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The dependence of the dynamo alpha on vorticity

Axel Blrandenburg1 and Karl Johan Donner”

1Departmem‘ of Mathematics, University of Newcastle upon Tyne, Newcastle NEI 7RU

20bservatory, PO Box 14, FIN-00014 University of Helsinki, Finland

Accepted 1997 April 3. Received 1997 April 3; in original form 1996 June 26

ABSTRACT

We use data from numerical simulations of dynamo-generated turbulence in the shearing
box approximation to determine the dynamo «-effect and its dependence on the rotation law
Q(r). The data suggest that the dynamo o is not simply proportional to the local angular
velocity Q(r), as is usually assumed, but rather is proportional to the local vorticity
w(r) = r'd/dr(Qr?). We also find tentative evidence to support the proposition that the
backreaction of the magnetic field on « sets in when the field reaches equipartition with the
energy in the turbulent motions. Furthermore, we propose an explanation as to why the sign of
« is found to be opposite to that in the standard picture.

Key words: accretion, accretion discs — hydrodynamics — magnetic fields — MHD —
turbulence — galaxies: magnetic fields.

1 MOTIVATION

The generation of large-scale magnetic fields in cosmical bodies is
often studied using the mean-field approach, where the correlation
of small-scale velocity and magnetic field fluctuations,
& = (u' x B}, is approximated in the form

& = a(B) — V< (B). 1)

For slow rotation, « is proportional to Q (Steenbeck, Krause &
Rédler 1966; Moffatt 1978; Krause & Radler 1980). A widely used
approximation is

a~—£QVinp ' )

(cf. Krause 1967; Riidiger & Kitchatinov 1993), where £ is the
correlation length and p the fluid density. For galaxies and accretion
discs this may be approximated by

2
o=~ KZQITZZ 3)

(e.g. Ruzmaikin, Shukurov & Sokoloff 1988), where H is the
Gaussian density scaleheight.

In the classical derivation of « (see e.g. Roberts & Soward 1975)
it is usually assumed that Q is constant, which is often a bad
assumption, in particular in systems with strong differential rota-
tion, such as accretion discs and disc galaxies. A simple thought
experiment shows that in differentially rotating systems o should
depend primarily on the local rate of rotation of fluid elements, and
thus on the local vorticity, w(r) = r~1d/dr(Qr*), rather than just the
angular velocity, Q(r). Here, r is the distance from the rotation axis
in cylindrical polar coordinates, (r, ¢, z), appropriate for galaxies
and accretion discs.

Consider a picture in the spirit of Parker (1955) — see also Moffatt
(1978) — Fig. 1. A small fluid element rising a little distance,
because of buoyancy for example, will enter regions of lower
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density and will so expand. Because the angular momentum of
the fluid element is conserved, it will begin to spin more slowly
about its own axis. Suppose that the bubble is threaded by a
horizontal magnetic field, then the field lines will be distorted in
the way depicted in Fig. 1. This swirl in the magnetic field lines can
lead to a non-vanishing «, i.e. a component of (' xB’) in the
direction of (B).

Clearly, o must vanish when there is no rotation at all, i.e. when
Q = w = 0. Furthermore, when Q ~ r~2, the fluid has uniform
angular momentum and so a patch of fluid rotating about the disc
centre has zero rotation with respect to a non-rotating frame. A
rising fluid element will expand, but, because its angular momen-
tum is conserved, it will stay non-rotating. There will then be no
swirl to magnetic field lines threading the bubble and again no
o-effect. More generally, any fluid element will rotate with the
angular velocity w/2 with respect to an observer at rest. So, one
would expect o * w(r), as was assumed already by Donner &
Brandenburg (1990). Our aim in this Letter is to point out that this
expectation is borne out by numerical simulations of turbulence.

2 SIMULATIONS AND a2-DYNAMOS

Computational fluid dynamics has now reached a state where we
can simulate large-scale dynamo action, which enables us to
estimate the dynamo «, and especially its dependence on w. In
principle one could use a three-dimensional simulation of turbu-
lence and apply a magnetic field, as was done by Brandenburg et al.
(1990) for rotating convection and more recently by Tao, Cattaneo
& Vainshtein (1993) for forced helical turbulence. However, first of
all, in the simulations of Brandenburg et al. (1990) there is only
rigid rotation, so the dependence on w could not have been studied.
Secondly, there is a general problem in that the turbulence tends to
oppose such an applied magnetic field and expels it into regions of
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Figure 1. Sketch of a cyclonic event. A fluid element rises and expands,
dragging magnetic field lines with it. The field line is then twisted clockwise
by the effect of rotation. Note that u’ X B’ has a component in the direction of
(B),so a>0.
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Figure 2. Spatio-temporal pattern of the radial and toroidal components of -

the large-scale field, (B,) and (B,), respectively, as a function of height and
time. The data are from Model O of the three-dimensional simulation of
Brandenburg et al. (1996).

weak turbulence. In those cases the fluctuations are much stronger
than the imposed field. This is in marked contrast to simulations
where a large-scale magnetic field is not applied, but is instead
generated self-consistently from the turbulent motions themselves.
In this case the magnetic energy is equally distributed over all
scales. This seems to be typical of dynamos exhibiting large-scale
field generation. The non-linear turbulence model of Pouquet,
Frisch & Léorat (1976) is such an example, where large-scale
fields are generated by an inverse magnetic cascade.

In the following we employ the accretion disc simulations of
Brandenburg et al. (1995). Here the rotation is non-uniform, and a
large-scale field is generated in the direction of the shear. This large-
scale field is comparable in strength to the small-scale fluctuations.
In Fig. 2 we show horizontally averaged fields (B,) and (By) as a
function of normalized height z/H and time #T,,, where
Tmt =27/ 90.

The figure shows that there is a well-defined large-scale field
(especially in (By)) that varies cyclically with a period of about

500 520 540 560
t/Tro'.

Figure 3. Spatio-temporal pattern of (B,) and (B,) as a function of height
and time, obtained by solving (4)—(7).

307 The field also appears to migrate away from the mid-plane at
a speed V =~ 0.024QH. We now make the hypothesis that the
resulting field can be reproduced by an af2-dynamo model in a
slab, governed by the horizontally averaged induction equation
using equation (1):

B) 0 & (B,)
0(By) 3*(B,)
at - _qQ(Br) + Nt azz ) (5)

where we have assumed 7, independent of z, and where g = 3/2 for
Keplerian rotation. Since o < QH we have neglected the a-effect in
the second equation (5). On the boundaries we assume

d(B,) _ 0(By) _

ik =0 on z=0; ©)

(By) =(By) =0 on z=1L, @

This boundary condition was also used in the three-dimensional
simulations (except in those cases where no symmetry was pre-
scribed).

The calculations of Brandenburg et al. (1995) confirmed that «
changes sign about the equator. The simplest functional form for «
is therefore o = ag(z/H). For ag = —0.001Q2H we reproduce the
right cycle frequency, Qc,./Q = 0.03. In fact, one can show that
Quyo/Q? = O(|a/QH|"?). The other free parameter is 7, which we fix
by assuming the solution to be marginally excited. This gives
7. = 0.0078QH>. In Fig. 3 we plot the resulting spatio-temporal
pattern of (B,) and (B,). The agreement with Fig. 2 is quite striking.

Of course, the af2-model is rather simplistic: it ignores the
detailed dependences of « and , on z and B, as well as anisotropies.
The model also does not take account of the fact that in accretion
discs the turbulence (which drives « and ;) is caused by B itself due
to magnetic (Parker and Balbus—Hawley) instabilities. We refer to
this as dynamo-generated turbulence. However, we feel that the
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dynamo mechanism here is typical also for other systems
where shear is important. In fact, even in the Sun and in galaxies,
the a-effect may be predominantly due to magnetic instabilities
(Schmitt 1985; Ferriz-Mas, Schmitt & Schiissler 1994; Hanasz &
Lesch 1997).

3 DEPENDENCE OF «a ONw AND B

In the following we estimate « directly from & without invoking
the assumption of an underlying «/Q-dynamo. We use data from the
three-dimensional calculations, so equations (4)—(7) will not be
used. We simply assume €, = o(B,) (to first order) and estimate o
from a scatter plot of €4 = (u,B, — u,B,) versus (B,) using a least-
squares fit (see fig. 8 of Brandenburg et al. 1995). The results are
compatible with the estimates obtained from the cycle frequency.

By assuming €, = «(B,) we have ignored other effects such as
turbulent diffusion and turbulent fluctuations, which are responsible
for the scatter. In a more extensive study Brandenburg & Sokoloff
(in preparation) have included the effects of turbulent diffusion, but
their results suggest that estimating o from the scatter plot is a
reasonable approximation, which will suffice for the purpose of the
present paper. Regarding the fluctuations in the relation €, and
(B,) we note that even a fluctuating a-effect can lead to large-scale
dynamo action owing to the presence of shear (Vishniac & Bran-
denburg 1997).

In order to study now the dependence of o on the vorticity, we
have to vary the rotation law. Abramowicz, Brandenburg & Lasota
(1996) have used accretion disc simulations to compute the effec-
tive disc viscosity assuming @ ~ r~? and varying g between 0.1 and
1.8. We use the same set of data to estimate « for different values of
q. The simulations have been carried out in local Cartesian
geometry, but for convenience we have translated them into
cylindrical polar coordinates, so B, = B, and By = B,), for example.
The vorticity is

1d
w=-= (79) =2 - 90, ®)

and so a range in w from 0.2 to 29 can be covered. (For g = 2 the
disc is Rayleigh-unstable and no statistically steady state has been
found. For small values of g the shear is too weak and the dynamo is
no longer oscillatory and perhaps not even excited. Thus our results
for g = 0.5, i.e. w/Q = 1.5, should be considered with care.)

The results for all values of g are given in Table 1, together with
the average values of square roots of the kinetic and magnetic
energies, expressed in terms of V= (Eyi,/ (p))”2 and
B = (2E s/ (;:»))1’2 , and the Gaussian density scaleheights H rela-

Table 1. Summary of the normalized values of « for
different values of g. Also given are the normalized
values of the square root of the kinetic and magnetic
energies, and the Gaussian density scaleheight. The
values for g = 0.1 and perhaips also 0.5 are uncertain
(see text).

q /HQ V/HQ B/HQ HIL

0.1 —0.00008 0.0008 0.04 0.12 1.4
0.5 —0.00097 0.0042 0.06 0.15 14
1.0 -0.00111 0.0064 0.11 0.23 1.3
1.5 —0.00038 0.0027 0.12 0.21 2.3
1.7 —0.00041  0.0031 0.14 0.20 2.0
1.8 —0.00014 0.0016 0.18 0.26 2.7

a,¢/Hﬂ
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Figure 4. o as a function of w/Q. For w/Q =< 1.5 the data points lie roughly on
a straight line.

tive to the radial extent L. (H varies because it depends on the
temperature which, in turn, results from a balance between viscous
and ohmic heating on the one hand and cooling on the other.) The
normalized values of « are plotted in Fig. 4. Note that « increases
with w in a way that is consistent with o < w, confirming the ideas
outlined above. This is our main result. In the plot the last point (at
w/Q =19, ie. g =0.1), however, clearly deviates from the linear
relation. As explained above, this last data point is uncertain. For
w — 2 we approach the regime of rigid rotation where dynamo-
generated turbulence no longer operates. Under different circum-
stances turbulence could still be driven externally (e.g. by convec-
tion), although « may then have the opposite sign, as expected from
equations (2) and (3). In other words, o may change sign near
w =24,

The magnitude of « turns out to be smaller than anticipated in
Section 2 based on comparisons with «Q-dynamos. For g = 1.5, for
example, this comparison yields the value oy = —0.001QH,
whereas Table 1 gives the value —0.0004QH. However, if we
correlate €4 + 1,(V X (B)),, (instead of just €,) against (B,) then
the resulting slope is closer to —0.001. (Here we have assumed
n, = 0.008QH>, which is close to the turbulent viscosity of
0.005QH?, cf. Brandenburg et al 1996.) Thus the discrepancy can
partly be explained by the neglect of turbulent magnetic diffusion.
However, since the scatter of the correlation gets worse, we
continue to estimate « in the following simply from the correlation
between €, and (By).

In the remainder of this section we briefly discuss further results
that are related to the dynamical feedback on o, as well as its
anisotropy and sign.

When the field becomes dynamically important, o may no longer
be independent of B, so the relation between (By) and €4 will no
longer be linear. In Fig. 5 such a deviation is clearly seen. Evidently,
the deviation sets in when the field becomes comparable to
By = (41rpu2)“2. This is certainly at least in agreement with
conventional theories of a-quenching (e.g. Moffatt 1972; Riidiger
& Kitchatinov 1993), and appears to be contrary to the idea that the
onset of a-quenching may set in for much weaker fields as the
magnetic Reynolds number R, is increased. Vainshtein et al. (1993)
have proposed that the onset of a-quenching would already occur
near R,;mBeq. In our cases the average magnetic Reynolds number
is about 100, so the onset of a-quenching would be at 0.1B4 and not
at By, as in our case. On the other hand, the argument of Vainshtein
et al. (1993) does not really apply to the present simulations,
because here the magnetic energy is not concentrated at small
scales, as explained above. To settle this issue, however, one would
really need to calculate « for different values of R,,. Unfortunately,
calculations with higher values of R, are prohibitively expensive in
terms of computer time.
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Figure 5. Scatter plot of €, and (By) at different times for ¢ = 0.5. The solid
line marks the relation €,/ V= —0.016(B4)/(1 + (B.»)Z/Bg(g.
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Figure 6. o, as a function of w/Q. For w/€) =< 1 the data points lie roughly on
a straight line.

cyclonic event effect of shear

Figure 7. Sketch illustrating the effect of shear on the Parker loop, as viewed
from above. (z > 0 and €2 > 0.) (a) A cyclonic event twists a toroidal flux tube
(Bg > 0) into the radial direction (B, > 0). Together with buoyancy (u, > 0),
this gives o ~ E€,4/By ~ u,B,/B > 0. (b) Shear turns the flux tube further by
almost 180°, so now B, <0, but B, and u, are still positive and thus
o~ uB, /By <0.

Of course, « is really a tensor. In the analysis above we have
focused only on the ay4-component, which is indeed the most
important one, as it is responsible for regenerating poloidal mag-
netic field from toroidal. We can also estimate the c,,-component
from the correlation between €, and (B,). This component, like
several other off-diagonal components, contributes to the antisym-
metric part of the a-tensor. It can be written as an effective transport
velocity ¥ = —a, in the z-direction (e.g. Riidiger & Brandenburg
1995). In Fig. 6 we plot «,4 as a function of w. For w/Q =< 1 the two
are approximately proportional to each other.

It is difficult to obtain reliable values for the other components of
a, because |(B,)| < |(B4})| and (B,) = 0. (We note, however, that
o,, seems to be positive and roughly independent of w/Q.) However,
as mentioned above, those other components are less relevant for
the actual dynamo process. We should also point out that Ferriére
(1993) has obtained a dependence of the o,,-component on w, but in
her model o, was still only dependent on (.

Brandenburg et al. (1995) noted that « is negative in the upper
disc plane, in sharp contrast to the standard result given in
equation (2). The reason lies probably in the importance of shear
which turns flux tubes around such that B,/B, <0 (see Fig. 7).
Together with buoyancy (u, > 0), this leads to a dominant contribu-
tionto o ~ E,4/B, ~ u,B,/By < 0. We note that this effect cannot be
explained in terms of a ‘Parker loop’ inducing a current (cf. Moffatt
1978, fig. 7.2), because this description is static and does not capture
dynamical effects related to buoyancy and expansion of the loop. It
is not the first time that the static description has broken down.
Another example was given by Brandenburg et al. (1990) in the
context of convection, where the «-effect in the vertical direction
has the opposite sign due to compression of the loop in a down-
draught.

In the present paper we have ignored the detailed z-dependence
of o, because otherwise we would lose accuracy by no longer
averaging over z. However, we still expect an approximately linear
dependence on z, so equation (3) should basically be valid, except
that € should be replaced by w/2, i.e. o * £2wz/H*. Furthermore, we
now also know that the sign of « is opposite to that in equation (3).
Finally, we have seen that the feedback of the magnetic field on the
turbulence leads to a-quenching, which is commonly approximated
inthe form a & 1/(1 + (B)*/B%,). Thus instead of using equation (3),
we propose that for many practical purposes a better formula could
be .

_ £\? wzZ
«=- (17) 1+ (BYYBY,’ ©

Comparing with our simulations, € is of the order of 0.03H. Note
that the effective £ is relatively small, so the a-effect seems to be
rather weak. However, as discussed above, this is just a manifesta-
tion of a relatively long cycle period of 30 orbits. (This is maybe not
so unusual: in the Sun the cycle period is 300 orbits!) Also,
Brandenburg et al. (1995) estimated that the resulting dynamo
number, gaQH>/m?, is still large enough for dynamo action; see also
Brandenburg & Sokoloff (in preparation).

4 CONCLUSIONS

‘We conclude that the numerical simulations of dynamo-generated
turbulence support the idea that, in situations where the angular
velocity Q varies spatially, « is proportional to the vorticity w of the
background flow, rather than just ©2. This has an effect on the
detailed magnetic field distribution in models of galactic dynamos
(cf. Donner & Brandenburg 1990). The local rate of field amplifi-
cation, which depends on the product of « and shear, may be less
affected, since in a differentially rotating disc the shear will be
reduced where the vorticity is large. In spiral galaxies, Q is a
function not only of r but also of ¢. In this way w, and therefore
also «, becomes non-axisymmetric. Models of this kind are cur-
rently being studied in the case of the bar galaxy M83 (Donner &
Brandenburg, in preparation).

Apart from having established an approximately linear depen-
dence between « and w, we have also found some evidence to
support the idea that the a-effect is quenched when the magnetic
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field approaches the equipartition value. This has been a matter of
debate in recent years. The difficulty in clarifying this issue arises
from the fact that meaningful estimates of « and its dependence on
(B) can probably only be obtained in simulations capable of
producing a large-scale dynamo. Simulations with perfectly con-
ducting or periodic boundaries are perhaps not suitable, as dis-
cussed in the review by Beck et al. (1996). In those situations the
mean field is prescribed and cannot change. Furthermore, the mean
field is uniform and therefore the diffusion term of the mean field
vanishes. Thus, if there were an « in the simulation, it would be
forced to have zero effect on the mean field. In our present
simulations the mean field is allowed to change and therefore an
a-effect, if it is present, can have an effect on the mean field. An
important ingredient of a large-scale dynamo is strong shear. The
models of Brandenburg et al. (1995) suggest that shear does not
only seem to be essential for producing a large-scale dynamo, but
also seems to have a profound effect on the sign of .

Our results are well summarized by equation (9). Although this
formula was really only obtained in the context of accretion discs, it
may well be applicable to galaxies and perhaps even to stars with
strong shear layers. [In the latter case wz/H* should be replaced by
—%w-V Inp, cf. equations (2) and (3).] However, there are other
mechanisms contributing to, or responsible for, the forcing of
turbulence: supernova explosions and stellar winds in galaxies,
and convection in stars. The effects of those mechanisms on the o-
effect remain to be investigated. We cannot claim that our results
unambiguously establish the validity of the form of a-quenching
included in equation (9), but we do believe that the sort of
investigation presented here provides a way to resolve the issue,
for example when enhanced computational resources become
available.
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