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The Herzenberg dynamo, consisting of two rotating electrically conducting spheres
with non-parallel spin axes, immersed in a finite spherical conducting medium, is sim-
ulated numerically for a variety of parameters not accessible to the original asymp-
totic theory. Our model places the spheres in a spatially periodic box. The largest
growth rate is obtained when the angle, ϕ, between the spin axes is somewhat larger
than 125◦. In agreement with the asymptotic analysis, it is found that the critical
dynamo number is approximately proportional to the cube of the ratio of the com-
mon radius of the spheres and their separation. The asymptotic prediction, strictly
valid only in the limit of small spheres, remains approximately valid even when the
diameter of the spheres becomes comparable to their separation. For |ϕ| < 90◦ we
also find oscillatory solutions, which were not predicted by Herzenberg’s analysis. To
understand such solutions we present a modified asymptotic analysis in which the
separation of the two spheres is essentially replaced by the skin depth which, in turn,
depends on the diameter of the spheres. The magnetic field consists of magnetic flux
rings wrapped around the two spheres. Applications to local models of turbulent
dynamos and to dynamo action in binary stars are discussed.
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1. Introduction

Herzenberg (1958) produced one of the two first rigorous proofs of the existence of
fluid dynamo action (see also Backus 1958). He considered two rotating spheres with
non-parallel axes immersed in an electrically conducting medium, of spherical form,
bounded by an insulator. His analysis was valid for the limit of small a/d, where a
is the radius of the spheres and 2d their separation. Dynamo action is possible for
about half the possible relative orientations of the spin axes of the spheres, and the
fields are steady. Moffatt (1978) gives an accessible outline of the theory. Nevertheless,
subtle issues emerge from the two rotor system, which stimulated the further analytic
studies of Gibson (1968a) and Gailitis (1973) and was the focus of discussion in the
reviews of Gibson & Roberts (1967), Roberts (1967a, b), Gibson (1969) and Roberts
(1971). Generalizations include multiple rotors like the three-rotor system of Gibson
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(1968b), although the idea of image rotors to accommodate boundary conditions in
electromagnetic induction problems had earlier been introduced by Herzenberg &
Lowes (1957).

An experimental version of a similar dynamo, in the form of two rotating con-
ducting cylinders, was constructed by Lowes & Wilkinson (1963). Although their
experiment was inspired by Herzenberg’s result, it necessarily differed from his mod-
el in several significant details. The cylinders were embedded in a solid block of the
same material, and electrical contact between the rotors and the block was provided
by a thin lubricating film of mercury. They verified that dynamo action occurred,
and in a subsequent paper (Lowes & Wilkinson 1968) they found also non-steady
behaviour for supercritical values of the angular velocities, when viscous dissipation
was reduced. It is unclear whether the unsteady behaviour was due to the excitation
of an unsteady linear dynamo mode, or to a nonlinearity caused by the experimental
set-up.

Dolginov & Urpin (1979) have since discussed applications to binary star systems
but, to our knowledge, there has been little further investigation of the problem.

We describe here a numerical simulation of a Herzenberg-like dynamo in a finite
box, that is not restricted to the limit of small a/d. We demonstrate that dynamo
action occurs for values of a/d between 0.5 and 0.9, and that Herzenberg’s results for
the relative orientations of the spin vectors, for which steady dynamo action occurs,
remain quite accurate even when a/d is not small. Though Herzenberg’s asymptotic
results apply to an unbounded domain, they still provide a good approximation for
large (but finite) box size. To improve the accuracy of the asymptotic theory rele-
vant to our simulations, we consider the appropriate image system for our boundary
conditions. This leads to a spatially periodic array of rotors in all three coordinate
axis directions. In this context, we remark that Roberts (1971, p. 150) discussed
briefly the case of a large number of identical rotors, and indicated how they can
give rise to a version of mean field electrodynamics; the idea was developed further
by Childress (1983). We also stress that the vector invariant approach, which we use
in our analytic treatment, was introduced by Gibson & Roberts (1967); it leads, as
subsequent authors have realized, to considerable mathematical simplification and
physical clarity. We also, for the first time, present a visualization of the magnetic
field for this class of dynamo action. Further, a new class of oscillatory dynamo solu-
tions is described, that exist for spin vector orientations for which steady dynamo
action does not occur. Gailitis (1973) drew attention to the existence of oscillatory
modes but only to resolve difficulties with low order effects within the range of ori-
entations for which steady dynamo action occurs, and so only touched the periphery
of the wider class that we identify.

2. The model

We consider two conducting spheres of radius a, separated by a distance 2d, spin-
ning with angular velocities ω1 and ω2 in a medium with uniform conductivity η,
equal to that of the spheres. In Herzenberg’s original analysis the two spheres were
embedded in a larger conducting sphere, outside of which a vacuum was assumed.
In our numerical analysis we use a simple Cartesian geometry and embed the two
spheres in a medium of uniform conductivity, with no exterior vacuum. The positions
of the centres of the two spheres are

x1 = (−d, 0, 0), x2 = (d, 0, 0), (2.1)
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and their angular velocities are

ω1 = ω1(0,− 1
2 sinϕ, 1

2 cosϕ), ω2 = ω2(0, 1
2 sinϕ, 1

2 cosϕ), (2.2)

where ω1 and ω2 are specified below. Purely for numerical convenience, we make the
boundaries of the spheres ‘soft’ so that velocity gradients remain finite, by adopting
modified gaussian profiles,

ω1,2(x) = ω exp(−[|x− x1,2|/a]n), (2.3)

with, fairly arbitrarily, n = 10. The resulting (steady) velocity field is then

u(x) =
∑
i=1,2

ωi × (x− xi). (2.4)

The evolution of the magnetic field B is governed by the induction equation,
∂B

∂t
= ∇× (u×B) + η∇2B. (2.5)

To ensure that the condition ∇·B = 0 is satisfied at all times we solve for the vector
potential A, where B = ∇×A. The gauge is chosen so that equation (2.5) yields (η
uniform)

∂A

∂t
= u× (∇×A) + η∇2A. (2.6)

We integrate the equations numerically in a Cartesian box with periodic boundary
conditions on (x, y) = ±L, and impose the condition Bx = By = 0 at z = ±Lz, where
Lz = 1

2L in most cases. (With this condition the mean horizontal magnetic field is
not constrained to be zero; cf. Brandenburg et al. (1995). Nevertheless, in none of
the cases studied below is a mean magnetic field is excited.) For ω = 0 the decay
rate was found numerically to be close to the expected value of 2π2η/L2. By taking
d < 1

2L the separation of the spheres within the computational domain is smaller
than the separation across the periodic boundaries. Visualization of the magnetic
field shows that when there is dynamo action the field is indeed concentrated near
and in between the spheres, and so does not appear to result from, or to be affected
by, the imposed periodicity.

We approximate derivatives on our Cartesian mesh by centred differences. We use
sixth-order compact derivatives (Lele 1992) and a third-order scheme to advance the
equations in time. Lengths and time are measured in units of L and global diffusion
time, L2/η, respectively. The governing control parameters that we vary are ϕ, a, d
and the Reynolds number based on the radius of the spheres,

Rm = ωa2/η = (a/L)2Cω, (2.7)

The Reynolds number based on the scale L, Cω = ωL2/η, is also given for comparison.
Since equation (2.5) is linear in B, the solution is of the form B(x, t) =∑∞
i=1 bi(x) exp(λit), where the bi(x) are eigenfunctions with eigenvalues λi, which

are in general complex. In most cases we adopted as initial condition a ring field with
Ax = Ay = 0 and

Az = exp[−(r/r0)2 − (z/z0)2], (2.8)
where r2 = x2 + y2 and r0 = z0 = 0.2. After some time the eigenfunction with the
largest value of Reλ1 will dominate. This is achieved when λ(t) ≡ d ln〈B2〉1/2/ dt
becomes constant, so that Reλ1 = limt→∞ λ(t). Here, the angular brackets denote
a spatial average. If the solution is oscillatory, the average is also taken over one
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oscillation period, 2π/ Imλ1. Although Herzenberg’s original analysis was concerned
with steady solutions, oscillatory solutions are also possible, as we will see below. In
most cases the solution begins to grow or decay exponentially after about 0.2 diffusion
times, although for decaying solutions the exponential decay can sometimes begin
somewhat later.

3. Results

Herzenberg’s analytical treatment for two rotors is only valid in the small sphere
limit a � d. His results are thus only applicable to our configuration for the large
box limit d � L = O(Lz). This double limit is difficult to approach in the present
numerical treatment. Still, his method does not rely on the latter limit and so we
extend his analytic results to the case of finite box size in the Appendix by consid-
ering a suitable spatially periodic array of rotors in unbounded space. This analysis
continues to assume a/d� 1.

Numerically, as a compromise with Herzenberg’s original two rotor model, we
take a . d . 1

2L. We begin by investigating the optimal angle, ϕ, for the case
d/L = 0.45. At first we used 63× 63× 32 meshpoints, but it turned out that a lower
resolution of 31 × 31 × 16 meshpoints gave growth rates that are very similar as at
the higher resolution. Therefore we were able to perform a parameter survey using
only 31× 31× 16 meshpoints for many cases.

(a ) Dependence on the angle ϕ
From Moffatt (1978, equation (6.79)), the square of the inverse critical Reynolds

number for dynamo action in the two rotor system is given by

R−2
m = − 1

4800

(a
d

)6
sin2 ϕ cosϕ, (3.1)

a special case of the general result (Roberts, 1967a, p. 99, equation (99)) appropriate
to more general orientations of the rotors. The maxima of R−2

m occur in the second
and third quadrants where tanϕ =

√
2, so ϕ ≈ ±125◦. The modified form of equa-

tion (3.1), which accommodates the boundary conditions of our periodically finite
domain, is given by equation (A 19).

In figure 1 we show the largest growth rate Reλ1 as a function of the angle ϕ for
a = 0.4, d = 0.45, Rm = 480. Note that the growth rate is positive for 95◦ . |ϕ| .
165◦. The maximum value of the growth rate is obtained for ϕ a little larger than
125◦ (the optimal asymptotic value)

(b ) Dependence on a and d
In table 1 we present the marginal values of Rm (and Cω) above which dynamo

action is possible, for the theoretically optimal angle ϕ = 125◦. In the table we
also give the maximum velocity and the ‘mesh’ Reynolds number, Rg = umaxδx/η,
which is based on the mesh size and the maximum velocity. The numerical advection
scheme becomes inaccurate if this number becomes too large. We showed empirically
that the marginal value of Rm on a 63× 63× 32 mesh (Rg about 50) differs by less
than 1% from that found on a 31 × 31 × 16 mesh (Rg about 25), and so certainly
have confidence in the accuracy of our simulations when Rg . 100. Given the overall
consistency and uniformity of our results (below), we are reasonably happy even with
the last entry of table 1 with Rg = 158.
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Figure 1. The largest growth rate λ1 as a function of the angle ϕ. a = 0.4, d = 0.45, Rm = 480, so
Cω = 3000. The negative growth rates (shaded area) are less well established than the positive
growth rates, because it then takes longer for the solution to select the eigenfunction with the
smallest decay rate.

Table 1. Marginal values of Cω and Rm for ϕ = 125◦

(The maximum flow velocity umax and the mesh Reynolds number Rg are given for orientation.)

resolution Lz a d Cω Rm umax Rg

31× 31× 16 1
2L 0.40 0.45 1490 239 0.29 27

31× 31× 16 1
2L 0.35 0.45 3440 421 0.25 55

63× 63× 32 1
2L 0.30 0.45 8570 771 0.22 59

31× 31× 16 1
2L 0.35 0.40 1500 184 0.25 24

31× 31× 16 1
2L 0.30 0.40 3740 337 0.22 51

63× 63× 32 1
2L 0.30 0.40 3740 336 0.22 26

31× 31× 32 L 0.30 0.40 3670 330 0.22 26
63× 63× 32 1

2L 0.25 0.40 10120 633 0.18 58
31× 31× 16 1

2L 0.30 0.35 1900 171 0.22 26
63× 63× 32 1

2L 0.25 0.35 6000 375 0.18 34
63× 63× 32 1

2L 0.20 0.35 18270 731 0.14 83
63× 63× 32 1

2L 0.17 0.35 41600 1200 0.12 158

We also checked the dependence of the results on the vertical extent Lz of the box.
We found that in the case a = 0.3, d = 0.4 the critical value of Rm is lowered by 2%
when we double Lz from 1

2L to L; see table 1.
In figure 2 we plot the marginal value of Rm versus a/d for different values of a

and d, when φ = 125◦. We also show the asymptotic result (3.1). The remaining
discrepancy appears to be mostly due to the periodicity assumed in the numerical
solutions, absent in the Herzenberg model. With due account taken of the spatial
periodicity and vertical boundary conditions in the Appendix, table 2 shows that the
discrepancies are significantly reduced.
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Table 2. Comparison of the asymptotic results (3.1) and (A 19) with the numerical results

a d Lz (3.1) (A 19) num.

0.40 0.45 1
2L 159 281 239

0.35 0.45 1
2L 237 419 421

0.30 0.45 1
2L 377 665 771

0.35 0.40 1
2L 167 215 184

0.30 0.40 1
2L 265 341 336

0.30 0.40 L 265 338 330
0.25 0.40 1

2L 457 590 633
0.30 0.35 1

2L 177 200 171
0.25 0.35 1

2L 306 346 375
0.20 0.35 1

2L 599 676 731
0.17 0.35 1

2L 975 1101 1200

Figure 2. The marginal value of Rm versus a/d for different values of a and d, for ϕ = 125◦.
The solid line represents the asymptotic solution (3.1), which has the slope −3.

(c ) Field geometry
We visualize the magnetic field by plotting the B vectors in three-dimensional

space in those places where the magnetic field strength exceeds a certain threshold
value; see figure 3. Note that the field forms tube-like structures, with the B-vectors
aligned with the tubes.

There is a smaller flux ring near the tips of the ω arrows with B parallel to u,
and near the tails of the arrows there is a stronger flux ring with B antiparallel
to u. This local reflectional asymmetry about each rotor’s equator is predicted by
Herzenberg’s theory. Essentially, the dominant induced magnetic field is axisymmet-
ric and toroidal. The lowest harmonic induced by the differential rotation acting on
a dipole-like axisymmetric field is antisymmetric about the equator, while the second
harmonic induced by interaction of the motion with an axisymmetric quadrupole-
like field is symmetric. The presence of significant contributions of both harmonics
accounts for the observed asymmetries. Note that we only show field vectors where
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Figure 3. Magnetic field vectors plotted in the three-dimensional space. Vectors are only plotted
where the field strength exceeds 80% of the maximum. Note that the magnetic field takes the
form of magnetic flux rings, with fields in opposite senses, around the spinning spheres. The
two long arrows indicate the location and orientation of the spin axes of the spheres. a = 0.25,
d = 0.40, Rm = 633, ϕ = 125◦.

Table 3. Comparison of the marginal values of Rm for the primary mode with ρ = 0 and the
secondary mode with ρ = 1 for two different values of a
(Resolution 31× 31× 16, Lz = 1

2L, d = 0.40, ϕ = 125◦.)

a ρ Cω Rm (3.1) (A 19)

0.30 0 3740 337 265 341
0.30 1 4640 418 265 341
0.35 0 1500 167 215 184
0.35 1 2130 261 215 184

the field strength is above a certain threshold. In general, although field is concen-
trated near the spheres, field lines necessarily extend from one sphere to the other.

(d ) A second mode
Solutions to equation (2.5) with our boundary conditions have the symmetries

(Bx, By, Bz)(−x,−y, z) = (−1)ρ(−Bx,−By, Bz)(x, y, z), (ρ = 0 or 1). (3.2)

The initial condition and solutions discussed above correspond to the case ρ = 0.
(Note that u has the symmetry ρ = 0) By using as initial condition

Az = exp[−(r/r0)2 − (z/z0)2] cos θ, (3.3)

where tan θ = y/x, we were able to find the other mode with ρ = 1. We found numer-
ically that this second mode is typically less preferred, see table 3. The asymptotic
results (3.1) and (A 19) however yield the same marginal values of Rm for ρ = 0
and 1; see the Appendix. This means that the splitting of the eigenvalue Rm is a
small order effect, which is not captured by the asymptotics. Indeed the magnitude
of that split, in itself, provides a measure of the departure of the numerics from the
asymptotic regime.
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Table 4. Marginal values of Cω and Rm for a = 0.30, d = 0.35 and different angles ϕ

ϕ Cω Rm Imλ1 resolution

50◦ 15 100 1360 108 63× 63× 32
85◦ 17 200 1550 65 63× 63× 32

125◦ 1 900 171 0 31× 31× 16

4. Oscillatory solutions

We mentioned in §1 that Lowes & Wilkinson (1968) found time-dependent solu-
tions for large values of Rm in an experimental version of a dynamo similar to
Herzenberg’s. Their experimental set-up differs in some significant respects from
our numerical model, and it is quite plausible that this is the result of some non-
linear feedback. A nonlinear feedback cannot, of course, be captured by our linear
analysis. On the other hand, it is possible in principle that the largest eigenvalue
becomes complex for large values of Rm. In this section we describe some numerical
experiments undertaken to explore these issues.

(a ) Numerical results
We performed calculations for ϕ = 125◦, a = 0.30 and d = 0.35, at fairly high

Reynolds number (Cω = 40, 000, i.e. Rm = 3600), but found only real eigenvalues
with Reλ1 ≈ 240. There was no indication of oscillatory behaviour. We then tried to
verify the asymptotic result that dynamo action is only possible for 90◦ < |ϕ| < 180◦,
so we ran the case a = 0.30, d = 0.35 for angles ϕ = 85◦ and ϕ = 50◦, again at fairly
large Reynolds numbers. To our surprise we found growing solutions, which were
now oscillatory. The solutions are spatially and temporarily well behaved and are
therefore expected to be numerically reliable despite the large values of Rg. The
marginal values of Rm are summarized in table 4. (All those values are well above
the value Rm = 77 used to produce figure 1.)

As in the steady case, the field consists of two toroidal flux belts surrounding the
two spheres. However, the relative strengths of the two belts varies with time in the
following way. First the upper belt (i.e. in the sense of positive ω) strengthens while
the lower one weakens; see the first three panels (t = 0.32–0.36) of figure 4. Then the
upper belt migrates rapidly downwards to take the position of the originally lower
belt; see the fourth and fifth panel (t = 0.38–0.40) of figure 4. Finally, a new belt
emerges to take the position of the originally upper belt and so the cycle continues;
see the sixth panel (t = 0.42) of figure 4.

Closer inspection of the work of Lowes & Wilkinson (1968) revealed that they
found their oscillatory solutions when ϕ = 45◦. This is consistent with our result
that oscillatory dynamo action is possible for 0◦ < ϕ < 90◦. However, given that
Herzenberg’s original analysis found solutions only for 90◦ < ϕ < 180◦ the result
of Lowes & Wilkinson (1968) must have been surprising. On the other hand, the
geometry of their experimental set-up was already quite different from Herzenberg’s
original model, because in the experiment the rotors were bounded by air on one side,
rather than the conducting medium. This is probably also the reason why in their
earlier work (Lowes & Wilkinson 1963) they found dynamo action even for ϕ = 90◦.
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t = 0.32 t = 0.34

t = 0.36 t = 0.38

t = 0.40 t = 0.42

Figure 4. Snapshots of the magnetic field geometry for the oscillatory case covering
approximately one cycle. a = 0.30, d = 0.35, Rm = 1360, ϕ = 50◦.

(b ) Time-dependent asymptotics
In order to understand the occurrence of oscillatory solutions we now discuss

the asymptotic theory in more detail for the marginal case Reλ1 = 0, restricting
ourselves to the case Imλ1 < 0. Our development parallels that of Gailitis (1973).
He pointed out that the essential modification to Herzenberg’s original analysis for
rigidly rotating spheres stems from the fact that everywhere, except on the surfaces
of the spheres, where the velocity is discontinuous, the magnetic field satisfies(

∇2 +
i
δ2

)
B = 0, (4.1)

where
δ = (η/|λ1|)1/2. (4.2)

is the skin depth linked to the frequency iλ1 (equal to − Imλ1 = |λ1| in our case).
In Herzenberg’s steady case, the skin depth is infinite, δ = ∞. Following Gailitis
(1973), we assume that the sphere radius a is small, and anticipate that skin depth,
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δ, is comparable to the sphere separation, d, specifically

a� d, δ = O(d). (4.3)

When the conditions (4.3) are satisfied, the magnetic field on the short a-length
scale in the neighbourhood of each sphere may be approximated as steady on the
corresponding short diffusion time scale a2/η. Accordingly, many of the steady results
given in Moffatt (1978), which are special cases of Gibson & Roberts (1967), can be
used to provide a basis for the oscillatory analysis. Relative to an origin at the
centre of one of the spheres, the axisymmetric poloidal part of the magnetic field due
to the external sources resulting from the other sphere and the periodic boundary
conditions can be expressed in the asymptotic form for small r:

B(r) = ∇Φ +O(r2), (4.4)

where
Φ = A1rP1(µ) + a−1A2r

2P2(µ) (4.5)
and

µ = r̂ · ω̂, r̂ = r/r, ω̂ = ω/ω, (4.6)
(see Gibson & Roberts 1967, equation (24); also Moffatt 1978, equation (6.59)
and (6.60)). Here the values of the complex coefficients are given by

A1 = ω̂ ·B, A2 = 1
2aω̂ · ∇(ω̂ ·B), (4.7)

as evaluated at the origin r = 0; see Moffatt (1978, equation (6.61)), but implied
in the derivation of Gibson & Roberts (1967, equation (29) and (30)). Of course,
the potential magnetic field (4.4) is only part of the externally produced field. It
is, however, that part upon which the rotation of the sphere r < a induces the
largest magnetic field in the far field r � a. Specifically, since toroidal magnetic field
has no radial component, there is no field induced from it by the sphere’s rotation;
furthermore, any additional external non-axisymmetric poloidal magnetic fields lead
to contributions with faster decay rates in the far field.

The axisymmetric toroidal field, induced outside the sphere by its rotation in the
axisymmetric part of the external field, must satisfy (4.2) and decay at infinity. It
has the spatial form

B = ω̂ × r̂
∞∑
n=1

Bn

( π

2Z

)1/2
Kn+1/2(Z)

dPn
dµ

(µ), (r > a), (4.8)

where the Bn are complex constants and

Z =
(

1− i√
2

)
r

δ
(4.9)

and ( π

2Z

)1/2
Kn+1/2(Z) = 1

2π(−Z)n
(

1
Z

d
dZ

)n e−Z

Z
, (4.10)

is the modified spherical Bessel function of the third kind. Close to the sphere,
where |Z| � 1, the steady approximation can again be made and the solution can
be matched with equation (28) of Gibson & Roberts (1967) (see also Gibson (1968a,
equation (29)) and Moffatt (1978, equation (6.62) but with an erroneous factor 2

5 to
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be replaced by 2
15). It gives the result

B = Rmω̂ × r̂
{
− 1

5A1µ
(a
r

)3
(1 + Z + 1

3Z
2) + 2

15A2

(a
r

)2
(1 + Z)

}
e−Z , (4.11)

(see Gailitis 1973, equation (18)), where the terms neglected are smaller by a factor
of order a/d.

Whereas our interest in (4.11) stems from concern about the nature of solutions
when the right-hand side of (3.1) is negative, Gailitis (1973) was essentially concerned
about the validity of (3.1) when the right-hand side is actually positive, see the
discussion in §5.

When the sphere separation is small compared with the size of the periodicity box,
specifically

d� L, (4.12)

the influence of the remote boundary conditions is negligible and only the direct
inductive interaction between the two spheres need be considered. Accordingly, the
field (4.11) induced by one sphere is used as the external source field for the other.
With the corresponding modifications to Moffatt’s (1978) development, which is
adequate for our special geomtry, the steady result (3.1) becomes

R−2
m = − 1

4800

(a
d

)6
(1 + Zd + 1

3Z
2
d)(1 + Zd)e−2Zd sin2 ϕ cosϕ, (4.13)

where

Zd = (1− i)χ, χ =
√

2d/δ (> 0). (4.14)

The vanishing of the real part of (4.13) gives χ as the positive solutions of

tan 2χ
2χ

=
(3 + χ)(1 + χ)
3 + 6χ− 2χ3 . (4.15)

For those values, the critical value of Rm defined by (4.13) is given by

R−2
m = − 1

4800

(a
d

)6
F(χ) sin2 ϕ cosϕ, (4.16)

where

F(χ) =
2χ(3 + χ)(1 + χ)

3 sin 2χ
e−2χ. (4.17)

Whereas steady modes occur for χ = 0, F = 1 when 1
2π < |ϕ| < π, the oscilla-

tory modes are determined by the first positive root of (4.15), which occurs at
χ = 2.416 between 1

2π and 3
4π giving F = −0.239, and lies in the complemen-

tary range 0 < |ϕ| < 1
2π. In figure 5 we show the dependence of the marginal val-

ues of Rm on ϕ for both the steady and the oscillatory branches. Note that, since
δ = (

√
2/χ)d = 0.585d, the frequency | Imλ1| = η/δ2 is independent of a and ϕ.

For the oscillatory modes the agreement between the numerical results and the
asymptotic theory is rather bad; see table 5. This is probably because in our simu-
lations we have a/δ ≈ 3, in sharp contrast to the condition (4.3). However the main
purpose of carrying out the asymptotics was not to reproduce the numerical results,
but rather to gain some understanding of the nature of the oscillatory modes.
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Figure 5. Marginal values of Rm versus ϕ as obtained from the asymptotic theory (assuming
here a/d = 0.1). The dotted line denotes the new oscillatory branch.

Table 5. Comparison of the asymptotic results (4.16) and (A 19) with the numerical results
(Resolution 63× 63× 32, a = 0.30, d = 0.35. The values of δ (4.16) and δ (A 19) follow from the
requirement that Rm (4.16) and Rm (A 19), respectively, are real.)

ϕ Rm δ Rm (4.16) δ (4.16) Rm (A 19) δ (A 19)

50◦ 1360 0.10 366 0.20 369 0.20
85◦ 1550 0.12 765 0.20 769 0.20

5. A comment on the asymptotic theory

The difficulties mentioned in §1 originate from Herzenberg’s (1958) original treat-
ment of the asymptotic problem. His condition for steady solutions leads to a repeat-
ed root for the magnetic Reynolds number Rm. This is manifest in his asymptotic
treatment as (Rm − whatever)2 = ‘something small’; the difficulty that confront-
ed Herzenberg was what happens if ‘something small’ is negative? Gibson (1968a)
attempted to evaluate that small term but found that the difficulty re-emerged at
the next order of approximation. Gailitis (1973), on the other hand, showed that if
‘something small’ happened to be negative then a marginal mode would exist but
oscillate with a low frequency. In so doing he identified the source of the repeated
root; it corresponds asymptotically to two distinct modes with different symmetries,
as was also pointed out by Moffatt (1978). In our problem we have identified two such
classes of solution satisfying the entire system of equations and boundary conditions.
On the one hand, the asymptotic solution developed in the Appendix, shows, like
Herzenberg, that the repeated root property persists for our more complex system
and, as Gailitis, that it is associated with two modes, one from each symmetry class.
On the other hand, our numerical solution shows that the values of the marginal
magnetic Reynolds numbers for the two modes are actually distinct, contrary to
Gibsons & Robert’s (1967) implied speculation. Our result also highlights the origin
of the difficulty, associating it (as did Moffatt) with the existence of the two sym-
metry classes of the full problem and not simply to asymptotic approximations of it;
they do not exist for example in Gibson’s (1968b) three-rotor assembly.
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6. Discussion

The Herzenberg dynamo provided the first analytical proof that dynamo action
with steady laminar flows is possible. We have found a numerical solution in a situa-
tion that closely resembles that of Herzenberg. The major physical difference is that
we solve in a box, with periodic boundary conditions in the x, y directions, rather
than in a spherical volume surrounded by vacuum. Thus, in reality we have a doubly
infinite set of pairs of rotating spheres. For practical reasons, we are limited to rather
large values of a/d. Nevertheless, we find that the field is strongly localized in the
vicinity of the spheres, and the field near the boundaries of our computational box
is relatively small. For example, for a = 0.25, d = 0.4, the magnetic energy density
between the rotors at x = (0, 0, 0) is 14 times larger than on the computational
boundary at x = (±L, 0, 0), and, in turn, a typical energy density in one of the
field belts is about 15 times larger than that at x = (0, 0, 0). Consistent with this,
we find results that are remarkably similar to those of Herzenberg for the limit of
small a/d. Figure 2 shows the relation Rmc ∝ (a/d)−3 (cf. Moffatt 1978, p. 128)
to hold approximately over a wide range of a/d, and to approach the asymptotic
limit more closely for smaller values of a and d. Also, the expected ϕ dependence,
R2

mc ∝ (sin2 ϕ cosϕ)−1, is suggested by the discussion of §3 a, although we did not
systematically determine the marginal values of Rm as a function of ϕ. Of course,
our model works in a periodic box, rather than the conducting spherical volume
of Herzenberg (1958). We regard this essentially as being a computational device,
rather than a fundamental distinction. We thus feel that we truly have produced an
approximation to Herzenberg’s model.

Additionally, we have found a new class of oscillatory solutions for angles |ϕ| < 90◦,
which was not predicted by Herzenberg’s original analysis. It is therefore clear now
that dynamo action is possible for all angles ϕ, except ϕ = 0◦, ±90◦ and ±180◦.

Herzenberg discussed his solutions in the context of the Earth’s dynamo, although
he did not suggest that motions of the type studied (i.e. rotating spheres) would actu-
ally be present in the earth’s core. Nevertheless, similar motions may occur locally
in turbulent flows, which are often thought to consist of turbulent eddies. This com-
parison is obviously inexact because turbulence is essentially time dependent. What
makes this analogy at least superficially attractive, however, is the fact that the
magnetic fields generated in the neighbourhood of turbulent eddies or vortex tubes
do show some resemblance to the field structure found in the present work. In fact,
the magnetic field topology of the Herzenberg dynamo appears to have been rather
obscure in the past. (Moffatt (1978) wrote that ‘it would be difficult to portray the
full three-dimensional field pattern’.) The three-dimensional computer visualization
presented here shows that the field consists of magnetic flux rings wrapped round
the spinning spheres. This is similar to what has been observed in turbulent (con-
vective) dynamos where magnetic flux tubes are seen to be wrapped round swirling
downdraft motions (Nordlund et al. 1992; Brandenburg et al. 1996). Whether or not
such analogies make sense needs to be explored. If there is indeed some connection it
would be interesting to find out whether there could be some mechanism that could
lead to optimal alignment angles between the spin axes of two vortices.

Note in this connection that turbulence consists of vortex tubes that are quasi-
cylindrical rather than spherical in shape. Indeed, Lowes & Wilkinson (1963, 1968)
showed using a laboratory experiment that dynamo action is also possible when
the two spheres are replaced by rotating cylinders (see also Gailitis 1973). This
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model may be more directly relevant to understanding dynamo action associated
with nearby vortex tubes in turbulence.

A Herzenberg-like dynamo may also work in detached binary stars. This possi-
bility has been discussed by Dolginov & Urpin (1979), who gave arguments that
certain binary stars (e.g. U Geminorum and similar systems, and symbiotic bina-
ries) may be immersed in a conducting environment. (It may be that the analysis
should be modified to allow the magnetic field between the components to be force
free.) Obviously, the separation of the stars has to be large enough that the rotation
of the two stars is not synchronized with the orbital rotation. In order to estimate
the maximum separation below which dynamo action is still possible we consider a
binary with components of one solar radius, so a = 7 × 1010 cm. We assume that
their angular velocity is anywhere between the solar value and the breakup velocity,
so ω = 3 × 10−6 − 7 × 10−4 s−1. Taking temperatures in the range 104–106 K the
Spitzer conductivity leads to values of the magnetic diffusivity in the range η = 104–
107 cm2 s−1. Thus Rm is in the range 109–1015. Assuming that the angle ϕ is opti-
mal, dynamo action is possible when the ratio of semi-separation to radius satisfies
d/a < 0.2×R1/3

m ≈ 20–20, 000. This condition is easily satisfied, so the Herzenberg
dynamo might, in principle, operate in a wide range of detached binaries (provided
that tidal torques have not forced alignment of spin axes and/or spin-orbit syn-
chronization). Only for perfectly aligned, or perfectly anti-aligned, or perpendicular,
orientations of the spin axes is dynamo action impossible. This mechanism is of par-
ticular interest when the stars themselves do not possess intrinsic sources of magnetic
field, if considered in isolation.

The Herzenberg dynamo is linear and therefore the magnetic field will eventually
be so strong that nonlinear effects will become important and limit the magnetic field
strength. There are various feedback mechanisms that can be envisaged: alignment
of spin axes, increase of separation, shrinkage or just spindown of the spheres. In
the case of binaries, spindown seems most plausible (although this would need a
dynamo growth time substantially shorter than the evolutionary timescale for the
stars), whereas in the case of vortex tubes mutual alignment could be an important
mechanism.

If the Herzenberg dynamo really operates in detached binaries we might expect
that spindown and alignment could lead to observable effects. This would be remark-
able, because the Herzenberg dynamo is a ‘slow’ dynamo, which are normally not
thought to be important in astrophysics (because they are slow!). Indeed, their e-
folding time is O(Rm) times the orbital period, which can easily become comparable
to the lifetime of these stars. Similar problems have been encountered earlier when
discussing laminar dynamos in the context of stars. For example the Gailitis dynamo
works with meridional circulation and might therefore operate in a wide variety of
stars without significant outer convection zones (Moss 1990), but again this mecha-
nism is probably of only marginal importance for the most rapidly rotating magnetic
stars of the upper main sequence. In the case of the Herzenberg dynamo however,
because of the sensitive (a/d)3 dependence of the growth rate, the answer is not yet
clear. The common feature of the Herzenberg and Gailitis dynamos is that there
are two separate sources of induction, and in the analytic analyses the higher order
magnetic field components are assumed to decay before diffusing from one centre
of induction to the other. It is now clear that this condition is analytically and
conceptually helpful, but certainly not necessary.
We are grateful to Paul Roberts for his illuminating remarks and interesting historical recol-
lections, which have helped us place the present study in context. We thank Frank Lowes for
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comments on the manuscript. This work was in part supported by the EC Human Capital
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CT940483 and the NATO grant CRG1530959.

Appendix A. Spatial periodicity and reflectional symmetry

In addition to the spatial periodicity

B(x+ 2L, y, z) = B(x, y + 2L, z) = B(x, y, z), (A 1)

in the x, y-plane, we assume that the magnetic field has one of the two rotational
invariances (ρ = 0 or 1), see equation (3.2), and the reflectional symmetry

(Bx, By, Bz)(x, y, 2Lz − z) = (−Bx,−By, Bz)(x, y, z), (A 2)

compatible with the boundary conditions on z = ±Lz. Magnetic field with this
symmetry can be achieved in an unbounded domain with rotors of radius a and
angular velocity

ωα = ωω̂α, ω̂α = (0, (−1)n+σ sin 1
2ϕ, cos 1

2ϕ), (A 3)

with centres

xα = Lξα, ξα = ((−1)σD + 2l, 2m, 2n∆), α = (σ, l,m, n): (A 4)

σ = 0 and 1, l, m, n are integers; D = d/L and ∆ = Lz/L. Below we consider results
valid in the Herzenberg (1958) limit

a� d. (A 5)

With the above symmetries and rotor orientations, the constants Aα1 , Aα2 defining
the local magnetic field (4.4) at xα are given by

Aα1 = (−1)ρσA1, Aα2 = (−1)ρσ+nA2, (A 6)

in terms of only two constants A1 and A2. We calculate their values at x0 = (d, 0, 0),
corresponding to α = 0 = (0, 0, 0, 0), using Moffatt (1978, equations (6.64) and
(6.65)). The result is(

A1

A2

)
=

1
5

(a
d

)3
Rm

 P11
2d
a
P12

a

2d
P21 P22

( A1

A2

)
, (A 7)

where

P11 = −D3
∑
α6=0

(−1)ρσ
(ω̂α · ζα)

ζ5
α

(ω̂0 × ω̂α) · ζα, (A 8)

P12 = 1
3D

2
∑
α6=0

(−1)ρσ+n (ω̂0 × ω̂α) · ζα
ζ3
α

, (A 9)

P21 = −D4
∑
α6=0

(−1)ρσ
[

(ω̂0 · ω̂α)
ζ5
α

− 5
(ω̂0 · ζα)(ω̂α · ζα)

ζ7
α

]
(ω̂0 × ω̂α) · ζα, (A 10)

P22 = −D3
∑
α6=0

(−1)ρσ+n (ω̂0 · ζα)
ζ5
α

(ω̂0 × ω̂α) · ζα, (A 11)
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with
ζα = |ζα|, ζα = ξ0 − ξα. (A 12)

Explicit values are
ζα = −([(−1)σ − 1]D + 2l, 2m, 2n∆), (A 13)

ω̂0 · ζα = −2m sin 1
2ϕ− 2n∆ cos 1

2ϕ, (A 14)

ω̂α · ζα = (−1)σ+n+12m sin 1
2ϕ− 2n∆ cos 1

2ϕ, (A 15)

ω̂0 · ω̂α = (−1)σ+n sin2 1
2ϕ+ cos2 1

2ϕ, (A 16)

(ω̂0 × ω̂α) · ζα = 1
2 [(−1)σ+n − 1]{[(−1)σ − 1]D + 2l} sinϕ; (A 17)

all independent of the ratio a/d. Under the transformation (σ, l,m, n) → (σ, l,
−m,−n), the signs of ω̂0 · ζα and ω̂α · ζα change, those of ζα, ω̂0 · ω̂α and
(ω̂0 × ω̂α) · ζα are unaltered, while all magnitudes remain the same. With one
exception the same holds for the particular case σ = 0 under the transformation
(0, l,m, n) → (0,−l,m, n); the exception is that now (ω̂0 × ω̂α) · ζα changes sign
instead of keeping the same sign. As a consequence of the former symmetries, we
have upon summation that

P11 = P22 = 0. (A 18)
It follows from (A 7) that

R−2
m =

1
25

(a
d

)6
P12P21, (P = P(D,∆, ϕ)), (A 19)

where we emphasize that P is a function of D, ∆ and ϕ alone. As a consequence of
the latter symmetries, all σ = 0 terms in the summations cancel, leaving only the
σ = 1 terms proportional to (−1)ρ. So under the change of ρ, namely 0 → 1, we
have P → −P, Rm remains unchanged and (A1, A2)→ (A1,−A2). It means that the
eigenvalue Rm is repeated with two distinct eigenvectors B(x) corresponding to the
distinct symmetries (3.2) ρ = 0 and 1.

Moffatt’s result equation (3.1) is recovered in the large box size limit, for which
only the single terms identified by α = (1, 0, 0, 0) are retained giving

P12P21 ∼ − 1
192 sin2 ϕ cosϕ, as D ↑ ∞, (A 20)

at fixed ∆ and ϕ independent of ρ. Close inspection of (A 9) and (A 10) shows however
that the values of Rm are the same in those two cases.

In table 2 we compare the asymptotic results (3.1) and (A 19) with the numerical
results. It turns out that the marginal values of Rm converge in an oscillatory fashion
between even and odd truncation levels N . Therefore we averaged the results for
even and odd truncation level. The results presented in the table are for N = 10, but
comparison with N = 8 gave the same result in all cases. In general the agreement
with the numerical results is now improved, except for cases where a/d is very close
to unity.

Equation (A 19) also generalizes (4.13), which requires a� δ (see (4.3)) in addition
to (A 5) for its validity. Note, however, that the P-matrix is modified and the key
coefficients P12 and P21 are replaced by

P12 = 1
3D

2
∑
α6=0

(−1)ρσ+n (ω̂0 × ω̂α) · ζα
ζ3
α

(1 + Zα)e−Zα , (A 21)
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P21 = −D4
∑
α6=0

(−1)ρσ
[

(ω̂0 · ω̂α)
ζ5
α

(1 + Zα + 1
3Z

2
α)

−(ω̂0 · ζα)(ω̂α · ζα)
ζ7
α

(5 + 5Zα + 2Z2
α + 1

3Z
3
α)
]

(ω̂0 × ω̂α) · ζαe−Zα , (A 22)

where

Zα =
(

1− i√
2

)
Lζα
δ
. (A 23)

To obtain the critical Reynolds number and frequency, equate real and imaginary
parts as before. Of course, the result (4.13) is recovered in the large box limit D ↑ ∞
(at fixed ∆).
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