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We consider mean-field dynamo models in uniformly rotating spheres and spherical shells, with anisotropic 
alpha and magnetic diffusivity tensors which are functions of the inverse Rossby number, R*. When we 
include an a-quenching nonlinearity we show that, for all values of Q* considered, nonaxisymmetric 
magnetic fields are stable to axisymmetric perturbations. However the stability of nonaxisymmetric 
magnetic fields is weakened for large values of R*, which would make the generation of axisymmetric 
magnetic fields more probable. When a small amount of differential rotation is introduced, only axisymmet- 
ric dipole-like solutions are stable. We draw attention to the possibility that the nonaxisymmetric magnetic 
fields of Uranus and Neptune could be the result of anisotropic alpha and magnetic diffusivity tensors. The 
more nearly axisymmetric magnetic fields of Jupiter and Saturn could result from their more rapid rotation, 
or possibly because of internal differential rotation. 

KEY WORDS: MHD, magnetic fields, dynamo theory, giant planets. 

1. INTRODUCTION 

The dipole moments of the magnetic fields of Jupiter and Saturn are quite closely 
aligned with the rotation axes, in contrast to the magnetic fields of Uranus and 
Neptune which are highly nonaxisymmetric with dipole moments almost perpen- 
dicular to the rotation axes. The origin of this difference is very puzzling. Possible 
explanations include that Uranus and Neptune just happen to be in a state of field 
reversal, similar to the reversals found in geological records of the earth’s magnetic field 
(Schultz and Paulikas, 1990; Radler and Ness, 1990), or that the types of dynamos that 
operate in Uranus and Neptune are fundamentally different from those of Jupiter and 
Saturn (Connerney et al., 1991), in that the fields of Uranus and Neptune are generated 
close to the surfaces of these planets, whereas the fields of Jupiter and Saturn are 
generated in deeper layers. For example, Stevenson (1982) proposed that the very high 

* Present address: Nordita, Blegdamsvej 17, DK-2100 Copenhagen @, Denmark. 
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230 D. MOSS AND A. BRANDENBURG 

degree of axisymmetry of Saturn is related to the presence of significant differential 
rotation (see also Charbonneau and Bagenal, 1995), which may be absent or less strong 
in the other planets. For a brief overview of these matters see the first section of Bagenal 
(1992). Ruzmaikin and Starchenko (1991) suggested that in Uranus and Neptune, 
dynamo action occurs in a thin shell at the bottom ofthe ocean ofwater, liquid methane 
and ammonia, where the electrical conductivity is high. They argue that both axisym- 
metric and nonaxisymmetric fields are excited, and that their superposition leads to 
a field with an inclination angle close to the observed value (58" for Uranus and 47" for 
Neptune). 

The generation of large scale magnetic fields in planets is generally explained in 
terms of dynamo theory. (Primordial magnetic fields will have decayed because 
of Ohmic dissipation.) However, from Cowling's (1934) 'anti-dynamo' theorem it 
is clear that the generated magnetic fields have to be nonaxisymmetric at some 
scale. Another complication is that a large range of length scales is involved. In order to 
make this fully three-dimensional, multi-scale problem tractable, statistical or mean- 
field theories have been developed. These theories permit solutions for the mean 
magnetic field by introducing statistical or in some cases spatial and/or temporal 
averages (Braginsky, 1964; Steenbeck et al., 1966). They have in common that the 
effects of small scale magnetic and velocity fields are subsumed in the so-called a-effect 
(due to rotation and the resulting lack of mirror symmetry) and a small scale (or 
turbulent) magnetic diffusivity (Moffatt, 1978; Parker, 1979; Krause and Radler, 1980; 
Zeldovich et al., 1983). Cowling's theorem is satisfied by the intrinsic lack of axisym- 
metry of the small scale fields, and the resulting mean magnetic fields are usually 
axisymmetric, but nonaxisymmetric mean fields are also possible (provided, of course, 
that one does not average over azimuth). However, nonaxisymmetric fields are 
generally less easily excited, especially when differential rotation is present (Radler, 
1986a). 

In the framework of mean-field dynamo theory there are two important mechanisms 
that can be responsible for a preference for nonaxisymrnetric magnetic fields. These are 
anisotropy of the a-effect (Rudiger, 1980; Rudiger and Elstner, 1994), and the interac- 
tion between self-consistently generated large scale motions and the magnetic field 
(Barker and Moss, 1993,1994). It is natural that the two effects together may operate in 
spherical bodies like planets and stars. Under special conditions, when the two 
induction effects (u-effect and differential rotation) operate in separate layers, there is 
a narrow strip in parameter space where a weak differential rotation can also lead to 
a preference of nonaxisymmetric modes (Roberts and Stix, 1972; Moss et al., 1991). The 
possibility of the dynamo active layers being very thin (Ruzmaikin and Starchenko, 
199 1) does bring the excitation conditions for axisymmetric and nonaxisymmetric 
modes closer together (Brandenburg et al., 1989a), but this effect alone does not lead to 
a preference for nonaxisymmetric modes. The lifetimes of planetary magnetic fields are 
long compared to their turbulent diffusion times, and therefore transient magnetic 
fields will hardly survive. This means that, in the nonlinear regime, we are mostly 
interested in stable solutions. It is important to note that nonlinear stability cannot be 
predicted from linear theory (Brandenburg et al., 1989b; Jennings and Weiss, 1991): in 
particular, a superposition of linear solutions is then meaningless. Thus, it appears to us 
that we are still far away from a firmly based understanding of the origin of the 
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MAGNETIC FIELDS IN THE GIANT PLANETS 23 1 

nonaxisymmetric magnetic fields present in some of the giant planets. One potentially 
important factor, which has not yet been emphasized in this context, is the possibility of 
anisotropies in the a-effect, i.e. that c( is really a tensor. 

Thus, in the present paper we focus attention on the anisotropy of the a-effect, and 
assume that the effects of large scale flows are negligible. Our motivation is two-fold. 
Firstly, a recent analysis by Rudiger and Kitchatinov (1993) yields, under certain 
approximations and restrictions, the complete expressions for aij and qijk (the a-effect 
and diffusion tensors) for arbitrary rotation rates. However, a systematic parameter 
study for spherical, nonlinear models is still lacking. Secondly, the rotation periods of 
the outer planets, 2n/Q are very short compared to the turbulent correlation times, 
z,,,,. This plausibly leads to model independent features, including a high anisotropy of 
the a-effect with a very small component along the direction of rotation, and an 
enhanced small scale magnetic diffusivity along the direction of rotation. This is 
reflected in the expressions for aij  and qijk given by Rudiger and Kitchatinov (1993), 
which we apply below to the giant planets. Although the detailed tensorial structure 
may still be uncertain, we feel that by adopting such expressions for aij and qijk we, at 
least, introduce some of the major effects resulting from the inherent anisotropy of the 
small scale or turbulent motions. 

In the present paper we study a sequence of dynamo models in spheres with different 
inverse Rossby numbers, R* = ~QZ~,,,, where z,,,, is a correlation time of the small scale 
motions, and compute the magnetic field evolution for certain initial conditions. 
Physically, the parameter Q* measures the tendency of the Coriolis force to introduce 
anisotropy in otherwise isotropic turbulence. In order to isolate the effects of large 
inverse Rossby numbers, we ignore the details of the internal structure of the giant 
planets. However, in some cases we do go a step further by also considering dynamo 
action in a spherical shell, which may be more appropriate for Uranus and Neptune. 
We show that the basic consequences of the anisotropies of uij and qijk are indeed also 
present when the dynamo action is confined to a shell. In most of these calculations we 
assume the rotation to be uniform, i.e. we neglect differential rotation, but we present 
one calculation in which a modest differential rotation has been included. 

2. THEMODEL 

The evolution of the mean magnetic field (B) is governed by the dynamo equation 

where (u) is the mean velocity, C is the turbulent electromotive force resulting from the 
small scale motions (Krause and Radler, 1980), and q the microscopic magnetic 
diffusivity (inversely proportional to the electrical conductivity). We solve (1) inside 
a sphere of radius R, and match the solution to an external potential field that vanishes 
at infinity. As usual, we express the turbulent electromotive force as Ei = clij(Bj) + 
q i j k ( B j , k ) .  We adopt the expressions for the tensors ai j  and qijk that have been derived 
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232 D. MOSS AND A. BRANDENBURG 

by Rudiger and Kitchatinov (1993), and are summarized in the paper by Rudiger and 
Brandenburg (1995) in the context of a spherical model. In their model the anisotropy 
results primarily from rotation via the Coriolis force, but also from the vertical 
stratification. The inverse Rossby number, R*, is the governing parameter determining 
the strength of the a-effect, and we shall use R* as the bifurcation parameter. The tensor 
structure of ai j  and yijk is given by 

where $, $a, $,, q51, (p2 are known functions of Q* (cf. Rudiger and Brandenburg, 1995). 
(For illustration, when R* = 40, the numerical values of $,$o,$z, 41 and hre 
respectively 3.9 x lo-’, 6.9 x -2.2 x 2.9 x lo-’, 9.0 x These 
numbers show that the dominant contribution comes from $ and 41.) For 52* >> 1, we 
have $ z 7r/(2R*) and (pl M 3n/(8Q*), and the expressions (2) and (3) then take the 
approximate forms 

In these formulae, 2 is the unit vector in the direction along the rotation axis, and 
U = Vy, is the gradient of turbulent intensity, which is measured by the basic value of 
the turbulent diffusivity yl;  see below. The simplified expressions (4) and (5) show that 
the z-component of the a tensor tends to vanish almost completely, while the turbulent 
diffusion along z can be almost doubled, compared with the value in the absence of 
rotation. These features appear to be robust and model independent. [For the actual 
computations we still used the full expressions (2) and (3).] In our model, the a-effect is 
due to the stratification in the turbulent intensity u,, which is quantified in terms of 
a reference value of the turbulent magnetic diffusivity, y1 = ~u~z,,,,, assumed to be 
much larger than the microscopic value. Somewhat arbitrarily, we adopt a profile for yo 
with a constant gradient, y,(r) = yl ( l  + r/R),  where R is the radius of the sphere, and 
use spherical polar coordinates ( I ,  0,4). The components of the a-effect are then 
proportional to U ,  = Y*,dq,/dr = tky l  /R.  We introduce a-quenching as the nonlinearity 
that causes the magnetic field to saturate, multiplying 4, $co and $ z  by 1/[1 +a, 
(B(r ,  B,q5, t))’], with a, = 1 defining our field scaling. The effect of the Lorentz force on 
the large scale motions would also provide a back reaction on the magnetic field via the 
Taylor constraint (e.g. Kirk and Stevenson, 1987), but this is ignored in the present 
paper. 

The computational method and the code adopted are described by Barker and Moss 
(1994). We use second order finite differences in the meridional plane and spectral 
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MAGNETIC FIELDS IN THE GIANT PLANETS 233 

derivatives in the azimuthal direction. The equations are advanced in time using 
a modified DuFort-Frankel scheme, which is of second order and unconditionally 
stable with respect to the diffusion operator. The interior field fits on to a potential field 
in r > R. At the centre, r = 0, regularity conditions are imposed. In the one case where 
we solve the equations in a shell, 0.5 I r/R I 1, we use a perfect conductor boundary 
condition at  I = 0.5 R. 

In most of the cases described below, the number of mesh points was 31 x 61 in 
0 I rlR I 1,0 4 0 I n, and the number of collocation points in the &direction was 4. 
We did check that the computation at Q* = 200 was satisfactorily reproduced at 
a resolution of 61 x 121. Based on earlier comparisons we feel that the relatively low 
number of collocation points is adequate, even for Q* = 200. It is indeed quite typical 
for nonaxisymmetric mean-field dynamo models that the energy contained in the 
higher Fourier modes decays rather rapidly (see also Radler ef a!., 1990). 

3. CRITICAL VALUES O F  Q* 

We begin our investigation by determining the critical values of Q*, above which linear 
modes of different magnetic field geometry become excited. We consider dynamo 
action both in a full sphere as well as in a spherical shell with an inner radius of 0.5 R. 
The basic modes are the axisymmetric solutions that are either symmetric or antisym- 
metric with respect to the equatorial plane, SO and AO, respectively, and the corre- 
sponding nonaxisymmetric counterparts with azimuthal dependence eim@ with 
m = 1: S1 and Al, respectively. The results for the critical values Q,*,, for the onset of 
dynamo action are given in Table 1. (A study of somewhat similar solutions, for 
nonlinear and anisotropic a-effect, but isotropic and uniform q, has been performed by 
Radler et al. (1990), where further properties of those different types of solutions are 
also discussed.) 

For each of the two models described above, the S1 mode is the easiest to excite. The 
topology of this solution is that of a dipole lying in the equatorial plane. For the 
complete sphere, the mode next excited is Al,  followed by SO and finally AO. In the case 
of a spherical shell the critical values for SO and A0 are indistinguishable, which is a well 
known property of shell dynamos and results from the close similarity of the two field 
geometries. Note also that the critical values of Q* are rather large (of the order of 30). 
In other cases studied previously, where differential rotation also contributes to the 
magnetic field generation, the critical values are between 1 and 5. 

Table 1 Critical values for the onset of dynamo 
action 

Mode A0 SO A1 S1 

Full sphere 37.0 36.4 33.1 27.9 
Spherical shell 35.0 35.0 35.8 32.3 
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234 D. MOSS AND A. BRANDENBURG 

4. NONLINEAR MODELS 

We now turn to the investigation of a sequence of nonlinear models in a complete 
sphere as a function of Q*. In all cases investigated (Q* I200), we find that the stable 
solutions have S1 topology (Figures 1 and 2). There are marked deviations from 
a simple perpendicular dipole type configuration, with significant contributions from 
higher multipoles leading to a more complicated latitudinal structure. However, since 
the solution is matched to an external potential field, higher spherical harmonics decay 
more rapidly with radius than the lowest dipole mode. Thus, the field visible from 
a space craft would still resemble that of a perpendicular dipole; see Figure 3. 

Coriolis number: 100 (same, but southern hemisphere) 

Figure 1 
refer to negative values. R* = 100. 

Contours of the radial magnetic field component on the surface of the sphere. Dotted contours 

Coriolis number: 200 (same, but southern hemisohere) 

Figure 2 Same as Figure I ,  but for R* = 200. 
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MAGNETIC FIELDS IN THE GIANT PLANETS 

Figure 3 
R* = 100, (b) R* = 200. 

Three-dimensional visualization of field lines outside the dynamo active sphere, r > R.  (a) 

For large values of R*, the time for an initially almost axisymmetric solution to 
evolve to S1 becomes progressively longer as i2* increases. For Q* = 200, when we start 
the computation from an arbitrary configuration the solution first evolves rapidly to 
near the A0 state, and then the global parity increases slowly to near P = + 1. Here 
P = (E”) - E(A) ) / (E(S)  + FA’) is a measure of the parity ( f 1 for pure symmetry/anti- 
symmetry), where E(s) and E(A) are the energies in the field components of the same 
parity as pure quadrupole/dipole fields. Only after more than 50 diffusion times 
(T,,,, = RZ/q do the nonaxisymmetric fields begin to contribute even 1 O h  of the total 
energy. Their strength then steadily, but very slowly, increases. We did not follow this 
solution to its final equilibrium state, but instead constructed directly the S1 solution 
(by using suitable initial conditions) and showed that it was stable to an arbitrary 
perturbation. We deduce from these experiments that the stability of the nonaxisym- 
metric state becomes weaker as R* increases and expect (although we have not proved 
it) that for large enough R* an axisymmetric state will be stable. This behavior in the far 
nonlinear regime is counter-intuitive and could not have been guessed from linear 
theory. The nonlinear feedback apparently drives the distribution of a into a state that 
is more favorable for axisymmetric modes. 

It is well known that a modest differential rotation can destabilize nonaxisymmetric 
solutions (Radler, 1986b; Moss et al., 1990, 1991). In order to test this we now include 
a weak differential rotation with a profile resembling the zonal flows of Jupiter and 
Saturn. For this purpose we chose the profile 

6R = 6Rocos (1 28) (sin 8)5, (6 )  

where 8 is colatitude. This profile looks similar to those given by Ingersoll and Pollard 
(1982). We continued the same profile into the interior such that R is only a function 
of the distance from the axis. Assuming typical zonal velocities of 100-500m/s, 
and an outer radius R = 60000km and a rotation period P = loh, we have 
6Qo/Clo z VP/(2nR) z 0.01-0.05. This ratio is rather small (at least compared to the 
solar dynamo!-but see below), and is consistent with planetary dynamos often being 
considered to be so-called a’ dynamos, as opposed to the aCl dynamo which is believed 
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236 D. MOSS AND A. BRANDENBURG 

to operate in the sun. For 6R,/R, = 0.02 and R* = 100 we now find only the A0 
configuration to be stable to arbitrary perturbations (Figure 4). 

5. APPLICATION TO PLANETS 

Our results clearly demonstrate the possibility of the excitation of stable nonaxisym- 
metric fields over a broad range of inverse Rossby numbers, R*. When R* becomes 
large ( -  200) such nonaxisymmetric states are approached very slowly, suggesting 
that nonaxisymmetric fields would eventually lose their stability if R* increased 
further. The inclusion of effects such as differential rotation also favors axisymmetric 
fields for larger values of R*. Although we have not performed separate nonlinear 
calculations for a spherical shell, the similarity of the linear results of Table 1 for the 
sphere and spherical shell do not lead us to expect significant differences in nonlinear 
behavior. 

It is tempting to identify the sequence of models with increasing values of f2* with the 
occurrence of different field geometries observed for the outer planets (cf. Radler and 
Ness, 1990). Of course, the stable fields in our models are either strictly axisymmetric or 
strictly nonaxisymmetric, whereas the fields of Uranus and Neptune can be approxi- 
mated by a combination of rn = 0 and rn = 1 components. But we can hardly expect to 
reproduce detailed planetary field structures with such a simple model: our major point 
is that the introduction of anisotropies in the a-effect can remove the preference for 
strictly axisymmetric fields. Ingersoll and Pollard (1982) give typical time scales for 
Jupiter and Saturn of around 5 days, and they also quote a similar value for the earth. 
This implies values of the inverse Rossby number around 160. The rotation periods of 
Uranus and Nepture are longer (approximately 17h and 16h, respectively, instead of 
about loh and 1 lh  for Jupiter and Saturn, e.g. Bagenal, 1992) and, although we do not 

Coriolis number: 100 with DR 

Figure 4 The radial magnetic field component and field lines for a model with weak differential rotation 
included. hQ,& = 0.02, Q* = 100. 
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MAGNETIC FIELDS IN THE GIANT PLANETS 231 

know the values of T~~~~ in those cases, we expect that Q* is also smaller. Thus, the 
general picture seems to be that fields with strong nonaxisymmetries are to be expected 
for small and intermediate values of R*, and that the fields could be predominantly 
axisymmetric for very large values of R*. Our limited experimentation also suggests 
that a modest differential rotation may play a role in determining the stable field 
configuration. 

So far we have only considered the value of R*. In order to see how other aspects 
of our model compare with the real physical situation, we now discuss the values 
of the turbulent velocity, the alpha effect and the turbulent diffusivity. The turbulent 
velocity u, is usually estimated from mixing length theory, where the total thermal 
flux is of order pu? (cf. Torbett and Smoluchowski, 1980; Stevenson, 1983; Ruzmaikin 
and Starchenko, 1991). This leads to values for u, of the order of lcm/s, with 
that for Jupiter being probably rather larger than for Uranus. The corresponding 
value of a is much smaller than the differential velocity, 6RR, adopted in the previous 
section. It is therefore not surprising that global differential rotation would have 
a very strong effect, if it were present. (Further, our chosen value of 6Q/Q is now 
seen to imply a differential rotation that is large compared with our assumed a-effect.) 
However, we know that the turbulence effects that lead to nonuniform rotation in 
stellar convection zones are strongly reduced for rapid rotation (Kitchatinov and 
Rudiger, 1993). It is therefore plausible that, in the interior of giant planets, differential 
rotation is virtually zero. Indeed, it seems that this may be required on quite general 
grounds, if the nonaxisymmetric magnetic fields of the outer planets are to be explained 
as a product of dynamo action. Moreover, the ratio of toroidal to poloidal magnetic 
fields, which is of the order of (6RR/a)”2, would, even for modest differential rotation, 
be so large that the internal toroidal field strength would greatly exceed the equiparti- 
tion value. 

The above estimate for u, implies that the correlation length of the small scale 
motions, / = u~T,,,,, is much smaller than the outer radius, i.e. &/R = 0 ( 
The value of a is about u~z,,,,/L, where L is the scale height of the turbulent intensity. 
In our model we have L= R, because we assumed a linear profile for qo, which 
is the simplest assumption. Therefore, a is much smaller than u,. Nevertheless, even 
in this ‘worst’ case the dynamo would still be excited, because the turbulent diffusivity 
is also very small ( z  104cm2/s). For the metallic hydrogen layer of Jupiter, the 
microscopic value of q is, at 4 x 10’ cm2/s (Stevenson, 1983), still below the turbulent 
value. However, for the metallic water layer of Uranus, where q lo4 cm’/s (Torbett 
and Smoluchowski, 1980), this is no longer the case and the microscopic contribution 
has to be included. In that case the dynamo number, aR/(q + q,), is about 10 for 
Uranus. This is approximately the critical value above which dynamo action sets 
in, although a little smaller. The corresponding value for Jupiter is about 400, 
which is a highly supercritical value. In reality, since L/R < 1, those values have to be 
multiplied by (L/R)-’ ,  and this would make the dynamo in Uranus also clearly 
supercritical. 

With the values given in the paragraph above, we can estimate the maximum 
admissable value of 6Q/R below which stable nonaxisymmetric magnetic fields can still 
be found. Experience with various classes of aR dynamo models (e.g. Radler, 1986a; 
Riidiger and Elstner, 1994; Moss, unpublished) shows that this is case as long as 
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238 D. MOSS AND A. BRANDENBURG 

C, = SfZRZ/v, is less than about lo3, i.e. 

For Uranus this yields (Xl/Q),,, = 3 x 10- ', whereas for Jupiter the value is smaller by 
a factor of thirty (10- '). This difference is mainly due to the larger radius. These values 
may sound rather small, but we should note that if the westward drift ofthe Earth's field 
were to be caused by differential rotation, the value of 6Q/Q is then also estimated to be 
very small, at about (but note that nonaxisymmetric dynamo fields normally 
exhibit longitudinal drift even in the absence of differential rotation, e.g. Radler, 1986a). 

It cannot be ruled out that the value of the correlation time is really one or two orders 
of magnitude larger that the value adopted above. This would increase the values of 
a and Q*, i.e. the dynamo would become even more supercritical. For very large values 
of Q* nonaxisymmetric magnetic fields would tend to be destabilized. The precise value 
of the correlation time, above which this would happen, is probably very model 
dependent and therefore uncertain. 

There are further obvious problems in applying our models to actual planets. In 
Saturn and Jupiter dynamos presumably operate in their metallic cores, whereas in 
Uranus and Neptune a dynamo may instead operate in the outer layers, consisting of 
liquid water, ammonia, and methane (e.g. Hubbard, 1984), so the physical and 
geometrical conditions are therefore rather different. (However our results do suggest 
that geometrical differences may not be very important.) Thus we can consider the 
present investigation as only a first step towards understanding the fundamental 
properties of rapidly rotating bodies with relatively weak or no differential rotation. 

6. CONCLUSIONS 

According to our current understanding, planetary interiors where magnetic field 
are generated by dynamo action, are likely to be almost rigidly rotating. However, 
given the very high rotation rates, the small scale motions are likely to be highly 
anisotropic. Consequently, a model for the magnetic fields of the giant planets must 
include these anisotropy effects. We have therefore computed a sequence of dynamo 
models for rigidly rotating spheres and spherical shells, with emphasis on the effects of 
anisotropy . 

Our main conclusion is that, both in the linear and in the nonlinear regime, 
nonaxisymmetric magnetic fields are a natural consequence of such a model. As the 
angular velocity increases, however, the stability of the nonaxisymmetric magnetic 
fields appears to weaken. This trend agrees with the observed behavior of the magnetic 
fields of the outer planets: as the rotation rate increases, the fields tend to be more nearly 
axisymmetric. We cannot exclude the possibility that this could be coincidence, but it is 
worthwhile noting that this is qualitatively the behavior one should expect from the 
point of dynamo theory. We would reiterate that our treatment of the a-tensor is fairly 
rudimentary, in that we have adopted a rather simple model, and have ignored the 
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contributions of density stratification. If we included the effects ofdensity stratification, 
the structure of the a-tensor would not change, but only the magnitude of its 
components (see Rudiger and Kitchatinov, 1993). Thus, we feel that we have introduced 
a key element into our model (and it appears that anisotropy quite generally favors 
nonaxisymmetric field generation). There are a number of other obvious improvements 
that might be made to our model, but their implementation would go far beyond the 
scope of the present work. Our main intention is to make the point that anisotropy in 
the LY effect is a hitherto neglected, but potentially important, ingredient of planetary 
dynamo models. 

Finally, we should like to reemphasize a key point: a rather small amount of 
differential rotation in an electrically conducting fluid always tends to destroy 
nonaxisymmetric magnetic fields, by winding them up and so bringing together field 
lines of opposing direction (Radler, 1986b; Moss et al., 1990). This appears to be a quite 
general result. Nevertheless, in the surface layers where the electrical conductivity is 
low, differential rotation will have almost no effect. However, Charbonneau and 
Bagenal(l995) argue that Saturn’s envelope is sufficiently deep for differential rotation 
actually to extend into deeper regions where the conductivity is large enough to destroy 
nonaxisymmetric magnetic field components. In Uranus and Neptune, on the other 
hand, the heat fluxes and convective velocities are smaller than in Jupiter and Saturn, 
and they are therefore less likely to develop significant differential rotation. Clearly, all 
planets should really be considered individually. Nevertheless, due to their rapid 
rotation, they all have the potential to show nonaxisymmetric magnetic fields, but the 
degree to which this is realized may vary. 
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