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Abstract. We examine the stability of the dynamical behaviour
of axisymmetric o®w dynamo models in rotating spherical shells
as well as in spheres. Overall, our results show that the spher-
ical dynamo models are more stable in the following senses:
spherical models (i) do not seem to allow chaotic behaviour and
(ii) are robust with respect to changes in the functional form
of a.. On the other hand, spherical shell models (i) are capable
of producing chaotic behaviour for certain ranges of parameter
values and (ii) possess, in the combined “space” of parameters
and boundary conditions, regions of complicated behaviours, in
the sense that there are regimes in which small changes in either
the dynamo parameters or the boundary conditions can drasti-
cally change the qualitative behaviour of the model. Finally, we
discuss briefly the physical relevance of our results.
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1. Introduction

A great deal of effort has gone into the understanding of the so-
lar and stellar dynamos in terms of mean field dynamo models
in both complete spheres and in spherical shells. In particular,
a number of detailed studies have been made of the properties
of mean field dynamos in which the nonlinearity is introduced
through the so called a-quenching mechanism (see for exam-
ple, Brandenburg et al. 1989a,b; Moss et al. 1991). These stud-
ies have revealed novel features, such as solutions with mixed
parities, seen in spherical a?w dynamo models. Such results
are of particular interest because they can suggest observations
which could in turn enhance or diminish our faith in the models
employed. An important shortcoming of these models is that
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they invariably involve approximations. These fall into two cat-
egories: (i) those involving convenience, as for example is the
case with imposition of exact symmetries which allow the mod-
els to be formulated in terms of two spatial dimensions only, and
(ii) those involving ignorance, such as those that arise from un-
certainties regarding the precise nature of turbulent processes
that operate in dynamo active regions. For example, in stan-
dard mean field theories, the procedures for parameterizing the
second order correlations (those of higher order being usually
ignored in such treatments) between the fluctuating fields u’
and B’ are bound to be complicated and not well-determined
in the solar and stellar settings, where the turbulence is highly
inhomogeneous and anisotropic. In addition, solving the model
equations involves the specification of the boundary conditions
which are unlikely to be known precisely. Now, given that such
simplifications can never be truly justified, the question arises as
to the extent to which the dynamical behaviour of such models
is stable with respect to slight changes in various features of the
models that are not well known.

There are two reasons why this is of relevance. Firstly, there
are important results from nonlinear dynamical systems the-
ory which indicate that the appropriate theoretical framework
within which mathematical models are constructed and obser-
vational data are analysed might be that of structural fragility
(Smale 1966; Tavakol & Ellis 1988; Coley & Tavakol 1992). Put
briefly, this amounts to the possibility that small changes in the
models under consideration could produce qualitatively impor-
tant changes in their behaviours. More precisely, these results
show that the set of all structurally stable systems is not every-
where dense in the space of all dynamical systems. As a result
the stability of dynamical systems cannot be assumed a priori,
but need to be established concretely in each case under study
and subject to the specific perturbations under consideration.
Secondly, small changes in the systems (or their parameters)
can radically change the basins of attraction of their underlying
attractors and thus their qualitative behaviour. Consequently, the
dependence on boundary conditions can be sensitive to small
changes in the models or their control parameters.
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Clearly such fragility, if present in real dynamo regimes
(and their corresponding realistic mathematical models), could
have important observational and (theoretical) interpretational
consequences in that it may allow diverse modes of behaviour
within a population of stars of similar type, say, to be understood
within the same theoretical setting, without the need to invoke
other mechanisms. On the other hand the absence of observa-
tional evidence in real dynamo regimes for a particular type of
fragility exhibited by the models under consideration (with re-
spect to plausible perturbations) would indicate the unsuitability
of the approximations and/or the parameterizations employed in
such models. Thus, the presence or absence of similar types of
fragility in both the models and in real dynamo settings would
enhance our trust in the approximations and parameterizations
employed.

Here, as a start, we make a preliminary comparative study
of the behaviour of the axisymmetric a®w dynamo models, with
respect to changes in the value of the dynamo parameter Cy,
different a(B)-profiles and the inner boundary conditions in the
case of the spherical shell dynamos, and with respect to the value
of C,, and different functional forms of a(B) for the spherical
case.

The structure of the paper is as follows. In Sect. 2 we briefly
introduce the axisymmetric mean field dynamos, Sect. 3 con-
tains our results concerning the stability of spherical dynamos,
and in Sect. 4 we present our results concerning spherical shell
dynamos. In Sect. 5 we draw some brief conclusions.

2. Axisymmetric mean field dynamos

The standard mean field dynamo equation (cf. Krause & Rédler
1980) is of the form

86—‘?=V><(uxB+aB)—Vx(nthB), ¢))
where u and B are the mean velocity and the mean magnetic
field. The quantities « (giving rise to the « effect) and 7, (the
turbulent magnetic diffusivity) appear in the process of param-
eterization of the second order correlations (u’ x B’) between
the fluctuations u’ and B’ by

(u' x B'Y=aB —n,V x B. @)

In the following, as in a large number of such studies, we
shall confine ourselves to the isotropic case where both o and
7 may be treated as scalar functions depending only upon B.
What is usually done in practice in the study of a’w models
is to take a prescribed nonlinear functional form for a(B) and
to study the dynamical consequences of the resulting nonlinear
dynamo model as a function of the dynamo parameters subject
to some boundary conditions. The problem, however, is that
in addition to the uncertainty in the dynamo parameters and the
boundary conditions, the exact functional (and in general precise
tensorial) forms of «, and in principle also of 7, are complicated
and not well understood in the solar and stellar settings. Further,
it is possible that the effective functional form of « as well as
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the effective dynamo parameters and the boundary conditions
may vary on long time scales due to the inhomogeneity and the
non-steadiness of the turbulent regimes in the solar and stellar
convective zones. In order to have a clear picture of the possible
range of the dynamical types of behaviour which such dynamo
models are capable of, it would therefore be necessary to study
the stability of the dynamo dynamics with respect to changes
in (i) the functional form of o (and 1) (ii) the effective dynamo
parameter(s) and (iii) the boundary conditions.

The results presented in this paper were obtained using a
modified version of the axisymmetric code of Brandenburg et
al. (1989a,b), employing single precision arithmetic, i.e. using
4 byte floating point real numbers. We verified that no qualita-
tive changes were produced by employing a finer spatial grid,
different temporal step and/or by increasing the machine pre-
cision. In the following, we will discuss the behaviour of the
dynamos considered by employing the total magnetic energy,
E,inr < R, given by E = EW + E where E‘Y and E
are the energies of the antisymmetric and symmetric part of the
magnetic field respectively, and the overall parity P given by
P =(E“ — E®)/E. Thus P = —1 denotes an antisymmetric
(odd) pure parity solution and P = +1 a symmetric (even) pure
parity solution (Brandenburg et al. 1989a,b). For orientation,
note that pure dipole and pure quadrupole fields have P = —1
and P = +1 respectively.

2.1. Spherical o*w dynamo models

In order to study what happens to the behaviour of the spherical
a*w dynamo models as these functional forms of « are allowed
to change, we took as our reference model the detailed study
of such models by Brandenburg et al. (1989a,b) in which they
assumed a functional form for o given by

apcos

=TI B ®)

with constant cip and 7:. We use the radius R of the sphere as
the unit of length and the global diffusion time R?/7; as the
unit of time. The magnitudes of the o and w effects are given
by the usual parameters C,, = apR/m; and C,, = Q)R?/my,
where () is the radial derivative of the angular velocity, here
assumed to be a constant. Treating C,, as the control parameter
and using C,, = —10%, Brandenburg et al. (1989a) showed that
the o2w dynamos are capable of a range of dynamical modes of
behaviour, including (symmetric and antisymmetric) pure parity
modes as well as mixed parity solutions.

To study the effects of such changes, we took three other
functional forms for a:

_agcosd (3+B> B2-3 |
- 00 <1+B2+ —an'B), @
given by Kitchatinov (1987), the empirical

o= agcos f
(1+ B%(1+0.05|B))’

©)
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and the isotropic part of the more recent form due to Riidiger &
Kitchatinov (1993)

_ 15 cos @ <

4B? (1-B*»tan"'B
NB ) - ©

T 3(1+B22 B

Equations (4) and (6) have qualitatively similar asymptotic be-
haviour for small and large values of B, but only Eq. (6) is
derived consistently in the framework of first order smoothing
theory. Equation (4) was derived in the theory of stellar differ-
ential rotation to describe the dependence on the inverse Rossby
number (Kitchatinov 1987). Equation (5) is an ad hoc modifi-
cation of Eq. (3) in order to obtain the correct | B|~* behaviour
for large values of B (Moffatt 1972).

In the calculations discussed in Sect. 3, we replaced the func-
tional form of au(B) given by (3) as employed in our reference
model (Brandenburg et al. 1989a,b) by one of the forms given
in (4), (5) and (6), and then studied the dynamical details of the
resulting o2w models.

2.2. a*w dynamo models in a spherical shell

When studying the stability of o w spherical shell dynamo mod-
els, we first took the functional form of « to be that given by
Eq. (3) and studied the effects of changes in the value of C,, and
the boundary conditions. For the sake of comparison, we then
looked at the effects of changing the functional form of « as in
Sect. 2.1.

In our calculations, we assumed constant o and 7, and
again we took the outer radius R of the sphere as the unit of
length, the global diffusion time as the unit of time and allowed
the magnitudes of the o and w effects to be given by the dynamo
parameters C, and C,,, which we fixed at a value —10°. Our o?w
dynamo is situated in a rotating spherical shell of electrically
conducting fluid. We split the axisymmetric field B(r, ) into
poloidal and toroidal parts, by writing

B =V x (ad) + b, @)

where &5 is the unit azimuthal vector. On the outer boundary the
magnetic field is matched to a potential field representing the
solution in a vacuum. If we assume the inner boundary to be a
perfect conductor, then the boundary conditions for the poloidal
and toroidal fields are respectively

10(rb)  10(ra) _

~ o a— =0. ®)

a=0 and ~ o

In reality, however, the magnetic fields will penetrate some dis-
tance into the interior of the star, and a strict perfect conductor
inner boundary condition might therefore be too restrictive (or
even quite inappropriate!). A less restrictive condition can be
formulated by assuming that the field falls to zero at some dis-
tance § below the boundary, approximated by

Ja a ab b

E e R

This might approximate the behaviour of an oscillating field in
the shell that is rapidly damped by the skin effect in the external

=0. 9
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region. These two different boundary conditions can give rather
different behaviours (Brandenburg et al. 1992), which moti-
vated us to consider intermediate cases by using a continuous
“interpolation” between perfectly conducting and penetrative
boundary conditions in the forms

(1—F)a+F(Q‘3—9> =0,

or 6 (10)

for the poloidal field, and

18(rb)  10(ra) A
(I_F)(?_ar—_aFT)*F(E%_S)“O’ (n

for the toroidal field, where F' € [0, 1]. The results of our calcu-
lations are discussed in Sect. 4. (We would stress that, in reality,
the region below a convectively unstable shell in a star is phys-
ically ill-understood with, for example, substantial convective
overshoot occurring. Our point is that, given such uncertainties,
there is no unambiguously ‘correct’ boundary condition. We
have just identified two more-or-less plausible alternatives.)

3. Spherical dynamo results

For the spherical a*w dynamo calculations, we used a grid size
of 21 x 41 mesh points, uniformly distributed over 0 < r < R,
0 < @ < mrespectively, with a time step of 2 x 10~*#. We studied
the range of dynamical behaviour as a function of C, as the form
of a was varied. In order to facilitate comparison of our results,
the analogues of the bifurcation diagrams given in Brandenburg
et al. (1989a,b) for functional forms of « given by (4), (5) and
(6) are shown in Fig. 1, with C,, = —10*. As can be seen, Fig. 1
is in good qualitative agreement with Figs. 8a of Brandenburg
etal. (1989a) and 11 of Brandenburg et al. (1989b). This clearly
shows that the a®w models considered by Brandenburg et al.
(1989a,b) are stable with respect to reasonable changes in the
functional form of a.

Furthermore, our numerical results show that increasing the
value of C,, whilst keeping C,, fixed, did not produce any
chaotic behaviour in the resulting dynamos.

4. Spherical shell dynamo results

In our calculations of the spherical shell dynamo, the shell was
characterized by setting the bottom of the convective zone at
radius ro = 0.6, the penetration depth § = 0.05 and C,, = —10°.
In view of the more complicated behaviour exhibited by the
solutions of the shell models, a finer mesh of 41 x 81 was used,
together with a time step of 1074,

We now take the a/(B) profile given by Eq. (3). Our results
show that for all values of C,, < 3, the behaviour is periodic, in-
dependently of the inner boundary conditions, i.e. for all values
of F' € [0, 1]. Similarly, for C,, > 15, the behaviour seems to
be chaotic and insensitive to the inner boundary conditions. In
a dynamical sense these two regimes appear to be underpinned
by the presence of strong attractors, with basins of attraction
that seem to cover the whole of F' € [0, 1]. On the other hand in
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Fig. 1. Bifurcation diagram for a spherical dynamo with « given by
Egs. (4), (5), and (6). Only stable solutions are shown. A, M and S
indicate that the dynamo is in an antisymmetric, mixed or symmetric
regime, respectively. OS refers to an oscillating solution with positive
parity

the intermediate region 3 < C, < 15, the behaviour becomes
complicated and sensitive to the boundary conditions, with win-
dows of chaos and periodicity interspersed. For example, for
C,, = 10, periodic behaviour was observed for 0.3 < F' < 0.5,
and chaotic behaviour for other values of F'. However, we stress
that because of the high computational cost of running the code
for particular values of the parameters (especially in view of the
presence of extremely long transients in some cases), we only
evaluated the dynamo models for values of F' running from 0
through to 1 in increments of 0.1. We note that from a dynami-
cal systems point of view, it is plausible that taking a finer mesh
of values of F' would show still more complexity in smaller
scales (such as the interspersed regions of periodicity and chaos
in the case of the Logistic map (Jacobson 1981; Farmer 1985;
Tavakol & Ellis 1988) and the Lorenz system (Sparrow 1982).
This, however, does not change the main point of our results
which indicates the presence of multiple attractors. More pre-
cisely, our numerical results indicate that to this precision there
are in the range C,, € [(3, 15)], at least two attractors present
with their basins of attraction interspersed. The results are tab-
ulated in Table 1. We have concentrated on C,, in the range 8
to 15 since this is the more interesting transition region which
highlights the point that is being made here. We should add here
that for spherical shell dynamos, transients can sometimes last
longer than 50 diffusion time units. As a result, only after about
80 time units can a decision be made regarding the asymptotic
state of the system in such cases. To be on the safe side, all runs
(unless they settled down to a periodic state) were made with at
least 100 diffusion time units.

To check the sensitivity of the shell dynamo models with
respect to changes in the « profile, we briefly examined the
behaviour of such dynamos at C, = 2 and C,,, = —10°, but with
variable F', with the functional form of au(B) given by Egs. (3),
(4) and (6). The results are summarized in Table 2. We chose C\,
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Table 1. Summary of solutions for a range of values of F' and Cq
for Eq. (3). ‘S’ indicates a solution having a symmetric parity whilst
‘C’ stands for one whose parity and energy is chaotic. ‘N’ indicates a
solution with a noisy parity and energy behaviour, but whose power
spectrum is not noisy, as is the case with a truly chaotic solution. In all
cases C,, = —10°

F

Co. 0 01 02 03 04 05 06 07 08 09 1

§ € S N N C C C € Cc C cC

9 €c Cc ¢ S S C€c c¢c c c¢c c c
w ¢c c¢c ¢ s 8§ §S € € Cc cCc ¢
1 c ¢ ¢ ¢ ¢ 8§ § € Cc c ¢
2 ¢ ¢ ¢ c C¢c s 8§ S Cc cCc c
3 ¢ CcC ¢c ¢ ¢ Cc s s S s cC
4 ¢ ¢ ¢ ¢ € c c c¢c c s S
s ¢ ¢ ¢ € € Cc C C Cc C cC

Table 2. Summary of solutions for different values of F' using Egs. (3),
(4) and (6) for the ai(B) profile. ‘S’ indicates a solution having a sym-
metric parity, ‘C’ stands for one whose parity and energy is chaotic,
and ‘A’ refers to an antisymmetric solution. The asterisk indicates the
occurrence of very long chaotic transients and that the solution became
periodic only after about 100 diffusion times. C,, = 2.0, C,, = —10°

F

04 05 075 1.0
Eq.3) S S S S S S S
Eq. 4 S C C cC A A A
Eq. 6) A C C C A A A

00 025 03

to be 2 in order to emphasize the dramatic change in qualitative
behaviour that can be produced by using different a(B) profiles.

It can clearly be seen that, even with fixed values for C,
and C,,, spherical shell dynamos have different sensitivities
with respect to the boundary conditions and the functional
forms of o

We verified that the decisive factor for the dynamical be-
haviour is the value of the product D = C,C,,. We found that
changing C,, and C,,, while keeping the product the same, did
not produce any qualitatively different effects. This is consis-
tent with these models being within the ‘aw’ regime of the o’w
dynamo model.

Finally, we should note that for spatially resolved mean field
dynamos, solutions with temporal chaos have only recently been
found in the context of accretion disc dynamos (Brooke & Moss
1994; Torkelsson & Brandenburg 1994), but to our knowledge
not yet for spherical shell dynamos. We would like to emphasize
that the spatial field distribution remains smooth, even though
the dynamo number D is approximately 100 times above the
marginal value for the onset of dynamo action. The fields shown
in (Fig. 2) are quite typical. In Fig. 3 we present part of the
time series of the energy and the corresponding power spectrum
(using the full time series with a length of over 300 diffusion
times), for a run with F' = 0.25, C, = 2, and C,, = —10°.
The power spectrum shows clearly the basic cycle frequency
and the next higher harmonic. At lower frequencies the signal
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Fig. 2. Field lines of the poloidal field B, and contours of the toroidal
field B; for a solution showing temporal chaos using Eq. (6). Dot-
ted contours refer to negative values or opposite field line orientation.
F=025Cq=2and C, = —10°

is essentially white noise. A detailed analysis of the properties
of chaotic solutions for spherical shell dynamos will be given
in a separate paper.

5. Conclusions

Our results concerning spherical shell dynamos with fixed outer
boundary conditions, and the various functional forms of « in-
vestigated, seem to indicate that there are regions of the param-
eter space for which the behaviour is chaotic (or periodic) and
at the same time stable to changes in the inner boundary con-
ditions. These correspond to regimes with attractors possessing
basins that attract all inner boundary conditions. On the other
hand there are intermediate parameter regions for which the be-
haviour may be either periodic or chaotic, depending upon the
inner boundary conditions. These regimes seem to indicate the
presence of multiple attractors whose basins are interspersed
in the interval F' € [0, 1]. Furthermore, changes in the func-
tional form of o show that, even at fixed values of C,, C,, and
boundary conditions, such dynamos are sensitive to the a/(B)
profile.

On the other hand, our study of spherical aw dynamos seem
to show that they are not sensitive to changes in the functional
form of o, and also they do not seem capable of producing
chaotic behaviour.

Our results therefore seem to indicate that a®w dynamos in
spherical shells are much less robust with respect to changes in

20 3
> 1) ]
2 15 |
()] 1 |
=1 lj I
© 10 {

1
301.0 301.5 302.0
time
108F
5
£ 108
o,
104+
0.1 1.0 10.0 100.0
frequency

Fig. 3. A short piece of the time series of the energy and the power
spectrum for the entire run covering over 300 diffusion times. Note the
occurrence of white noise over three orders of magnitude in frequency.
F=0.25,C,=2,and C, = —10° using Eq. (6)

the functional form of & and of the boundary conditions than
dynamos in full spheres. Dynamos in spherical shells are also
capable of producing chaotic behaviour. This difference in the
sensitivity of the spherical and spherical shell models is in prin-
ciple decidable observationally and the enhanced variability of
the shell dynamo models may be of potential importance in
interpreting astrophysical observations.

We would like to emphasize that the uncertainty that we in-
troduced into the inner shell boundary conditions corresponds
to a real lack of understanding of the relevant physics: we do
not know the boundary conditions that ‘correctly’ represent the
true physical situation. It is also true that there is a similar uncer-
tainty connected with the outer boundary conditions, at r = R.
Studies of the solar photospheric and chromospheric magnetic
fields clearly indicate that the commonly adopted simple vac-
uum boundary conditions are quite inaccurate. We have not ex-
plored this point, but it is plausible that fragile behaviour similar
to that discussed above may also be present.

There is now a sample of about 90 late type stars (F-K) for
which activity has been monitored over the last 28 years. This
subject has been reviewed by Baliunas & Vaughan (1985). It
does seem that stars of the same spectral type, rotational period,
age, and composition can show quite different behaviour. Such
variations in behaviour are consistent with a structural fragility
of the underlying dynamo processes. Finally, we would like to
add that the type of fragility found here may be of relevance to
other astrophysical phenomena.
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