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TESTING COWLING’S ANTIDYNAMO THEOREM NEAR A ROTATING BLACK HOLE
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ABSTRACT

The kinematic evolution of axisymmetric magnetic and electric fields is investigated numerically in Kerr
geometry for a simplified Keplerian disk near a rotating black hole. In the cases investigated it is found that a
magnetic field cannot be sustained against ohmic diffusion. In flat space this result is known as Cowling’s
antidynamo theorem. No support is found for the possibility that the gravitomagnetic dynamo effect of Khanna
& Camenzind could lead to self-excited axisymmetric solutions. In practice, therefore, Cowling’s antidynamo
theorem may still hold in Kerr geometry, although here the original proof can no longer be applied.

Subject headings: accretion, accretion disks — black hole physics — magnetic fields — MHD — relativity

1. INTRODUCTION

Axisymmetric magnetic fields can generally be decomposed
into a poloidal field and an azimuthal component. Differential
rotation can stretch the poloidal field and convert it into an
azimuthal field. This gives an efficient amplification of the
magnetic field, but it requires the poloidal field as a source.
However, in strictly two-dimensional geometry, there is no
corresponding source for the poloidal field, which must even-
tually decay. The flow can only advect the poloidal field
around, but, because of axisymmetry, it cannot stretch or
amplify the poloidal field. This is known as Cowling’s (1934)
antidynamo theorem (see also Parker 1979).

In Kerr geometry, near a rotating black hole, the situation is
different. The hole’s rotation drags all physical objects near it
into orbital motion in the same direction as the hole rotates.
Physical quantities, such as electric and magnetic fields, are
measured by fiducial observers (FIDOs), who are orbiting with
angular velocity o relative to a rigid coordinate grid. This
frame-dragging effect acts in a similar way as ordinary differ-
ential rotation in nonrelativistic hydromagnetics and leads to
field-line stretching. However, the frame dragging effect
stretches not only magnetic fields but also electric fields.
Khanna & Camenzind (1994, 1996, hereafter KC94 and KC96,
respectively) pointed out that this could be important for
Cowling’s antidynamo theorem, because it leads to a back-
reaction on the poloidal magnetic field: the poloidal electric
field that is induced by the azimuthal magnetic field is
stretched and converted into an azimuthal electric field, which
could then induce a new poloidal magnetic field. Now, this new
poloidal magnetic field could either enhance or diminish the
original poloidal magnetic field. A simple sketch suggests that
the original poloidal magnetic field is in fact enhanced by this
sequence of events; see Figure 1.

In the chain of processes depicted above, only changes in
the azimuthal electric and magnetic fields by stretching are
considered, but the fields also change directly by induction. In
particular, the poloidal magnetic field would induce a positive
azimuthal electric field that tends to oppose the azimuthal
electric field generated by the relativistic three-step process of
stretch-induce-stretch. Thus, it is not clear whether the rela-
tivistic stretching effects would be able to dominate over the
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ordinary induction effects to produce a self-excited dynamo
(especially in the presence of additional field-line stretching by
differential rotation in a surrounding accretion disk).

Based on numerical simulations, KC94 and KC96 suggested
that a self-excited gravitomagnetic dynamo is indeed possible.
However, they presented only two different cases, and it
therefore remains unclear for which parameters (e.g., electri-
cal conductivity, angular momentum of the black hole, geom-
etry of the accretion flow) this process would work. In
addition, certain features of their model might give rise to
concern: neglect of the Faraday displacement current, numer-
ical ripples near the horizon, and an initial magnetic field that
is (almost) frozen into a highly conducting corona.

The purpose of this Letter is to investigate the possibility of
dynamo action using an independent numerical method. A
highly nonuniform mesh is adopted to resolve the accumula-
tion of fields near the horizon, the Faraday displacement
current is retained in some cases, and different conductivity
profiles are examined.

2. MODEL AND NUMERICAL METHOD

There are many papers on what is now called black hole
electrodynamics (e.g., Znajek 1977; Macdonald & Thorne
1982; Macdonald & Suen 1985; Park & Vishniac 1989), a topic
that has recently also reached the textbook level (see Thorne,
Price, & Macdonald 1986; Novikov & Frolov 1989). The
standard procedure is to rewrite the covariant Maxwell equa-
tions in the form of evolution equations with respect to a
universal time ¢. These equations have the familiar form

JoB

m = we;, (B-V)w — cV X (aE), (€))]
oE
E = we, (E N V)w + ¢V x (OlB) - 47TOlj, (2)

together with V-B =0 and V - E = 47p,, where p, is the
charge density. Axisymmetry has been assumed and Boyer-
Lindquist coordinates are employed;  is the radial coordinate,
6 is colatitude, ¢ is longitude, e; is the unit vector in the
¢-direction, and the hats indicate the physically measurable
components of a vector. The differential operators are written
in curvilinear coordinates with metric coefficients, g.*, g4 ,
and g , that are functions of r and 6, which can be found in
the publications mentioned above. E and B are the electric and
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FiG. 1.—(a) Poloidal magnetic field pointing outward in the northern
hemisphere becomes stretched into a negative azimuthal magnetic field. (b)
This azimuthal magnetic field induces a poloidal electric field that goes from
low to high latitudes. (c) This poloidal electric field becomes stretched into a
negative azimuthal electric field at low latitudes and a positive electric field at
high latitudes. (d) This toroidal electric field induces a new poloidal magnetic
field that points outward at midlatitudes. If strong enough, this would enhance
the original poloidal magnetic field.
magnetic fields, respectively, a = (—g")~'* is the gravita-
tional redshift factor, o = g'*/¢" is the angular velocity caused
by the frame dragging effect, w = g is the circumference of
a circle around the axis (divided by 27r), and c is the speed of
light. (From now on, ¢ = G = 1 is assumed, so length is
measured in units of [r] = GM/c?, time in units of [¢] = [r]/c,
and [E] = [j][¢] = [B] = B,, where B, is the initial magnetic
field strength.) The current density j is governed by Ohm’s law,

J=oy(E +vXB)+p,yv, withp,y=p, —oyv-E, (3)

where o is the conductivity, v is the bulk velocity of the plasma,
v = (1 —v®) " is the relativistic Lorentz factor, and p’ and p
are the charge densities in the rest frames of the plasma and
the FIDO, respectively. In those cases where the Faraday
displacement current JE/dt is neglected, p, = 0 is assumed for
consistency. (In the cases studied below p, turns out to be
negligibly small; see Fig. 4.) The fields E and B are split into
poloidal and toroidal fields, E = E, + E, and B = B, + B,,
where E, = E’e;, B,= B’¢;, and B,= V x (A’e;), where
A* is evolved in time to ensure that B is solenoidal.

Following the model assumptions made by KC96, the ve-
locities +* and v, are calculated in such a way that the angular
momentum is 99% of its Keplerian value outside the margin-
ally stable orbit r,,, and equal to the value at r,,, for r < r,,,
where free fall with constant specific energy and angular
momentum is assumed. The relevant formulae can be found in
KC96 and Shapiro & Teukolsky (1983). The angular velocity is
constant on spherical shells, and v, is horizontal and confined
to the disk using a Gaussian profile with a scale height of
H = 0.5M, simulating an accretion flow in a disk. For the
conductivity the prescription of KC96 is adopted:
(4ma) "= 0.2H** R 'exp (—z*/H?*), where z = r cos 0 and
R = rsin 6. For comparison, models with uniform conductivity
and no accretion flow are also computed.

Equations (1)—(3) are solved using a third-order time step
and (mixed centered/staggered) second-order differences. A
tortoise coordinate,

x=r+rIn@/r —1), 4)

has been used, where ;= M + (M*> — a®)'* is the outer
horizon, M is the mass of the black hole, and a is its angular
momentum per unit mass in terms of ¢*/G = 1. All r-
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FiG. 2—Poloidal field (contours of @wA?) for three different times [in
diffusion times #; = t/(4wo), where 470, = 42.6 min (4mo)]. Shaded areas
indicate the extent of the hole (r; = 1.06) and the disk (1, = 1.237, H = 0.5).
(470) max = 5000; 51 X 101 mesh points; 0E/dt = 0.

derivatives are evaluated on a uniform grid in x and then
multiplied by dx/dr = (1 — ry/r)~".

The boundary conditions for B and E are formulated at the
“stretched” horizon (Macdonald & Suen 1985), i.e., a very
small distance above the actual horizon where « is still finite
(in the present case, X, is varied between —20 and —12, and
SO @pin = 107° to 4 X 107*). On the boundary electromagnetic
waves travel into the horizon, so the Poynting vector points
into the hole with B = E* and B® = —E’, which, together
with equation (2), leads to an outgoing wave condition for the
horizontal components of E. No explicit condition for E” is
needed. On the outer boundary B’ = B® =0 is assumed
(except in Cases A and B where a perfect conductor with
B" =E’ =E® =0 is assumed). In case C (below) the field
parity was fixed by suitable boundary conditions at the equa-
tor, so that B has even or odd symmetry. The code was tested
for o = 0 by reproducing the relaxation of an initially radial
magnetic field to a steady vertical field solution that is known
analytically (Wald 1974). For finite conductivity and with
Keplerian differential rotation the code was tested by comput-
ing a{) dynamo action in Schwarzschild geometry, giving
results in qualitative agreement with expectations. The effec-
tive DC resistivity of the black hole of ~#377 ohms was verified
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FiG. 3.—Poloidal field at different times in the case without imposed
magnetic field. Dotted contours indicate opposite orientation. The field dies
out and is absorbed by the black hole. (470 )max = 500; 51 X 101 mesh points;
JE/dt = 0.

numerically by applying an electric field and measuring the
resulting current (see Fig. 15 of Thorne et al. 1986).2 For a
parameter survey, a resolution of 41 X 21 mesh points in the r-
and 6-directions proved to be sufficient; comparison with
81 X 51 mesh points gave very similar results. For those
calculations where dE/dt = 0 is assumed, the E-field is ob-
tained from equation (3).

3. RESULTS

The results presented here are for M =1, a = 0.998
(corresponding to maximal rotation; cf. Thorne 1974), and

Tmax =

Case A—In order to compare with the model of KC94,
dE/dt is neglected and an initially vertical magnetic field with
a weak toroidal field is adopted such that the initial field parity
is mixed. Following KC94 (and R. Khanna 1996, private
communication), the conductivity away from the disk plane
was limited to 4o = 5000. There is a strong increase of the

2 Note that KC96 erroneously adopted an enhanced magnetic diffusion on
the stretched horizon to mimic the ~377 ohms. R. Khanna (1996, private
communication) pointed out that this was the reason for the ripples found in
KC94 and KC96.
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Fi6. 4—Top: Growth rate vs. w/wphys . The angular momentum density L of
the disk is +99%, 0, and —99% of its Keplerian value, and 4mo = 20.
Comparison is made with 4o = 50 and 100 (L > 0), where 0E/dt is either
included or neglected (for 4o = 50). The difference between dipole-like and
quadrupole-like solutions is negligible, and so is the inclusion of the p, term.
Bottom: Inverse threshold (@it /wphys)’l for different values of a.
41 X 21 meshpoints.
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magnetic field due to the shear between the disk and the
corona; see Figure 2. Note that at all times the field remains
smooth. As time goes on, the field in the disk plane is advected
into the hole and does not accumulate near the horizon; this is
unlike the behavior in KC94.

Case B.—In the previous case the field was (almost) frozen
into a highly conducting corona and acted like an imposed
field. This is unsuitable for the study of dynamo action.
Therefore, the conductivity outside the disk is now limited to
47 = 500, and the initial field is confined to the disk. In order
to allow for mixed parity, the initial field is zero in the lower
disk plane. The field increased initially due to shear, but at
later times it decayed due to dissipation or because it was
simply absorbed by the black hole; see Figure 3. Thus, there is
no self-excited dynamo.

Case C.—In order to understand why the gravitomagnetic
dynamo effect of KC94 does not operate in the present case,
the angular velocity w of the frame dragging was increased
artificially above its physical value w,,. This computational
device helps to locate the dynamo effect in parameter space. In
the absence of a radial accretion flow and for uniform con-
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ductivity, there is a self-excited solution for wei/wpns =~ 2.2;
see Figure 4, top panel. Radial accretion impedes dynamo
action (g /wyhs = 3.1), but the value and profile of o have
very little effect on the threshold. Even for a very high angular
momentum of the black hole (a = 0.999999), Wi /wnys is well
above unity (~1.9); see Figure 4, bottom panel. This suggests
that the threshold for dynamo action cannot be attained for
any physically reasonable input parameters.

In Kerr geometry, Cowling’s proof cannot be applied: the
toroidal current induced at the neutral O-type line could in
principle be supported by the E, + Vo term. In order that |E? |
does not vanish, one has to require that d(E*)*/dt = 0, and,
from equation (2), E*E, - Vo > 0. Inspection of solutions
with o = wy,, showed, however, that this is not the case in the
examples considered here. This is because the negative toroi-
dal electric field in Figure 1d is dominated by the positive
electric field induced by B,. Therefore, E*E, > 0 in the
equatorial plane, and, because V,w < 0, E’E, * Vo < 0. (On

the other hand, for v = w.; the sign of E? E, - Vo is indeed
positive, as expected.)

4. CONCLUSIONS

The present calculations suggest that the gravitomagnetic
dynamo effect of KC94 and KC96 does not lead to self-excited
solutions in Keplerian disks surrounding rotating black holes.
The neglect of the Faraday displacement current and the
charge density proves to be a good approximation in the cases
considered here. Although axisymmetric dynamo action seems
not to occur, it is quite clear, however, that accretion disks will
always be magnetized by three-dimensional dynamo action (cf.
Brandenburg et al. 1995).

A. B. thanks Ramon Khanna, David Moss, Ake Nordlund,
and Ulf Torkelsson for illuminating discussions and comments
on the manuscript.
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