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ABSTRACT
Dynamo-generated turbulence is simulated in a modified shearing box approximation that removes scale

invariance and allows finite accretion rates for a given distance from the central object. The effective
Shakura-Sunyaev viscosity parameter, aSS, is estimated in three different ways using the resulting mass accretion
rate, the heating rate, and the horizontal components of the Maxwell and Reynolds stress tensors. The results are
still resolution dependent: doubling the resolution leads to 1.4–1.6 times larger values for the viscosity parameter.
For 63 3 127 3 64 meshpoints we find that aSS 5 0.007.
Subject headings: accretion, accretion disks— hydrodynamics—MHD— turbulence

1. INTRODUCTION

Over the last few years it has become clear that a strong
candidate for the origin of turbulence in accretion disks is the
magnetic shear (or magnetorotational) instability, which is
now often called the Balbus-Hawley (1991) instability. In its
original form, the instability arises in the presence of a vertical
magnetic field, but a purely toroidal field also leads to
instability (Balbus & Hawley 1992; Foglizzo & Tagger 1995).
The instability continues to operate in the nonlinear regime
where the magnetic field is turbulent and mostly in the toroidal
direction (Hawley, Gammie, & Balbus 1995; Matsumoto &
Tajima 1995). These cases may differ in their stability criteria
and the nature of the dominant restoring force (magnetic
tension, pressure gradients), but the main mechanism leading
to instability is always the same: when two fluid parcels in the
same Keplerian orbit are pulled together, they are actually
torn apart in the radial direction (due to the change in the
centrifugal acceleration). (This is why docking maneuvers in
space are difficult.) Once at different radii, and with a magnetic
field coupling these otherwise independent parcels, an angular
momentum exchange is possible, and energy can be extracted
from the shear.
Important outcomes of accretion simulations are the

resulting Maxwell and Reynolds stresses, which are ex-
pected to be proportional to the gas pressure times a
dimensionless number, the Shakura-Sunyaev viscosity pa-
rameter. The viscosity parameter can depend on (i) the
magnetic field strength, (ii) the pressure, and (iii) the
distance from the central object. The dependence on the
field strength has been investigated by Hawley, Gammie, &
Balbus (1995). It is, however, possible that the magnetic
field results from dynamo action (Brandenburg et al. 1995,
hereafter Paper I; Hawley, Gammie, & Balbus 1996; Stone
et al. 1996). The field strength is then determined by the
dynamics and is no longer an independent control para-

meter. The dependence on the pressure is removed by
allowing for vertical stratification (Paper I; Stone et al.
1996). In unstratified simulations the vertical extent of the
box, Lz, takes the role of the vertical (Gaussian) pressure
scale height, H, in that both determine the largest length
scale of magnetic structures. The models presented by
Torkelsson et al. (1995) show that for Lz 2 0.6H the un-
stratified simulations give results for aSS similar to the
stratified simulations. In this Letter we report preliminary
results concerning the dependence on the radius. The main
conclusion is that for a finite radius a nonvanishing accre-
tion rate is possible.

2. MAKING THE MODEL NONLOCAL

In the local approximation, cylindrical polar coordinates (r,
f, z) are replaced by Cartesian coordinates (x, y, z), which are
valid near a given point (R, f0, z) with x 5 r 2 R and
y 5 r(f 2 f0). Terms of order 1/R are neglected in compari-
son with ­/­x. This is, however, invalid for volume-averaged
quantities. For example, in the present case, where we assume
sliding periodic and periodic boundary conditions respectively
in x and y, the term ^BxBy&/R Þ 0 is not small compared to
^­(BxBy)/­x& 5 0. (In fact, all averages over x and y derivatives
vanish.)
It is straightforward to restore all terms of order 1/R. The

new set of model equations is formally equivalent to the
equations used in Paper I:
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where $/$t 5 ­/­t 1 uy(0)­/­y is the time derivative that in-
cludes the transport by the linearized Keplerian shear flow,
uy(0) (x) 5 23

2V0 x. The full velocity consists thus of the rigid
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rotation V0r, the linear shear flow uy(0) , and a three-dimen-
sional (turbulent) component u. The magnetic field B 5 = 3 A
is derived from the magnetic vector potential A, and the
current density is J 5 = 3 B/m0, where m0 is the vacuum
permeability. Gravity in the vertical direction is given by
g 5 2zV0

2 , and p 5 (g 2 1)re is the equation of state for a
perfect gas, which is used with g 5 5/3. The microscopic
viscosity n enters via the rate of shear tensor S. In practice we
use instead ‘‘numerical’’ and shock viscosities, but their func-
tional forms are similar. The same applies to the magnetic
diffusion term hJ. For further details see Paper I. In this work,
the difference lies in the term F, which consists of three
components:

F 5 f V 1 k1 f 1 1 k2 f 2 , (5)

where fV 5 (2uy, 2
1
2ux, 0)V0 (as in Paper I), and the new terms

of order 1/R are
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which are turned off or on depending on whether k1 and k2
equal 0 or 1. These terms result from expressions of the form
(1/r)(­/­r)(rBxBy), etc., which come from the nonlinear terms
such as J 3 B and (u z =)u. The importance of these terms has
been stressed by Christodoulou, Contopoulos, & Kazanas
(1996). Note that we have written out separately the uy(0) terms.
The contribution 1

3uy
(0) 2/R includes the second-order contribu-

tion in the expansion of gravity in the radial direction. We
retain the shearing box approximation, i.e., A, u, e, and r are
periodic in x, but with respect to a time-dependent shift
dy 5 23

2V0tLx, where Lx is the extent of the box in the
x-direction. The presence of uy(0) in equation (7) breaks the
pseudoperiodicity with respect to x (for k2 5 1), but in practice
this contribution is weak and remains unnoticeable in the
solution. As in Paper I, we include in some cases a cooling
term of the form Q 5 2s0(e 2 e0), which removes the heat
generated by viscous and resistive dissipation.
We solve equations (1)–(7) in a box uxu , 1

2Lx, uyu , 1
2Ly, and

0 # z # Lz, imposing symmetry conditions at z 5 0. At z 5 Lz
we impose stress-free, insulating boundary conditions and
assume that the magnetic field is vertical. For further details
see Paper I. Initially, there is a random seed magnetic field
that is needed to get the turbulence going, but this field has
zero flux. This gets amplified by dynamo action into a large-
scale toroidal magnetic field which changes direction in a cyclic
manner with a typical period Tcyc 2 30Trot, where Trot 5 2p/V0.
We cannot rule out that this is a finite size effect which might
go away in a truly global model. This field provides a conve-
nient means of estimating the dependence of various transport
properties on the mean magnetic field from their mutual
correlation.
We performed simulations at two resolutions, comparing

results for 313 63 3 32 and 633 127 3 64 meshpoints, using
R 5 10, Lx 5 1, Ly 5 2p, and Lz 5 2. The initial scale height,
H0, was chosen to be unity, which determines the initial
temperature (or internal energy), e0 5 1

2H0
2V0

2 /(g 2 1), and the
density of the hydrostatic equilibrium r 5 r0 exp (2z2/H0

2 ),
where r0 5 1.

3. ACCRETION RATE AND VISCOSITY

We consider the instantaneous mass accretion rate Ṁ, which
is related to the radial mass flux ^rux& via

Ṁ 5 2~2pR!~2Lz!^rux&, (8)

and normalize it by Ṁc 5 2pRScs, where S 5 2Lz^r& is the
vertically integrated average density (which remains constant),
and cs2 5 1

2H
2V0

2 5 (g 2 1)^e& is the squared isothermal sound
speed. Here angular brackets denote volume averages. Note
that H may increase with time (depending on cooling), and we
refer to its initial and final values as H0 and Hmax, respectively.
The ratio Ṁ/Ṁc corresponds to the Mach number of the
accretion flow.
We find that Ṁ undergoes epicyclic oscillations with the

orbital period, Trot 5 2p/V0, where V0 5 R23/2 5 0.032 (Fig.
1a). Such oscillations occur also for k1 5 k2 5 0, but there the
range of Ṁ/Ṁc never exceeds H0.02. More important, the
running mean of Ṁ taken over one orbit is now positive during
periods of high magnetic activity (Figs. 1b and 1c). Indeed, Ṁ
and ^By&2 are clearly correlated (Fig. 2). The results for a
number of variant models are summarized in Table 1.
In accretion disk theory the accretion rate is related to the

turbulent viscosity nt via the relation

ntS 5 Ṁ/~3p! (9)

(Frank, King, & Raine 1992). Expressing nt in terms of cs and
H, i.e., nt 5 aSScsH, we have

aaccr 5 Ṁ/~3pScsH! 5 ~2/3!~H/R!~Ṁ/Ṁc!, (10)

FIG. 1.—(a) Evolution of instantaneous mass flux; (b) running mean of the
mass flux; and (c) the mean magnetic field. (The dotted line refers to the radial
field, multiplied by a factor of 30.) The scatter shows variations between cycles.
(Run A.)
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where the subscript ‘‘accr’’ refers to how the value of aSS is
obtained. Since aaccr is correlated with the magnetic activity
level (Fig. 2), we write

aaccr 5 aaccr
~0! 1 aaccr

~B! ^By&2 /Beq2 , (11)

where Beq 5 ^m0rcs2 &1/ 2 is the equipartition value based on the
thermal energy. The resulting values of aaccr

(0) and aaccr
(B) are listed

in Table 1 for various runs.
Heating rate.—In all cases, the disk is heated somewhat

initially due to viscous and Joule heating. In particular, when
s0 5 0 (run A), the disk is heated continuously without limit.
The rate of heating depends on the turbulent viscosity, since

Ė 5 ntSSr ­V

­r D2 , (12)

where Ė 5 d^re&/dt is the average rate of heating integrated
vertically over the disk (i.e., multiplied by 2Lz). Since r­V/
­r 5 23

2V0, we obtain

aheat 5 Ė/@~32V0!
2ScsH#. (13)

This equation is only valid at early times (less than 10–20
orbits) because H increases with time. The evolution of aheat
and ^By&2/Beq2 is shown in Figure 3a. Note that there is a phase
shift: ^By&2/B02 leads aheat by Dt 2 1.5Trot 2 0.05Tcyc. The corre-
lation between aheat(t 1 Dt) and ^By(t)&2/B02 is shown in Figure
3b, and the coefficients aheat

(0) and aheat
(B) , defined by analogy to

equation (11), are also listed in Table 1.
Viscous stress.—Finally, we estimate the turbulent viscosity

parameter directly from the (x, y)-components of the Maxwell
and Reynolds stress tensor,

astress 5 ^ruxuy 2 BxBy /m0&/~
3
2 V0^r&csH!. (14)

In Figure 4 we compare the results for runs with different
resolution. Note that the higher resolution run (C) gives
1.4–1.6 times larger values of aSS than the low-resolution runs
(B). Likewise, a larger toroidal extent of the box (e.g., Ly 5 4p
in run E) also gives rise to larger values of aSS.
Finally, we make two comments regarding the generated

magnetic field. First, we confirm that the kurtosis of the total and
toroidal magnetic fields, ^B4&/^B2&2 and ^By4&/^By2&2, respectively, is
typically closer to 3 than to 6, indicating that the field is not
strongly intermittent (Paper I). Second, the mean toroidal field
lags the mean radial field by23p/4 (Fig. 1c). This corresponds to
the (^Bx&, ^By&, 0)-vector rotating with the shear.

4. CONCLUSIONS

We have demonstrated that the shearing box approximation,
properly modified to include curvature-dependent nonlinear
terms, leads to a nonvanishing net accretion flow. The radial mass
inflow is dominated by epicyclic oscillations, but its running mean
has a positive net value. The turbulent viscosity parameter aSS
inferred from the average mass accretion flow is consistent with
the value obtained from the heating rate and the stress. The value
of aSS is still dependent on the resolution and the toroidal extent.
The value of aSS is approximately equal to ^B2&/^2m0p& times
^BxBy&/^B2&. The results in Table 1 show that the increase with

FIG. 2.—Correlation of the viscosity parameter (as derived from the accre-
tion rate) and the mean magnetic field. (Run A.)

TABLE 1

COMPARISON OF VARIOUS MODELS

PARAMETER

RUN

O A B C D E

Mesh . . . . . . . . . . . . . . . . . . . 31 3 63 3 32 31 3 63 3 32 31 3 63 3 32 63 3 127 3 64 31 3 127 3 32 31 3 255 3 32
s0. . . . . . . . . . . . . . . . . . . . . . . 10V0 0 V0 V0 V0 V0
k1 . . . . . . . . . . . . . . . . . . . . . . . 0 1 1 1 1 1
k2 . . . . . . . . . . . . . . . . . . . . . . . 0 0 0 0 1 1
Ly . . . . . . . . . . . . . . . . . . . . . . 2p 2p 2p 2p 4p 8p
tmax/Trot . . . . . . . . . . . . . . . . . 164 52.9 26.4 11.6 19.2 13.3
Hmax . . . . . . . . . . . . . . . . . . . . 1.1 3.0 1.8 2.0 2.1 1.7
^aaccr& . . . . . . . . . . . . . . . . . . . · · · 0.004 0.004 0.008 0.005 0.005
(aaccr)max . . . . . . . . . . . . . . . · · · 0.025 0.010 0.018 0.018 0.019
aaccr
(B) . . . . . . . . . . . . . . . . . . . . . · · · 1.36 0.47 1.8 0.79 1.00

^astress& . . . . . . . . . . . . . . . . . . 0.005 0.005 0.005 0.007 0.006 0.006
(astress)max . . . . . . . . . . . . . . 0.018 0.013 0.012 0.012 0.015 0.015
astress
(0) . . . . . . . . . . . . . . . . . . . . 0.002 0.003 0.004 0.005 0.004 0.004

astress
(B) . . . . . . . . . . . . . . . . . . . . 0.029 0.61 0.13 1.51 0.52 0.45

^aMaxw&/^aReyn&. . . . . . . . . . 3.4 3.1 3.1 3.0 2.8 2.7
^B2&/^m0ru2& . . . . . . . . . . . . 6.2 3.4 3.9 3.1 3.7 3.3
^B2&/^2m0p& . . . . . . . . . . . . . 0.066 0.049 0.037 0.054 0.058 0.059
^BxBy&/^B2& . . . . . . . . . . . . . 0.065 0.087 0.084 0.109 0.089 0.077
^B4&/^B2&2 . . . . . . . . . . . . . . . 3.0 5.8 3.7 4.7 3.3 3.5
^By4 &/^By2 &2 . . . . . . . . . . . . . . 2.7 4.2 3.7 3.2 3.2 3.2

NOTE.—The values reproduced in boldface are discussed in the text. The values for the shorter runs (smaller values of tmax) are
uncertain because of insufficient statistics. For run A we find ^aheat& 5 0.005, (aheat)max 5 0.023, and aheat

(B) 5 1.51. In all cases aaccr
(0)

and aheat
(0) are less than 0.002, except for run C, where aaccr

(0) 5 0.006.
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higher resolution comes mainly from ^BxBy&/^B2&. The trend that
aSS grows with numerical resolution is interesting (see also
Terquem & Papaloizou 1996; Ogilvie & Pringle 1996). We will
perform additional simulations on finermeshes to determine how
much further this trend continues. The inclusion of mass accre-
tion does not significantly affect the values of astress. The contri-
bution from the Maxwell stress is 3 times larger than that from
the Reynolds stress, which is also approximately the ratio of
magnetic to turbulent kinetic energy.

This work was supported in part by the Danish National
Research Foundation through its establishment of the Theoret-
ical Astrophysics Center (Å. N.), NASA grants NAGW 1695,
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landse Organisatie voorWetenschappelijk Onderzoek (NWO) in
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FIG. 3.—(a) Evolution of aheat (solid line), compared with 0.64^By&2/B02 (dotted line). Note the phase shift between the magnetic field and aheat. (b) Correlation
of aheat and ^By&2/B02 . (Run A.)

FIG. 4.—Evolution of astress for runs with different resolution. (Runs B and
C.)
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