1989c).

There is also some direct observational evidence for similar
variability in stars (Baliunas & Vaughan 1985; Baliunas et al. 1995).
A crucial point here is that 14C data indicate that similar minima
have also occurred in the Sun in the past at seemingly irregular
intervals (Stuiver & Braziunas 1989).

A great deal of effort has gone into understanding these modes of
behaviour in the Sun and stars. At first the main thrust of the
modelling was towards explaining the gross properties of the solar
cycle, as evidenced by the sunspot cycle: primarily the period and
the direction of migration of the dynamo wave (‘butterfly dia-
gram’). Notwithstanding the increasing physical content of the
models (e.g. Gilman 1983; Brandenburg, Moss & Tuominen
1992), a convincing model that accounts for the equatorward
motion of the activity belts during a cycle remains elusive. More
recently the generic long-term behaviour of the solar activity has
attracted more attention (but see Ruzmaikin, 1981, for an early
paper on the subject). The question is how to account for this
intermediate, seemingly irregular behaviour in the Sun and stars.
There are essentially two approaches to this problem, viewing it
either as a deterministic or a stochastic process. In practice,
however, the limited length of solar and stellar observations
makes this issue rather difficult to decide (Weiss 1990). Here
we shall concentrate on the former approach. We comment
that, without considerations of non-linearity, variability over these
time-scales is difficult to understand in terms of the time-scales
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characteristic of the physical processes thought to be operative in
the Sun and stars, at least on the basis of commonly accepted solar
and stellar models. The main idea underpinning the deterministic
ways of understanding this mode of behaviour is to rely on
intuitions obtained from dynamical systems theory and argue
that, as solar and stellar dynamos are non-linear systems, behaviour
characterized by different statistics over different time intervals
may occur and this could account for such variability (e.g. Tavakol
1978; Zeldovich, Ruzmaikin & Sokoloff 1983; Weiss, Cataneo &
Jones 1984; Spiegel 1985).

This type of behaviour has subsequently been termed intermit-
tency, in analogy with the intermittency in turbulent fluids dis-
covered by Batchelor & Townsend at the end of the 1940s
(Batchelor & Townsend 1949). Pomeau & Manneville (1980)
described intermittency as a periodic signal interrupted by bursts
of irregular behaviour, and this definition has since been general-
ized to encompass several related behaviours; see for example the
discussion in Brooke et al. (1998). Since the 1970s, many models
have been constructed showing a variety of types of intermittent
behaviour. These range from the classic Pomeau–Manneville
intermittency where the dynamics vacillates between nearly
periodic and non-periodic regimes, to the crisis intermittency of
Grebogi et al. (Grebogi, Ott & Yorke 1983; see also Covas &
Tavakol 1997 for a dynamo example), in which the system
vacillates between chaotic and periodic or unstable fixed-point
regimes, and to the recently described ‘on/off’ mechanism (Platt,
Spiegel & Tresser 1993a; Ott & Sommerer 1994; Ashwin, Buescu
& Stewart 1996) in which an attractor in the invariant submanifold
loses transverse stability and hence forces the solution to diverge
from its ‘off’ phase (see Covas, Ashwin & Tavakol 1997 for a
dynamo example).

A variety of deterministic models have produced behaviour
which appears to be (in a qualitative sense) similar to Maunder-
type minima in stars with magnetic cycles similar to the Sun. These
include:

(1) low dimensional (ordinary differential equation) models,
derived either from severe truncations of various approximations
to the mean-field dynamo equations (e.g. Weiss et al. 1984; Platt,
Spiegel & Tresser 1993b; Covas & Tavakol 1997; Covas, Ashwin &
Tavakol 1997); or from normal form theory (e.g. Tobias, Weiss &
Kirk 1995); or by considerations of resonances and symmetry
breaking (Knobloch & Landsberg 1996);

(2) numerical solutions of the relevant partial differential
equations, which take two forms: integration of the full magneto-
hydrodynamical equations (Gilman 1983), or the integration of
mean-field models such as the torus models considered by Brooke
& Moss (1994, 1995), solar-type models in Cartesian geometry
(Tobias 1997), the models of accretion discs considered by Tor-
kelsson & Brandenburg (1994), as well as models based on
amplitude modulations by Tobias (1996, 1997) and Tobias &
Weiss (1997).

In this paper, we show that the axisymmetric mean-field dynamo
equations, when solved in a spherical shell with an a-quenching
non-linearity, without any external driving or perturbation, can also
exhibit intermittent-type behaviour. We also that note this
behaviour is quite distinct from the chaotic solutions presented,
for example, by Tavakol et al. (1995) (hereafter referred to as
TTBMT) and that as far as we are aware, this is the first time that
such behaviour has been observed in mean-field spherical shell
dynamo models and thus these results may be of potential impor-
tance in providing a connection between mean-field dynamo

models and the dynamical behaviour of the solar cycle. We also
note that in Schmitt, Schüssler & Ferriz-Mas (1996) the dynamo is
stochastically perturbed and this is therefore a stochastic model.
Further, we briefly study the question of likelihood of such modes of
behaviour as a function of changes in the thickness of the shell and
the dynamo number, and identify intervals where such behaviour is
present. We also briefly discuss the relevance of a recently recog-
nized type of intermittency, termed the ‘icicle intermittency’ by
Brooke & Moss (1995), Brooke (1997a,b). This is explored in detail
in Brooke et al. (1998).

2 T W O - D I M E N S I O N A L M E A N - F I E L D
DY N A M O S

The standard mean-field dynamo equation (Krause & Rädler 1980)
is of the form

∂B
∂t

¼ = × ðu × B þ aBÞ ¹ = × ðht= × BÞ; ð1Þ

where u and B are the mean velocity and magnetic fields. As usual,
ht is a turbulent diffusivity, which we take to be a constant. We
assume the non-linearity to be of a-quenching type, crudely
representing the dynamical feedback of the Lorentz force on the
small scale motions. In order to verify that our results do not depend
generically on the exact form of this non-linearity (particularly as
its functional form is not well established), in addition to the
commonly adopted

a ¼
a0 cos v

1 þ B2 ; ð2Þ

we also considered two other functional forms of a that have the
property a , jBj¹3 as jBj → ∞ (Moffatt 1972). The first expression
is really just an interpolation formula (see also TTBMT) that
satisfies the correct asymptotic behaviour, and was originally
derived in the context of L-quenching by rapid rotation (Kitchati-
nov 1987), so we replaced the angular velocity by jBj:

a ¼
a0 cos v

B4

3 þ B2

1 þ B2 þ
B2 ¹ 3

jBj
tan¹1 jBj

� �
: ð3Þ

The second expression we adopted is a result of Rüdiger
& Kitchatinov (1993) and has been derived using first-order
smoothing:

a ¼
15
32

a0 cos v

B2 1 ¹
4B2

3ð1 þ B2Þ2 ¹
1 ¹ B2

jBj
tan¹1 jBj

� �
: ð4Þ

In each case a0 is a constant.
We restricted our investigation to purely axisymmetric solutions

of equation (1). The code is described in detail in Brandenburg et al.
(1989a,b), and is as implemented by TTBMT. We assume a uniform
radial rotational shear, Q0

0, and the two dynamo numbers that control
the system are Cq ¼ Q0

0R2
=ht, Ca ¼ a0R=ht, where R is the radius of

the outer boundary. Our unit of time is a global diffusion time, R2
=ht.

The other two input parameters are the fractional radius of the inner
radius of the shell, r0, and the quantity F that controls the exact form
of the inner boundary condition. More precisely, the outer boundary
condition was taken to be that the field fitted smoothly on to a
vacuum exterior solution, and the conditions at the lower boundary
were taken to be a superposition of perfectly conducting and
penetrative magnetic boundary conditions in the forms

ð1 ¹ FÞa þ F
∂a
∂r

¹
a
da

� �
¼ 0; ð5Þ
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for the poloidal field, and

ð1 ¹ FÞ
1
r

∂ðrbÞ

∂r
¹ a

1
r

∂ðraÞ

∂r

� �
þ F

∂b
∂r

¹
b
db

� �
¼ 0; ð6Þ

for the toroidal field. da and db are small distances over which the
skin effect can be assumed to reduce the field outside of the
convection zone to nearly zero, and we set da ¼ db ¼ 0:05R.
Purely perfectly conducting and penetrative boundary conditions
can be recovered by setting F to be 0 and 1 respectively. Our
motivation for this unconventional boundary condition is that the
true boundary condition is quite uncertain, this being associated
with well-known uncertainties about the physical conditions at the
boundary of a stellar convective zone. We took Cq ¼ ¹105 for the
calculations described here. A dynamo is excited when Ca > Cac.
With this value of Cq, Cac is a somewhat less than 0.1, depending on
the exact choice of parameters. The models discussed in this paper
are always substantially supercritical, i.e. Ca q Cac.

As noted earlier, TTBMT found chaotic, but not intermittent
solutions. The input parameters of the solutions discussed here
differ from those of TTBMT in values of F, Ca and r0. We have not
attempted a survey of the parameter space, and just report interest-
ing behaviour that we encountered.

The behaviour of the models is described by the total magnetic
energy in the shell r0R # r # R, given by E ¼ EðAÞ þ EðSÞ, and the
global parity P ¼ ½EðSÞ ¹ EðAÞÿ=E; EðAÞ and EðSÞ are respectively the
energies of the parts of the magnetic field that are antisymmetric
and symmetric with respect to the rotational equator (‘dipole-like’
and ‘quadrupole-like’). Then P ¼ ¹1 denotes an antisymmetric
pure parity solution and P ¼ þ1 a purely symmetric solution.

3 I N T E R M I T T E N T- L I K E B E H AV I O U R I N
S P H E R I C A L S H E L L M O D E L S

Within the context of dynamical systems theory, intermittency as
discussed in the Introduction, comes in a variety of forms, each with
precise signatures and underlying dynamical mechanisms. However,
in the case of partial differential equations, the characterization of such
behaviour is not so well defined. However, attempts have been made to
characterize such behaviour in particular cases (Brooke et al. 1998).

Here, our aim is mainly to report the existence of such behaviour,
rather than its precise identification, and we therefore pragmatically
identify intermittency as being characterized by different statistics of
the solutions over different time intervals.

In this section we show examples of intermittent behaviour in the
dynamo models described in the previous section, with different
forms of a-quenching.

Fig. 1 shows an example of a case with the usual form of
a-quenching given by equation (2) with parameter values
r0 ¼ 0:2, Ca ¼ 2:0 and F ¼ 0:59. Intermittent behaviour in the
parity can be clearly seen, with intervals where P is very nearly
¹1 (antisymmetric) interspersed with intervals during which the
parity migrates past zero and becomes positive. This behaviour is
also present in the dynamics of the energies EðAÞ and EðSÞ, in
which the excursions of the parity from P ¼ ¹1 are associated
with bursts in EðSÞ.

To study how robust this type of behaviour is with respect to
changes in the precise form of the a-quenching, we used other
functional forms for a. Thus in Fig. 2 we took the functional form
given by equation (3) and parameters r0 ¼ 0:4, Ca ¼ 1:5 and
F ¼ 0:7. Fig. 3, for which equation (2) was also used along with
Ca ¼ 2:04 and r0 ¼ 0:2, shows that this behaviour can also be occur
with a ‘pure’ inner boundary condition such as F ¼ 1. As can be
seen, these two figures share similarities with Fig. 1, except that
now the almost stable state has parity P ¼ þ1. Finally in Fig. 4 we
used the a profile given by (4) with the parameters r0 ¼ 0:5,
Ca ¼ 2:05 and F ¼ 0:71. The behaviour here is rather different in
nature from that seen in the previous two figures, in that for most of
the time the parity fluctuates over the whole range ¹1 < P < þ1,
and there are only relatively brief intervals where the energy is
nearly periodic and P < þ1.

These figures show that intermittent-type behaviour can occur
with different forms of a-quenching, but with different values of
input parameters r0, Ca and different boundary conditions given by
the parameter F. They also have different dynamical details. In
particular, Figs 1, 2 and 3 display essentially similar behaviour.
Fig. 2, however, could be described as an ‘icicle’ intermittency
owing to the similarity in form to the parity variations found by
Brooke & Moss (1994, 1995). On the other hand, Fig. 4 may turn
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Figure 1. Total energy and parity for the a-profile given by ð2Þ. Ca ¼ 2:0, r0 ¼ 0:2, F ¼ 0:59.



out to be more representative of an on–off intermittency. In the
present context, the invariant submanifold in this example would be
defined by quadrupolar (P ¼ 1) parity and the transverse perturba-
tions are field components with dipolar parity. This point is worth
stressing, because a naive view of on–off intermittency can lead to
the conclusion that the magnetic field strength must be much
reduced during the ‘off’ phase. In Fig. 4 the bursts from the
P ¼ 1 subspace do not have the modulated form shown in the
‘icicles’ of Figs 1, 2 and 3 and thus are more typical of the on–off
mechanism. The point is more fully discussed in Brooke et al.
(1998) where it is shown that there are interesting, and perhaps
fundamental, links between on–off and icicle intermittency.

Intermittent behaviour was also found for pure inner boundary
conditions, with the usual form for a-quenching given by equation

(2) being used. Fig. 5 shows such behaviour for an F ¼ 0 inner
boundary condition with Ca ¼ 1:95 and r0 ¼ 0:4.

It is instructive to compare the intermittent-typesof behaviour found
herewith thechaoticandperiodicextremes.Thisprogressionforafixed
value of Ca ¼ 2:0 with a-quenching given by equation (2) and with
F ¼ 1 can be seen in Figs 6 to 8 in which only the shell thickness r0

changes. It can be seen that the mean interval between intermittent
bursts decreases, until eventually the behaviour becomes chaotic.

Intermittency appears to occur in spherical shell dynamos only
when they are very supercritical (ie Ca q Cac), in contrast to the
torus dynamo of Brooke & Moss, where intermittency is found at
dynamo numbers only about three times greater than the critical
value. Additionally, we have weak evidence that values of r0

smaller than about 0.5 may be necessary.
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Figure 2. Total energy and parity for the a-profile given by equation (3). Ca ¼ 1:5, r0 ¼ 0:4, F ¼ 0:7.

Figure 3. Total energy and parity for the a-profile given by (2). Ca ¼ 2:04, r0 ¼ 0:2, F ¼ 1.



4 T H E L I K E L I H O O D O F I N T E R M I T T E N T-
T Y P E B E H AV I O U R

An important question that arises here is how prevalent such
intermittent modes of behaviour are, as the various parameters
involved are changed. This is of particular importance given that
there seems to be observational evidence for intermittent-type
behaviour in a variety of stellar settings. It is therefore important
that the mechanism that produces intermittent behaviour (whatever
its precise dynamical nature may be) should operate in a reasonable
range of parameter space.

Here, as a start, we have made a brief study of the likelihood of
this type of behaviour as some changes are made in the thickness of
the shell r0 and the dynamo number Ca. We have also considered
several values of the boundary condition parameter F.

Table 1 shows the result of our computations regarding variations
in Ca versus r0. Here ‘OSM’ stands for a mixed parity solution, in
which the parity remains positive but displays periodic oscillations
and thus a contribution from an antisymmetric (dipolar) solution is
present. Similarly, ‘OAM’stands for a solution in which the parity is
negative, but oscillates periodically. In each case there is usually
more than one period present. As can be seen, there are intervals of
both r0 and Ca for which the system shows intermittent-type
behaviour. One important outcome of our work seems to be the
indication that, at least in these types of mean-field models,
intermittent-type behaviour may require thicker shells, with thick-
ness parameter r0 less than 0:5 or so.

As shown in the previous section, we have also found evidence
for generally similar behaviour with ‘pure’ inner boundary condi-
tions, F ¼ 0; 1, as well as intermediate values.
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Figure 4. Total energy and parity for the a-profile given by equation (4). Ca ¼ 2:05, r0 ¼ 0:5, F ¼ 0:71.

Figure 5. Total energy and parity for the a-profile given by (2). Ca ¼ 1:95, r0 ¼ 0:4, F ¼ 0.



To gain insight into how the dynamics changes in such
models we briefly looked at the way the energy changes as a
function of the dynamo number in the model with the a-
quenching given by equation (2). The results of our calculations
are shown in the top panel of Fig. 9. Initially the stable state of
the dynamo changes, at least to the resolution of our parameter
grid, from an antisymmetric periodic parity to a symmetric
periodic parity solution, without passing through an intermedi-
ate mixed parity solution. It then changes abruptly from a
symmetric to a mixed antisymmetric periodic parity solution
and then to an intermittent phase (we discuss this parameter
range in more detail below), after which it becomes a mixed
antisymmetric parity solution. It then becomes purely sym-
metric, P ¼ þ1, followed by a mixed symmetric parity interval
and finally ends up as a chaotic solution. An important point is

that the change to the intermittent regime does not involve a
dramatic change in the global energy.

Another important feature shown in this figure is the com-
plicated behaviour shown around Ca < 1:35 and to examine this
further, the bottom panel of Fig. 9 shows the behaviour of the
models with respect to changing the starting parity in this Ca

range. The values used for the starting parity were 0:9999, 0:5,
0:1 (the latter being the value used in all the other calculations
present in this paper), ¹0:5 and ¹0:9999. As can be seen, there
is evidence for multiple attractors by which we mean the
existence of solutions having different energies at the same
value of Ca but different starting values of the parity, Pi. Our
calculations indicate that the pure symmetric solution is
unstable to changes in the starting parity, for example by
starting with an initial parity value slightly different from 1:0,

292 A. Tworkowski et al.

q 1998 RAS, MNRAS 296, 287–295

Figure 6. Total energy and parity for the a-profile given by (2). Ca ¼ 2:0, r0 ¼ 0:18, F ¼ 1.

Figure 7. Total energy and parity for the a-profile given by (2). Ca ¼ 2:0, r0 ¼ 0:19, F ¼ 1.



whilst the intermittent behaviour is apparently more robust with
respect to such changes.

5 C O N C L U S I O N S

We have shown that intermittent-type behaviour can occur in mean-
field spherical shell dynamo models with non-linear a-quenching.
Our models are deterministic, without the need for ‘outside’ terms
to drive the intermittency. The behaviour arises purely from the a-
quenching non-linearity. We have shown that such behaviour can be
present independently of the detailed form of the non-linear
quenching. Further we have found intervals in both the shell
thickness and the dynamo number Ca for which intermittency is
present. This is important, since to be a physically viable mechan-
ism it is essential that the behaviour survives small changes in the
model and the parameters. We also note that this type of behaviour
seems to be confined to thick shells with r0 < 0:5.

As far as we are aware this is the first example of the
occurrence of intermittent behaviour in such a spherical shell
model, without any external assumptions, or truncations to give a
low-order system, being made. We note that Brooke & Moss
(1995) found some similar behaviour in an axisymmetric model
with a torus geometry, and that Tobias (1997) has recently

described intermittent behaviour in a related model in cartesian
geometry.

We acknowledge that we have not produced a model of the solar
cycle. Indeed, that was not our intention but, as mentioned above,
we do believe it interesting and important to have demonstrated that
mean-field models, of the sort often used to model the solar cycle,
can display a variety of intermittent-types of behaviour. Inter alia,
our models describe distributed dynamos in shells significantly
thicker than the solar convection zone and so, if interpreted literally,
they would apply to stars of later spectral type than that of the Sun.

We note that we really do not know what signature of the solar
cycle we should compare our results with! There are records of the
sunspot cycle extending over some 350 years (including by chance
the Maunder minimum), which we can assume correlate with
properties of the underlying dynamo. However there is no quanti-
tative theory linking the dynamo generated field to the observed
spots. As mentioned in the introduction, a dearth of spots almost
certainly does not mean that the dynamo generated field is absent
throughout the convection zone but, more plausibly, that it is
reduced below some threshold value. The same sort of remarks
apply to other proxies for the solar cycle.

Of course, another aspect of the astrophysical problem is the
behaviour of a stellar dynamo as spin down occurs during the
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Figure 8. Total energy and parity for the a-profile given by (2). Ca ¼ 2:0, r0 ¼ 0:25, F ¼ 1.

Table 1. Ca versus r0 table for a-quenching given by equation (2) with Cq ¼ ¹105 and F ¼ 1:0. Here, S denotes a periodic pure
parity symmetric solution; A, a periodic pure antisymmetric solution; OAM, a periodic mixed antisymmetric solution; OSM, a
periodic mixed symmetric solution; I, an intermittent and C, a chaotic solution.

Ca r0 0.15 0.16 0.17 0.18 0.19 0.20 0.21 0.22 0.23 0.24 0.25

1.0 S S S S S S S S S S S

1.5 A A I I I I C C C C C

2.0 OAM OAM OAM I I I I I I C C

2.5 OAM OAM OAM S OAM OAM S S S S OSM

3.0 OSM OSM OAM OSM OSM OSM S S S OSM OSM



evolution of a star. This suggests that it might be interesting to
examine changes in jCqj. But changes in Q can be expected to alter
the magnitude of the a-effect, and thus Ca, also. Furthermore, r0

can be expected to change as a star evolves. Thus the precise history
of the dynamical state of a stellar dynamo in a star with a deep
convective envelope appears hard to determine. We do anticipate,
however, that when jCqj has become small enough, the dynamical
behaviour is more likely to be regular (i.e. not intermittent or
chaotic).

Finally, we mention several recent papers that address specifi-
cally the astrophysical aspects of the problem. Tobias (1996)
showed that intervals of reduced solar behaviour could be explained
as the modulation of a magnetic cycle by the Malkus–Proctor effect
(i.e. the feedback of the Lorentz torque on to the differential
rotation). This modulation was periodic, but in an extension of
this work (Tobias 1997), aperiodic modulation has been found,
which thus makes it a possible intermittency mechanism. Schmitt et
al. (1996) do present intermittent solutions, but in their work the
intermittency arises from the dynamo being stochastically per-
turbed, modelling the influence of a coupled external system.
Knobloch & Landsberg (1996) consider a solar model where
resonances and symmetry breaking are key features. A particularly
interesting result is that they find two types of grand minima. Type I
is where the dynamo spends most of its time in a pure parity state,
with occasional excitation of field of the opposite parity, associated
with a fall in the total energy. Type II is where the system spends
most of the time in a low-energy state, punctuated by exponential
rises and sudden falls. During the latter episodes, there are rapid

changes in the parity, about the underlying mixed parity state. The
behaviour we have described as icicle intermittency appears to be
akin to that shown by Type I systems. However, in Knobloch and
Landsberg’s model the spatial structure of the quadrupolar and
dipolar components is fixed and the resonance between them is
modelled by two coupled equations for the complex amplitude,
which describe the symmetries of the system up to third-order
terms. In our solutions the spatial structures of the quadrupolar and
dipolar components of the field can evolve, as well as there being
evolution due to resonant interactions between them. Resonant
modulation is not inevitable, as can be seen from our Fig. 4 where
modulation is replaced with sudden and irregular bursts, thus it
requires explanation. This issue is explored further in Brooke et al.
(1998). We reiterate that the source of the intermittency in our
solutions appears to be distinct from anything discussed in these
previous papers.
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