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Abstract. We compute numerical solutions for axisymmetric,
dynamically consistent mean-field dynamos in a spherical shell
of conducting incompressible fluid. In the process of investigat-
ing the stability properties of solutions in the far-supercritical
regime we found an unusual behaviour, with the magnetic en-
ergy decreasing discontinuously as the dynamo number is in-
creased. A new stable solution with a more complicated field
geometry emerges. In addition, a stable mixed parity state oc-
curs at the discontinuity of the magnetic energy, between the
two branches of stable pure parity solutions. For a given dynamo
number there may be as many as four metastable solutions.
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1. Introduction and basic equations

Stellar dynamos are often investigated using the mean-field ap-
proach, where the evolution of the mean magnetic field (B) is
described by

9(B)

ot

(e.g. Krause & Ridler 1980), where div(B) = 0, and 7 is
the turbulent magnetic diffusivity. The o parameter can have a
non-vanishing value in the presence of helicity, which can lead
to the generation of large-scale magnetic fields. The strength
of this a—effect is characterized by a dynamo number C,, =
&R/n:, where & is a constant. The helicity, necessary for an -
effect, arises from the joint effects of the radial inhomogeneity
of the convection zone and the Coriolis force. The resulting o
is antisymmetric about the equatorial plane, and a particularly
simple and often studied expression is & = é&cos 6, where 8 is

=curl((u) x (B) + a(B) — n:curl{B)) 1)
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the colatitude. In the present study anisotropies of « and 7; have
been neglected (but see Riidiger & Elstner 1994).

The magnetic back-reaction on the mean flow (u) from the
Lorentz force influences the flow via the mean-field momentum
equation

D(u)

i = ~VZ+(J) x (B) - Div(p@ — %),

p @)
where &7 denotes a reduced pressure including gravitational
potential and turbulent magnetic pressure. In Eq. (2), &;
(us'uj’) and FB,; = (B,;'Bj;’) are, respectively, the Reynolds
and Maxwell stress tensors, (e.g. Riidiger et al. 1986; Riidiger
& Kitchatinov 1990). Eq. (2) is written in an inertial reference
frame, and so the (conserved) angular momentum is specified
by the initial condition on (u), and the Coriolis and centrifugal
terms are automatically included.

In the presence of an anisotropy of the turbulent motions,
correlations of different velocity components can drive a differ-
ential rotation via the so called A—effect, which parameterizes
non-diffusive contributions to the (r, ¢) and (6, $) components
of @. For sufficiently slow rotation, the most important com-
ponent is

O = Ay sin 0Q — vy sin 092/ Or 3)
(Riidiger 1980), where 2 = (ugy)/rsin8 and v; is a turbulent
kinematic viscosity, for which we assume v; = 7;,1.e. a turbulent
magnetic Prandtl number of unity.

In this model, differential rotation is a self-consistent so-
lution of the momentum equation, Eq. (2). When the dynamo
equation, Eq. (1) and the momentum equation with non-zero
A—effect are solved simultaneously, we are dealing with a dy-
namically consistent dynamo, sometimes referred to as an o A—
dynamo (Brandenburg et al. 1991, 1992). Malkus & Proctor
(1975) and Proctor (1977) investigated dynamically consistent
dynamos, where the macro-feedback (momentum equation) has
been taken into account, and saturation was achieved by the so-
called Malkus—Proctor mechanism. In their model there was no
A-—effect and differential rotation was therefore only driven by
the large-scale magnetic field.
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The work of Proctor (1977) was restricted to antisymmet-
ric (dipole-type) magnetic field configurations. Both antisym-
metric and symmetric (quadrupole-type) solutions exist as a
consequence of the perfect symmetries of the o and w—effects.
Either one or both of these solutions may be stable to axisym-
metric perturbations, but more general calculations show that
stable mixed parity solutions are also possible (Brandenburg et
al. 1989), described by the parity parameter

E®) _ gA

T ES L A @

where E® and EY denote the energies in the symmetric (even,
quadrupolar) and antisymmetric (odd, dipolar) parts of the mag-
netic field. The pure parity solutions with completely antisym-
metric and symmetric fields are usually denoted by A0 and SO,
respectively. Stable mixed parity solutions occur especially as
the dynamo number, C,, is increased. However, most of the
known examples of mixed parity solutions are time dependent.

Usually the magnetic energy increases with increasing C,.
There are, however, examples with a—quenching where the
magnetic energy reaches a maximum after which it decreases
slightly before it levels off at a constant value (Meinel & Bran-
denburg 1990). In dynamos controlled by the Malkus—Proctor
mechanism, the energy usually increases with C,, and the en-
ergy of the SO solution grows faster than the energy of the AO
solution, so there is a crossover at some value of C, (Bran-
denburg et al. 1989). The stability problem of Malkus-Proctor
solutions has recently excited some interest, because it appears
that many axisymmetric solutions with weak differential ro-
tation are unstable to nonaxisymmetric perturbations (Barker
1993; Barker & Moss 1993, 1994).

The purpose of this paper is to investigate the stability prop-
erties of solutions of an axisymmetric «A~dynamo in the far-
supercritical regime of C,. During our investigation, we found
a somewhat unusual behaviour, in that at a certain value of Cy
the magnetic energy decreased abruptly and discontinuously.
In the following we show that this behaviour is related to the
emergence of a new solution with a lower magnetic energy and
a more complicated field geometry at a particular value of C,.

2. The model

‘We adopt the model of Brandenburg et al. (1991) for a dynamo
consisting of an incompressible and electrically conducting fluid
with constant and uniform density, p, in a rotating shell (cf. the
sub-surface convective zone of a late type star) with inner and
outer radii Ry and R, respectively. This model is similar to that
described in Brandenburg et al. (1992), except that the fluid is
here assumed to be incompressible and thermodynamics are
not included. We solve the hydromagnetic equations (see pre-
vious section) numerically in an inertial frame of reference for
two quadrants (hemispheres) in order to examine the symme-
try properties of the magnetic field and large-scale flow. For
boundary conditions, we assume a perfect conductor without
magnetic field below the convective shell (r < Rp), and a vac-
uum (current-free fields) outside the shell (r > R).
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As initial condition we assume a rigid rotation with angular
velocity €2y, and a weak “seed” magnetic field. The value of
is prescribed in terms of the Taylor number, Ta = (2QyR?/v;)?
and we use Ta = 10%. For Ry and R, respectively, we uSe the
values 0.7 and 1, expressed in units of the radius of the sphere.
The initial parity, Py (cf. Eq. (4)), characterizes the symmetry
of the initial magnetic field. In most of the cases we prescribed
an initial value for P between +1 and —1 and allowed the parity
subsequently to evolve with time.

We assume that o takes the form o« = & cos 6, where the
constant ¢& is determined by the dynamo number C,. Thus,
a—quenching is neglected. We also neglect the Maxwell stress
tensor .77, see Eq. (2), because its functional dependence on
the mean fields is not well understood. The strength of the A—
effect is described by Ay = v,V ©®, where we take V® = —1.
The sign of the parameter V@ determines the sign of 82/0r,
strictly in the absence of magnetic field but, in practice, also
with field present. A—quenching, i.e. magnetic back-reaction on
the A-parameter, is neglected (but see Kitchatinov 1988).

In the following, length, time and the magnetic field are ex-
pressed in dimensionless form, i.e. length in units of R, time in
units of the magnetic diffusion time, R?/n;, and (B) in units
of (10p)'/*1: /R, where pig is the magnetic permeability. Typi-
cally the timestep, 67, we used in the runs was between 107>
and 10~*. Too long timesteps lead to numerical instabilities,
whereas too small values are computationally prohibitive.

Most of the results presented here are for a resolution of
41 x 81 mesh points. Initially we performed computations on a
mesh with 21 x 41 points and found qualitatively similar results.
The energies changed by less than 10% and the values of C,,
at which bifurcations occur changed by less than 5%, as the
resolution was changed from 21 x 41 to 41 x 81. We expect
that as we increased the resolution further any change would be
rather smaller than this. Thus, we feel that the results presented
below are qualitatively correct, but the numbers would change
slightly if we used an even higher resolution.

We restrict ourselves to axisymmetric solutions. Although
we have not checked whether the solutions are stable to non-
axisymmetric perturbations, we anticipate that the differential
rotation produced by the A-effect is large enough to cause non-
axisymmetric structures to be wound-up rapidly, so leading to
their enhanced dissipation (cf. Radler 1986).

3. Results

In Fig. 1 we show the bifurcation diagram. Note the disconti-
nuity at far-supercritical values of Cy, with stable mixed parity
states for intermediate values of C,,. At the discontinuities the
solution branches are expected to show infinite derivatives and
continue as unstable solutions (e.g. Jennings & Weiss 1991). Us-
ing our time stepping method, such unstable solutions cannot
be computed. Other methods could be used, such as those em-
ployed by Jennings (1991) for a simplified one-dimensional dy-
namo model. However, such methods are rather difficult to im-
plement in more complicated multidimensional systems. Thus

© European Southern Observatory ¢ Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/cgi-bin/nph-bib_query?1995A%26A...296..700M&amp;db_key=AST

FTIO5ALA = ~296. — 700MD

702
3000 [ LA I AL R LA B T T |M'__
[ v ]
L [ 4
2500 - A ]
: M
2000 |- ]
> r // J
5 1500F ]
£ r SO0 7 ]
1000 .7 7 AD .
s00F -7 ]
0 C l/:_/. P R I PRI B 1 I - 1_L:
8 10 12 14 16 18 20 22
CC(
Fig. 1. Bifurcation diagram for the aA-dynamo model with Ta = 10°
and V@ = —1. All solutions depicted are stable and non-oscillatory.

The dotted line connects SO-type solutions and the dashed line AO-type
solutions. Note the discontinuity and the stable mixed parity states M*
and M~

we felt that a major effort to investigate such unstable solutions,
which cannot physically be realized, was not justified at present.

At a particular value of C,, the type of the solution (SO, A0
or mixed parity state) depends only on the initial field parity, Fy.
Below the far-supercritical regime, values of P between —0.9
and -1 lead typically to the AO case, whereas higher values of
Py result in the SO configuration.

The bifurcations of the SO and A0 solutions from the trivial
solution appear at C, = 7.85 and C,, = 8.1, respectively. For
smaller values of C,, all solutions are decaying. The energy in
the bifurcation diagram is the total energy (nondimensional) of
the mean magnetic field inside the “convection zone”,

E=-<

(B)*aV.
2 Jez

®

At first, the energy of the SO solution grows faster with C,, than
the energy of the A0 solution. Beyond C,, = 14 the energies
of the AO and SO solutions begin to approach each other, and
there is a crossover shortly before the discontinuity, at which
the energy of the solutions abruptly decreases.

In Fig. 2 we present the magnetic fields and fluid velocities
for the AO solution at different values of C,, below the discon-
tinuity. The geometry of the toroidal field becomes more com-
plicated with increasing C,, but still there is just one toroidal
field belt in each hemisphere. The contours of constant angular
velocity are almost perfectly cylindrical for small values of C,,,
and the angular velocity increases towards the poles. Increas-
ing C, influences only slightly the angular velocity near the
equatorial plane, but close to the poles €2 starts growing rapidly,
reaching its maximum at the poles, at the bottom of the convec-
tive shell. The radial gradient of the angular velocity, 9)/dr,
steepens with increasing C,, in the pole region.
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Fig. 2. Magnetic fields and fluid motions for stable, non-oscillatory
AO solutions with three different values of C,, . The columns show,
from left to right, respectively the magnetic field lines of the poloidal
field, contours of constant toroidal field, stream lines of the meridional
motions and contours of constant angular velocity
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Fig. 3. The discontinuity between the upper (u) and lower (d) energy
branches of the A0 and SO solutions, obtained with a resolution of
41 x 81 mesh points
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Fig. 4. Magnetic fields and fluid motions for the three different solutions
of family A at Cy = 21.5 (resolution 41 x 81 mesh points). From top
to bottom respectively, the initial parities are —0.88, —0.85 and —0.80

In Fig. 3 we show a “close-up” of the bifurcation diagram at
the discontinuity. Clearly, there are two distinct families, which
we call family A and family S. They both consist of two separate
branches (upper and lower) divided by the energy “jump”, and
of a mixed parity state. The parity of the mixed parity state is
P =~ 0.61 M™") in family S, and P = —0.56 (M ™) in family
A. Tt is remarkable that the mixed parity state is indeed both
steady and stable. In fact, all solutions presented here are steady
if C,, < 22.5. This is consistent with the differential rotation not
being very strong (the conventional parameter Co = AQR? /n;
is only around 200). Also, the meridional flow is rather strong
and delays the transition from steady to oscillatory solutions.

The field geometry changes at the discontinuity as abruptly
as the energy of the mean magnetic field. This can be seen
in Fig. 4, where we have plotted the magnetic fields and fluid
velocities for the upper and lower branch solutions and for the
mixed parity state of family A. In each case the value of C,
is the same, 21.5. Clearly, the lower branch solution, A0,
shows two toroidal field belts in each hemisphere instead of just
one. The mixed parity state represents an intermediate case with
one toroidal field belt in one hemisphere. Where there are two
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Fig. 5. The bifurcation diagram near the discontinuity presented sep-
arately for families A and S, with the corresponding poloidal fields
(resolution 41 x 81 mesh points)

toroidal field belts, the angular velocity is strongly decelerated
at the pole, especially in the uppermost layer of the convective
zone.

In Fig. 5 we have plotted the bifurcation diagram at the
discontinuity separately for the A and S families and, for the
purpose of better illustration, we also give the corresponding
poloidal field geometries.

At some values of C,, there can be as many as four different
types of (meta)stable solutions (Fig. 3). As we stated earlier, the
initial parity, Fy, determines the type of the solution. We have
presented this relation between F and the type of the solution in
Table 1 for three values of C,,. The table shows that one or two
types of solutions appear only in a certain critical regime of Fj.
For instance, at C, = 21.4 both mixed parity states were found
in an extremely narrow range of Fy. At C,, = 21.5 the lower
branch A0 solution came up for just one value of Fy. Therefore
it is possible that, by carrying out a large number of simulations
with very small increments of P, around the critical regime,
more than four different solutions could be found at some value
of C,. (But note that our initial field geometry is a ‘hidden
variable’ — we fixed this arbitrarily and chose to vary Fy. With
a different choice of the geometry, the relation between F and
the final state might be slightly different.)

Table 1. The relation between P, and the type of the solution for three
values of C, (resolution 41 x 81 mesh points)

Co, — 214 21.5 21.6
S0©@ > —0.79 > —0.79 > —0.79
M* —0.793 - -

A09 - -0.8 < —0.99
M~ | —0.8..—0.795 | —0.86.. — 0.82 | —0.95.. — 0.8
AQW < —0.81 < —0.865 -

SO(U) _ _ _
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Beyond C,, = 22.5 we carried out only a few simulations and
most of them with the lower resolution. At C, = 23.2 we found
“semi-oscillating” AO and SO solutions which show irregular,
chaotic “pulses” of the otherwise steady magnetic energy and
parity, with a duration of = 0.2. The “pulses” emerged with a
period of ~0.5 and ~0.8 for the SO and AO cases, respectively,
though the period seemed to become gradually longer with time.
Above C, = 23.5 we found steadily oscillating solutions. Their
energy amplitude and cycle period decreases with increasing
C,. The largest value of C,, we used in the simulations was 25.

4. Astrophysical implications

Our results might have important astrophysical implications for
stars where the dominant feedback on the dynamo is from the
large scale fluid motions driven by the Lorentz force of the mean
magnetic field. The dependence on the dynamo number C,, may
be understood as a dependence on the angular velocity of the
star. Of course, Ta is also a function of the angular velocity, and
we have kept this constant, so our remarks cannot be more than
speculative and incomplete. The dependence of the magnetic
energy on C,, would then possibly correspond to a dependence
of measures of stellar activity (e.g. the Ca II HK emission) on
stellar rotation rate. Based on our results, we might expect under
certain conditions a sudden drop in the stellar activity parameter
above some critical rotation speed.

Such a behaviour has not been observed so far. However,
it may be useful to recall a related behaviour where the (ap-
propriately normalized) stellar cycle frequency is observed to
increase with the inverse Rossby number along two discon-
nected branches (Saar & Baliunas 1992). Our model is too sim-
ple and cannot be applied to such particular cases, especially
because in the parameter regime displayed here all solutions
are non-oscillatory. Nevertheless, we suspect that the discontin-
uous behaviour observed for stellar cycle frequencies might be
a consequence of a systematic change in the field geometry of
the type similar to that seen in the present paper.

Most of our knowledge concerning the dependence of stel-
lar activity parameters on the angular velocity is currently based
on the Mt. Wilson Ca II time series. However, in the near future
extensive results for giant stars in clusters are to be expected
(Baliunas et al., private communication). This is interesting be-
cause it offers the possibility that new patterns of activity may
appear.
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