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A B S T R A C T
The radial structure of a thin accretion disc is calculated in the presence of a central dipole
magnetic field aligned with the rotation axis. The problem is treated using a modified
expression for the turbulent magnetic diffusion, which allows the angular momentum equation
to be integrated analytically. The governing algebraic equations are solved iteratively between
1 and 104 stellar radii. An analytic approximation is provided that is valid near the disruption
radius at about 100 stellar radii. At that point, which is approximately 60 per cent of the Alfvén
radius and typically about 30 per cent of the corotation radius, the disc becomes viscously
unstable. This instability results from the fact that both radiation pressure and opacity caused
by electron scattering become important. This in turn is a consequence of the magnetic field
which leads to an enhanced temperature in the inner parts. This is because the magnetic field
gives rise to a strongly enhanced vertically integrated viscosity, so that the viscous torque can
balance the magnetic torque.
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1 I N T RO D U C T I O N

Accretion discs occur around strong magnetic stars in X-ray binary
pulsars (Verbunt 1993), intermediate polar binaries (Warner 1995)
and T Tauri stars (Basri & Bertout 1989). The stellar magnetic field
interacts with the disc, significantly modifying its structure in its
inner regions, and this in turn affects the spin evolution of the star.
The early work on the problem is discussed in Campbell (1997).
Campbell (1992) gave an analytic, reductio ad absurdum proof that,
for realistic magnetic diffusivities, the disc cannot exist over a
significant radial extent with jFmfj much larger than jFvfj, where
Fm and Fv are the magnetic and viscous forces. Recently, Heptin-
stall (1997) and Campbell & Heptinstall (1998) numerically
integrated the magnetic disc equations throughout the disc. They
found that the magnetic field causes the disc temperature to be
elevated in its inner regions above values in an unperturbed disc.
This causes the electron scattering opacity and radiation pressure to
become important further from the star. When the radiation pressure
becomes comparable to the gas pressure the density reaches a
maximum and slightly closer to the star viscous instability occurs.
Simultaneously the vertical scaleheight diverges as the disc ends.
This work employed simple forms of magnetic diffusivity to
represent the effects of turbulence and magnetic buoyancy.

The present paper uses a form of magnetic diffusivity which
enables more analytic progress to be made. In Section 2 the
governing equations are presented, while in Section 3 an analytic
solution is found for the vertically integrated viscosity function nS.
The resulting non-linear, algebraic set of equations is solved in
Section 4 and the solutions are presented. In Section 5 an analytic

solution is found valid close to the turnover radius in the density.
Sections 6 and 7 consider the sensitivity of the solutions to the form
of magnetic diffusivity used and the effects of vertical mass transfer,
respectively. The results are discussed in Section 8.

2 G OV E R N I N G E Q UAT I O N S

In the thin-disc approximation the radial structure of a disc threaded
by a vertical magnetic field is governed by the equations of angular
momentum balance, vertical equilibrium and thermal equilibrium.
For the detailed derivation of the relevant equations we refer to the
original work of Campbell (1992), Heptinstall (1997) and Campbell
& Heptinstall (1998); see also the monograph by Campbell (1997).
Here, we restrict ourselves to a brief discussion of the additional
terms that were added to the standard (non-magnetic) thin-disc
equations.

We assume that the dipole magnetic field is aligned with the
rotation axis. Hence, in the equatorial plane of the disc the magnetic
field of the central neutron star is, in the absence of a disc, vertical
and equal to

Bz ¼ ¹
B
2

R
Ã

� �3

; ð1Þ

where B is the polar field strength at the surface of the star, R is its
radius, and Ã is the cylindrical radius. The magnetic field of the star
rotates with the angular velocity of the star, Qs ¼ 2p=P, where P is
its rotation period. The shear resulting from the difference between
Qs and the Keplerian angular velocity in the disc, QK ¼

ðGM=Ã3Þ1=2 produces a toroidal magnetic field in the disc. The
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toroidal field Bf changes sign about the midplane. For the value of
Bf at z ¼ h, where h is the density scaleheight, Campbell (1992)
found

Bþ
f ¼ ¹

gÃBz

h
ðQK ¹ QsÞh; ð2Þ

where h is the turbulent magnetic diffusivity and g < 1 is a
dimensionless parameter to account for a reduction in the vertical
shear due to magnetospheric poloidal flows. This parameter could
account for enhanced h values due to dynamical instabilities
precipitated by large vertical shear.

With these preparations we can now write down the three
governing equations for the three unknowns h (disc height or
semithickness), S ¼ rch (surface density), and Tc (temperature at
the central plane) for a thin disc in the presence of an imposed
vertical magnetic field (Heptinstall 1997; Campbell & Heptinstall
1998). We have

¹
Ṁ
4p

d
dÃ

ðÃ2QKÞ ¼
d

dÃ
1
2nrchÃ3 dQK

dÃ

� �
þ Ã2 BzB

þ
f

m0
; ð3Þ

1
2rcQ

2
Kh2 þ

ðBþ
f Þ2

2m0
¹ Pc ¼ 0; ð4Þ

4jT4
c

3krch
¼

h

h

ðBþ
f Þ2

m0
þ 9

8nrchQ2
K; ð5Þ

where Pc is the pressure at the central plane. It consists of gas and
radiative pressures, so

Pc ¼ Pgas þ Prad ¼
RTc

mgas
rc þ

4j

3c
T4

c : ð6Þ

Here, R ¼ 8315 m2 s¹2 K¹1 is the fundamental gas constant,
mgas < 0:62 the mean molecular weight, j ¼ 5:67 ×
10¹8 J m¹2 s¹1 K¹4 the Stefan–Boltzmann constant, and
c ¼ 3 × 108 m s¹1 the speed of light. For the opacity k we include
free–free and bound–free transitions (Kramers opacity kKr) and
electron scattering (kes), so

k ¼ kKr þ kes ¼ k0rcT¹7=2
c þ 0:02ð1 þ XÞ m2 kg¹1

: ð7Þ

We adopt the value X ¼ 0:6625 for the hydrogen abundance,
consistent with Heptinstall (1997). (We checked, however, that
the results presented below are unchanged if we take X ¼ 0:7.) For
the constant k0 we adopt the value 5 × 1020 m5 kg¹2 K7=2, which
gave fair agreement with a numerical table in the parameter range of
interest.

As mentioned earlier, it is possible to integrate the angular
momentum equation in closed form provided one assumes a
suitable turbulent diffusivity prescription. The standard recipe is
to approximate a turbulent diffusion coefficient by some mean free
path (or rather some correlation length) of the turbulence times
some typical transport velocity. The typical velocity is some
fraction of the sound speed cs (which is QKh for thin accretion
discs). The correlation length is assumed to be some fraction of the
disc height h. So, for the viscosity we then adopt the usual Shakura–
Sunyaev prescription

n ¼ aQKh2
; ð8Þ

where a < 1 is a free parameter. For the magnetic diffusivity we
adopt a slightly different prescription,

h ¼ eQKhÃ; ð9Þ

the advantages of which will become clear in the next section. This
prescription is taken for analytical convenience, but in practice the

formulation hardly differs from the more obvious alternative similar
to (8). We return to this issue in Section 6. With this prescription for
h we effectively measure the correlation length in fractions of the
cylindrical radius rather than the disc height. However, the ratio
between the two is almost constant. (For the Shakura–Sunyaev
solution h=Ã , Ã1=8.) Our prescription is therefore not only a
sensible hypothesis, but also a good approximation to the
Shakura–Sunyaev-like approach, which was used by Heptinstall
(1997) and Campbell & Heptinstall (1998). The magnetic Prandtl
number, which is the ratio between the two diffusion coefficients,

PrM ;
n

h
¼

a

e

h
Ã

ð10Þ

depends only weakly on Ã. Typically, h=Ã < 0:01, so in order to
have PrM < 1 we have to choose e=a ¼ 0:01. Our fiducial set of
parameters adopted below is consistent with that used by Heptin-
stall (1997) and Campbell & Heptinstall (1998): M ¼ 1:4 M(,
Ṁ ¼ 10¹9 M( yr¹1, P ¼ 10 s, R ¼ 104 m, B ¼ 108 T (¼ 1012 G),
a ¼ 10¹2, e ¼ 10¹4 and g ¼ 10¹2.

3 I N T E G R AT I N G T H E A N G U L A R
M O M E N T U M E Q UAT I O N

Consider first the vertical Maxwell stress in equation (3) and
eliminate Bþ

f using equation (2), so

Ã2 BzB
þ
f

m0
¼ ¹Ã3 B2

z

m0

g

h
ðQK ¹ QsÞh; ð11Þ

where

QK ¼
��������
GM

p
Ã¹3=2 and Qs ¼

��������
GM

p
Ã¹3=2

co ð12Þ

are the Keplerian angular velocity and the angular velocity of the
star, respectively. The latter is here defined in terms of the corota-
tion radius,

Ãco ¼ ðGM=Q2
s Þ

1=3 ¼ GM
P

2p

� �2� �1=3

: ð13Þ

Thus, we have

Ã2 BzB
þ
f

m0
¼ ¹Ã3 B2

z

m0

g

h
QK 1 ¹

Ã

Ãco

� �3=2� �
h: ð14Þ

Using equations (1) and (9) we can now write

Ã2 BzB
þ
f

m0
¼

d
dÃ

Ã¹3 R6

6
B2

2m0

g

e
1 ¹ 2

Ã

Ãco

� �3=2� �( )
: ð15Þ

Substituting equation (15) into equation (3) and integrating we have

Ṁ
4p

Ã2QK þ 1
2nrchÃ3 dQK

dÃ
þ Ã¹3 R6

6
B2

2m0

gðÃÞ

ê
¼ C; ð16Þ

where C is an integration constant, ê ¼ e=g and

gðÃÞ ¼ 1 ¹ 2
Ã

Ãco

� �3=2

: ð17Þ

In the standard Shakura–Sunyaev solution C is derived from the
condition that very near the stellar surface Q ¼ Qs, and so Q must go
through a maximum, i.e. dQ=dÃ ¼ 0 at Ã ¼ R. Thus, C would
follow from (16) by putting dQ=dÃ ¼ 0 and Ã ¼ R. However, a
similar procedure cannot be applied in the present case for two
reasons. First, the disc does not extend down to Ã ¼ R and
secondly, at the point where the disc ends the rotation of the disc
is still almost Keplerian. On the other hand, we want to ensure
that for very large radii the disc structure matches that of the
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Shakura–Sunyaev solution. This requires that the effect of C must
become negligible at large radii. Therefore we assume C ¼ 0. A
more consistent treatment could be adopted by matching to a known
solution for the magnetospheric flow.

Using dQK=dÃ ¼ ¹ð3=2ÞðQK=ÃÞ, S ¼ rch, dividing by 3
4 Ã2QK,

and rearranging the equation such that the viscous term appears on
the left-hand side, we arrive at

nS ¼
Ṁ
3p

þ
2R3

9Ã2QK

B2

2m0

R
Ã

� �3gðÃÞ

ê
: ð18Þ

It is convenient to define the integrated viscosity, m ¼ nS, and to
write equation (18) in the form

m ¼
Ṁ
3p

F; ð19Þ

where

F ¼ 1 þ
2R3

9Ã2QK

3p

Ṁ

B2

2m0

R
Ã

� �3gðÃÞ

ê
: ð20Þ

Again, we write QK ¼ QsðÃ=ÃcoÞ
¹3=2 and express Qs in terms of the

stellar rotation period P ¼ 2p=Qs, so we have

F ¼ 1 þ
R
Ã

� �5 Ã

Ãco

� �3=2 RP

3Ṁ

B2

2m0

gðÃÞ

ê
: ð21Þ

This can be rewritten in terms of the spherical Alfvén radius

ÃA ¼

���
2

p
pR6B2��������

GM
p

Ṁm0

 !2=7

: ð22Þ

Thus, we can write

F ¼ 1 þ
1

3
���
2

p ÃA

Ã

� �7=2gðÃÞ

ê
: ð23Þ

The result for m ¼ mðÃÞ is given in Fig. 1 and compared with the
non-magnetic case.

For Ã < ÃA, the second term in equation (23) dominates and the
solution can be approximated by

m < 6:5 × 1015 × ê¹1
¹2Ã¹7=2

6 R6
4B2

8M¹1=2
1:4 kg s¹1

; ð24Þ

where Ã6 is the cylindrical radius measured in 106 m, ê¹2 ¼ ê=0:01,
R4 is the radius of the central object in 104 m, B8 the dipole field
strength at the stellar surface in 108 T, and M1:4 the central mass in
units of 1:4 M(. It is remarkable that Ãco drops out and that neither
P nor Ṁ enters this asymptotic expression for m. This means that the
spherical Alfvén radius does not provide a meaningful parametriza-
tion of the disruption radius. The rotation period of the star does
enter the problem, however, through the term gðÃÞ=ê in equation
(23). This term may change sign, so that F could become negative
well outside the corotation radius. In that case there is obviously no

solution for m. For our fiducial set of parameters this happens for a
rotation period of less than around 7 s. However, with larger values
of ê the second term in (23) can always be made small enough that
positive solutions for m become possible again.

It is important to realize that equation (24) implies that in the
inner regions the magnetic stress very nearly balances the viscous
stress – not the Reynolds stress due to radial advection, as it is
sometimes assumed.

We note that we have used the dipolar form (1) for Bz. Bardou &
Heyvaerts (1996) argue that when jBþ

f j=jBzj q 1 the poloidal field is
liable to inflate. The resulting poloidal field is still largely vertical in
and near the disc, but has a different radial dependence from a
dipole field. However, as explained in Campbell & Heptinstall
(1998), poloidal flows are likely in the magnetosphere and these
reduce the vertical shear across the disc. This leads to smaller values
of jBþ

f j=jBzj, corresponding to g < 1 in (2). In the present paper the
field ratio is given by (14) as

jBþ
f j

jBzj
¼ g

QKÃh
h

1 ¹
Ã

Ãco

� �3=2� �
.

g

e
; ð25Þ

where the last expression follows from the use of (9) for h. Hence
when g=e , 1 it follows that jBþ

f j=jBzj , 1 and inflation will not
occur. This justifies our use of (1) for Bz.

4 I T E R AT I V E S O L U T I O N F O R T H E D I S C
S T RU C T U R E

Equation (19) gives the viscosity integral m ; nS for given Ṁ, B and
other parameters as a function of Ã. In a more general situation,
when the system is time-dependent, there is no fixed Ṁ, and
equation (19) has to be replaced by an explicitly time-dependent
diffusion-type equation for S. In any case, in order to close the
system of equations we need another equation that relates m to S. In
the time-dependent case the sign of ∂m=∂S determines whether the
solution is viscously stable (positive sign) or unstable (negative
sign). In the steady case we calculate S ¼ SðmÞ, where m has been
calculated in the previous section. Because of the presence of
additive variables the equations are no longer linear in the loga-
rithms of the various variables, as is the case in the Shakura–
Sunyaev theory. Therefore we have to iterate with respect to the
additive corrections resulting from the presence of the magnetic field,
radiation pressure and the contribution from the Kramers opacity.

We now derive the equation S ¼ SðmÞ from equations (4) and (5).
We begin with equations (4) and (6), which we rewrite in the form

Tc ¼ 1
2Q

2
Kh2 1 þ b¹1

1 þ b¹1
r

m

R ; ð26Þ

where we have defined

b¹1 ¼
ðBþ

f Þ2

2m0rcQ
2
Kh2 ð27Þ

as the inverse plasma beta, which is the ratio of magnetic to gas
pressure, and

b¹1
r ¼

m

R
4j

3c
T3

c

rc
; ð28Þ

which is the ratio of radiation to gas pressure. The toroidal magnetic
field is just a function of Ã (in particular independent of h!),
because we have assumed h ¼ eQKhÃ. Thus,

Bþ
f ¼ ¹1

2B
R
Ã

� �3g

e
1 ¹

Ã

Ãco

� �3=2� �
; ð29Þ
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Figure 1. Solid line: m ¼ mðÃÞ for Ṁ ¼ 10¹9 M( yr¹1. The dotted line
refers to the Shakura–Sunyaev solution and the dashed line to the mag-
netically dominated solution.



see Fig. 2. Note the change of sign and slope near the corotation
radius.

Another relation between Tc and the other variables can be
obtained from equation (5) after using the opacity law

T4
c ¼

27kes

32j
aS2h2Q3

K 1 þ 16
9 Pr¹1

M b¹1ÿ �
1 þ

kKr

kes

� �
: ð30Þ

We combine this with equation (26) to eliminate Tc, and arrive after
some simplifications at

h6 ¼ KaS2Q¹5
K C ; ð31Þ

where we have defined

K ¼
27kes

2j

R
m

� �4

ð32Þ

and the function

C ¼ 1 þ 16
9 Pr¹1

M b¹1ÿ � 1 þ b¹1
r

1 þ b¹1

� �4

1 þ
kKr

kes

� �
: ð33Þ

This yields for m ; nS ¼ aQKh2S the result

m ¼ K1=3a4=3S5=3Q¹2=3
K C1=3

: ð34Þ

For the calculation of the equilibrium disc structure it is more
convenient to write this relation in the form S ¼ SðmÞ, because we
know m from Section 4, so

S ¼ K¹1=5a¹4=5m3=5Q2=5
K C¹1=5

: ð35Þ

We now discuss how to find the solution iteratively. First we
calculate m for given Ṁ, B, etc., using equation (19), as discussed in
the previous section. Next we find S using equation (35), where we
assume C ¼ 1 in the first iteration step. This allows us then to
calculate h, rc and Tc using equations (31) and (26) (assuming
b¹1 ¼ b¹1

r ¼ 0 in the first iteration step). We then calculate b¹1,
b¹1

r , kKr and thus k for the next iteration step.
Other iteration schemes are possible. For example one could

iterate with respect to the opacity for electron scattering (instead of
the Kramers opacity). Such an approach would converge faster
in the outer parts of the disc, but it no longer converges near the
disruption point.

In Fig. 3 we show SðÃÞ for three different values of B. Note that S
reaches a maximum at some value of Ã and then it begins to
decreases towards the neutron star. The profile of rc is very similar
and also has a maximum at approximately the same position as S.
We shall see later that the location of this maximum coincides with
the location where radiation pressure becomes important and where
the disc becomes viscously unstable. Further inside this radius the
thin-disc approximation is violated, because h=Ã > Oð1Þ; see Fig. 4.
Here, the temperature rises sharply; see Fig. 5.

To investigate the viscous stability of the solution we now

calculate the derivative ∂S=∂m. In practice we calculate this deriva-
tive at each radius by calculating S for a slightly perturbed value of
m. When this derivative is positive the solution is viscously stable,
otherwise it is viscously unstable. Following Heptinstall (1997) and
Campbell & Heptinstall (1998), we associate the latter with the
disruption of the disc. The result for ∂ ln S=∂ ln m is shown in Fig. 6.
In Fig. 7 we plot b¹1

r , b¹1, and kKr=kes for three different values of B
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Figure 2. Bf ¼ BfðÃÞ for B ¼ 108 T. The dotted line refers to negative
values of BfðÃÞ.

Figure 3. SðÃÞ for three different values of B (solid line B ¼ 108 T, dotted
line B ¼ 106 T and dashed line B ¼ 104 T).

Figure 4. h=Ã for three different values of B (solid line B ¼ 108 T, dotted
line B ¼ 106 T and dashed line B ¼ 104 T).

Figure 5. TcðÃÞ for three different values of B (solid line B ¼ 108 T, dotted
line B ¼ 106 T and dashed line B ¼ 104 T).



as a function of Ã. Note that the ordering where those three
quantities become unity is unchanged in the parameter regime
considered.

We note at this point that the magnetic field enters the problem
mainly through equation (23) and thus (19). In the equations for
mechanical and thermal equilibrium the magnetic field only
becomes important when the magnetic pressure becomes compar-
able to the gas pressure. However, this is the case well inside the
radius, where the disc becomes viscously unstable.

In Table 1 we give the disruption radius Ãdisr where ∂S=∂m ¼ 0,
and compare it with Ãrad where Prad ¼ Pgas, Ãmag where

ðBþ
f Þ2

=ð2m0Þ ¼ Pgas, Ãk where kKr ¼ kes, and Ãz where h=Ã ¼

0:1, i.e. where the thin-disc approximation breaks down.
The table shows that in all cases Ãdisr is slightly smaller than

Ãrad. Furthermore, Ãz is always smaller than Ãdisr, so the thin-disc
approximation still holds approximately near the disruption radius.
Also, except for the case ê ¼ 10¹3, Ãmag is always inside the
disruption radius. This allows us to ignore the effect of the magnetic
field in the relation S ¼ SðmÞ. Likewise, Ãk is always outside the
disruption radius. Therefore, we can ignore the Kramers opacity
near the disruption radius. Note that none of those approximations
(except the thin-disc approximation) has been made so far. How-
ever, in the next section we derive an explicit analytic solution valid
near the disruption radius. In order to do so we have to make a
number of approximations that can be justified in the parameter
range of interest.

5 A N A LY T I C S O L U T I O N N E A R T H E
D I S RU P T I O N R A D I U S

The results above have shown that near the inner disruption point of
the disc, i.e. where ∂S=∂m becomes negative, the solution is
determined by electron scattering. Also, in the calculation of m

we can neglect Ṁ, so equation (24) can be used. Substituting (24)
into (35), and assuming C ¼ 1 we obtain first S, and then h and Tc in
the forms given below.

S ¼ 7:2 × 106a¹4=5
¹2 ê¹3=5

¹2 Ã¹27=10
6 R18=5

4 B6=5
8 M¹1=10

1:4 kg m2
; ð36Þ

h ¼ 8:1 × 104a¹1=10
¹2 ê¹1=5

¹2 Ã7=20
6 R6=5

4 B2=5
8 M¹9=20

1:4 m; ð37Þ

Tc ¼ 4:6 × 107a¹1=5
¹2 ê¹2=5

¹2 Ã¹23=10
6 R12=5

4 B4=5
8 M¹13=20

1:4 K; ð38Þ

b¹1 ¼ 0:09a9=10
¹2 ê¹6=5

¹2 Ã¹13=20
6 R6=5

4 B2=5
8 M¹9=20

1:4 ; ð39Þ

b¹1
r ¼ 20a1=10

¹2 ê4=5
¹2Ã¹77=20

6 R24=5
4 B4=5

8 M¹13=20
1:4 ; ð40Þ

kes=kKr ¼ 480a8=5
¹2 ê

¹1
¹2Ã¹5

6 R6
4B2

8M¹77=40
1:4 : ð41Þ

This is a useful approximation in the range Ãrad & Ã & Ãk. To
calculate the range of validity we calculate Ãrad and Ãk:

Ãrad ¼ 2:2 × 106a2=77
¹2 ê¹16=77

¹2 R96=77
4 B32=77

8 M32=77
1:4 m; ð42Þ

Ãk ¼ 3:4 × 106a8=25
¹2 ê¹1=5

¹2 R6=5
4 B2=5

8 M77=200
1:4 m: ð43Þ

The range of validity collapses to zero when Ãrad=Ãk ¼ 1. From
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Figure 6. ∂ ln S=∂ ln m for three different values of B (solid line B ¼ 108 T,
dotted line B ¼ 106 T and dashed line B ¼ 104 T).

Figure 7. b¹1
r (solid line), b¹1 (dotted line), and kKr=kes (dashed line) for

three different values of B.

Table 1. Summary of specific radii (in 106 m). For comparison, ÃA is 2.90,
0.209, and 0.015 times 106 m for B ¼ 108, 106 and 104 T. In all cases
Ãco ¼ 7:79 × 106 m. The asterisk in the last row refers to the solution
discussed in Section 6.

B ê¹2 a¹2 Ãdisr Ãrad Ãmag Ãk Ãz

108 1 1 2.13 2.34 1.19 3.49 1.87
106 1 1 0.35 0.39 0.16 1.08 0.25
104 1 1 0.11 0.15 0.02 1.03 0.04
108 10 1 1.36 1.50 0.44 2.47 1.13
108 .1 1 3.44 3.64 3.19 4.62 3.01
108 1 10 2.40 2.67 1.97 3.64 1.91
108 1 100 2.91 3.08 5.63 4.02 1.97
108 1 .1 2.00 2.18 0.73 3.46 1.92
108 10 10 1.45 1.61 0.73 2.49 1.19
108 100 100 0.97 1.11 0.44 1.75 0.68
108 3 1 1.72 1.89 0.74 2.97 1.47
108 * 1 1.62 1.82 – 3.04 1.30



equation (42) and equation (43) we obtain

Ãk

Ãrad
¼ 1:6a566=1925

¹2 ê3=385
¹2 R¹18=385

4 B6=385
8 M¹471=15400

1:4 : ð44Þ

The dependencies on ê, R, B and M are very weak. The strongest
dependence comes through a. However, only for small values of a

(a < 0:002) would the range of applicability collapse to zero.
Simulations of accretion-disc turbulence (Brandenburg et al.
1995, 1996) suggest that a < 0:01 is a lower limit.

We should point out here that the simulations indicate that a

depends on B and would therefore increase towards the inner parts
of the disc. Again, this effect can be treated iteratively. The increase
of a leads to an increase of b¹1 which, according to equation (39),
scales like a9=10

¹2 , so a becomes larger still. However, it is plausible
to assume that a can never exceed a certain value around unity.
Therefore we can read off the disruption radius directly from Table 1
assuming a¹2 ¼ 100. This leads to a somewhat larger value:
Ãdisr ¼ 2:9 × 106 m. On the other hand, if ê increases together
with a, this leads to a somewhat smaller value: for
a¹2 ¼ ê¹2 ¼ 100 we have Ãdisr ¼ 1:0 × 106 m.

Our analytic solution does not capture the turnover of the density
at the point of instability. This is because radiation pressure is not
included. If Prad > Pgas, equation (35) would need to be replaced by

S ¼
4c

9kes

� �2

a¹1Q¹1
K m¹1C̃¹2

; ð45Þ

where

C̃ ¼ 1 þ 16
9 Pr¹1

M b¹1ÿ � 1 þ br

1 þ b¹1

� �
1 þ

kKr

kes

� �
; ð46Þ

which is like the expression (33) for C, except that b¹1
r is now

replaced by br. We see first of all that ∂S=∂m is negative, so the
solution is viscously unstable. Secondly, from equation (24) we see
that m ~ Ã¹7=2, and so S ~ Ãþ7=2. Thus, S indeed has a maximum
and then falls off towards smaller radii.

6 S E N S I T I V I T Y T O T H E h P R E S C R I P T O N

In this section we discuss the sensitivity of the results to the
prescription of the magnetic diffusivity h adopted above. Instead
of using (9) we now adopt

h ¼ Pr¹1
M aQKh2

; ð47Þ

with PrM ¼ 1. Instead of equation (19) we have to integrate (3)
explicitly, i.e.

m ¼
Ṁ
3p

¹
4

3Ã2QK

�∞

Ã
Ã02 BzB

þ
f

m0
dÃ0

: ð48Þ

This can only be done once we know h. A few iterations suffice to
calculate new values of S, h and m. The result is shown in Fig. 8.
Since h=Ã ¼ Oð0:03Þ instead of 0.01 (see Fig. 4), we compare this
result with the solution presented in Section 4 using ê¹2 ¼ 3. The
various radii for the two solutions are given in the last two rows of
Table 1.

It is important to note that the two results agree well outside the
disruption radius. Also, m still has a range where (24) is approxi-
mately valid, so the scaling behaviour of the disruption radius can
still be described by (42). We also note that in this new solution b¹1

never exceeds unity, as indicated by the dash in Table 1. This is
because inside the disruption radius h is now larger and therefore Bþ

f

smaller. However, this result is not significant, because here the
thin-disc approximation is no longer valid.

7 T H E E F F E C T O F V E RT I C A L M A S S L O S S

Before the disc disrupts, most of the accreting matter must have
been channelled along field lines towards the neutron star. This
leads to an additional torque (Ghosh & Lamb 1979), which gives an
extra term ¹Ã3ðruzÞ

þQ on the right-hand side of equation (3).
Here, ðruzÞ

þ is the vertical mass flux though the disc. With this
additional term, equation (48) then becomes

m ¼
Ṁ
3p

¹
4

3Ã2QK

�∞

Ã
Ã02 BzB

þ
f

m0
¹ Ã03ðruzÞ

þQ

� �
dÃ0

: ð49Þ

In the absence of a full solution for the magnetospheric flow we
have to make some assumption about ðruzÞ

þ. The problem is
similar to the stellar wind problem, but here the flow goes from
the disc surface to the star. We assume that uþ

z scales with the
vertical Alfvén speed, vAz ¼

��������������������
B2

z =ðm0r
þÞ

p
, and that rþ is a small

fraction of the density in the midplane, i.e. rþ ¼ lrc ¼ lS=h.
Assuming that l ¼ constant, we can estimate l from the constraint
that the vertical mass loss of the disc must be equal to the accretion
rate Ṁ, i.e.

2
�∞

Ãdisr

ð2pÃ0ÞðruzÞ
þdÃ0 ¼ Ṁ; ð50Þ

where the extra factor of 2 arises from the fact that mass is lost on
both sides of the disc. Using the definitions of vAz and S the
integrand takes the form

4pÃ0ðruzÞ
þ ¼ 2pR3 B�����

m0
p 1

Ã2

lS

h

� �1=2

: ð51Þ
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Figure 8. Comparison of m, S and h=Ã for two different magnetic diffusivity
prescriptions: solid lines refer to (9) with ê ¼ 0:03, whilst dashed lines refer
to (47).



Thus,

l ¼
2pR3

Ṁ

B�����
m0

p �∞

Ãdisr

S

h

� �1=2dÃ0

Ã02

" #¹2

: ð52Þ

From the analytic solution of Section 5 we find

l ¼ 9 × 10¹10a7=10
¹2 ê2=5

¹2Ã101=20
6; disr R¹42=5

4 B¹14=5
8 M¹7=20

1:4 ; ð53Þ

where Ã6; disr is the disruption radius in 106 m. Substituting for
Ã6; disr the value Ãrad from (42), where radiation pressure becomes
important, we obtain

l ¼ 5 × 10¹8a64=77
¹2 ê¹50=77

¹2 R¹162=77
4 B¹54=77

8 M2693=1540
1:4 : ð54Þ

This value is close to the value l ¼ 3 × 10¹8 obtained by integrating
equation (49) numerically. Since the value of l is so small, the
results given in Table 1 are not affected by the inclusion of vertical
mass loss.

8 T H E S P I N - U P R AT E

The solutions obtained allow us to calculate the torque exerted by
the disc on the primary star. The resulting spin-up rate of the
primary is given by

jṖj

P
¼ ¹4p

�∞

Ãdisr

Ã02 BzB
þ
f

m0
dÃ0

�
2
5

MR2Qs ð55Þ

(Campbell 1997), where P ¼ 2p=Qs is the rotation period of the star.
The integral will be integrated numerically. The combined effects
of spin-up and spin-down (from the outer regions where Ã > Ãco)
are then fully taken into account. The results for some parameter
combinations are given in Table 2. However, in order to see the
dependence of the result on the various parameters we now use (15)
and assume Ã < Ãco, which gives

jṖj

P
¼

5
6

PR4

MÃ3
disr

B2

2m0ê
: ð56Þ

Using equation (42) to estimate Ãdisr we obtain

jṖj

P
¼ 0:04a¹6=77

¹2 ê¹29=77
¹2 R20=77

4 B58=77
8 M¹173=77

1:4 P10 yr¹1
; ð57Þ

where P10 is the spin rate in units of 10 s. The resulting value of
jṖj=P is rather large compared with observed values, which are
typically two orders of magnitude smaller. The main uncertainties
in this result include the parameters a, ê ¼ e=g and perhaps also B;
see Table 2.

9 C O N C L U S I O N

The present investigations have shown that the disruption of the disc
in the inner parts can be caused by a viscous instability, associated
with radiation pressure and opacity due to electron scattering (cf.
Lightman & Eardley 1974). The radial disc structure can be treated
iteratively by an algebraic scheme as well as analytically in closed
form, provided we assume that the magnetic diffusivity scales with
the sound speed and the cylindrical radius (instead of the disc
height).

We note that in the inner region, close to where the disc ends, the
Maxwell stress essentially balances the viscous stress (i.e.
jFmfj < jFvfj) with the small difference balancing the Reynolds
stress. This occurs because the viscous force jFvfj becomes positive
due to the magnetically modified radial variation of nS. The result
that the disc ends where jFmfj * jFvfj confirms the work of
Campbell (1992), and shows that this occurs for any plausible
form of h.

The analytic solution is surprisingly accurate, especially near the
inner disruption radius. This solution proved to be useful in many
respects (see Sections 7 and 8). Our main result is encapsulated in
equation (42), which gives the radius Ãrad below which radiation
pressure becomes important. This radius is approximately equal to
Ãdisr, the critical radius where the disc becomes viscously unstable.
This radius can be associated with the inner disruption radius of the
disc; see Table 1. This critical radius scales therefore with B like
Ãrad ~ B32=77 < B0:42. For B ¼ 104 T the disruption point is close to
the surface of the neutron star. In principle other physical effects
could then become important, such as radial energy transport by
advection. It is conceivable that even in the outer parts radial
advection of energy could become important in certain parameter
regimes. However, this has not yet been investigated.

Our disc solution seems to be relatively robust with respect to
extra effects related to the coupling to the magnetosphere. For
example the inclusion of a vertical mass loss from the wind has only
a weak effect on the value of the disruption radius. Furthermore, our
assumption of Keplerian rotation in the midplane is likely to be
valid down to the disruption radius (Campbell 1992). Somewhere
inside the disruption radius the angular velocity will undergo a
transition from QK to Qs. Again, we expect the actual location of the
disruption radius to be insensitive to this.

The resulting spin-up rates are rather large compared with
observations. However, some uncertainties in the parameters
(most notably a, ê and perhaps even B) could account for this.
Indeed, turbulence simulations suggest that a (and probably also ê)
increases with increasing field strengths to values close to unity
(Hawley, Gammie & Balbus 1995, Brandenburg et al. 1996), which
would lower the value of jṖj=P.
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