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ABSTRACT

Ambipolar diffusion, or ion-neutral drift, can lead to steepening of the magnetic field profile and even to the
formation of a singularity in the current density. These results are based on an approximate treatment of
ambipolar drift in which the ion pressure is assumed vanishingly small and the frictional coupling is assumed
to be very strong, so that the medium can be treated as a single fluid. This steepening, if it really occurs, must
act to facilitate magnetic reconnection in the interstellar medium, and so could have important consequences
for the structure and evolution of the galactic magnetic field on both global and local scales.

In actuality, the formation of a singularity must be prevented by physical effects omitted by the strong
coupling approximation. In this paper we solve the coupled equations for charged and neutral fluids in a
simple slab geometry, which was previously shown to evolve to a singularity in the strong coupling approx-
imation. We show that both ion pressure and resistivity play a role in removing the singularity, but that, for
parameters characteristic of the interstellar medium, the peak current density is nearly independent of ion
pressure and scales inversely with resistivity. The current gradient length scale, however, does depend on ion
pressure. In the end, effects outside the fluid approximation, such as the finite ion gyroradius, impose the
strictest limit on the evolution of the magnetic profile.

Subject headings: diffusion — ISM: magnetic fields — MHD

1. INTRODUCTION

In weakly ionized gases, such as the cold, dense portions of
the interstellar medium, the magnetic field, which is carried by
the ions, can slip or “diffuse” through the neutral gas. The
process is usually called ambipolar diffusion (e.g., Spitzer 1978).
It has been investigated primarily as a mechanism for the
escape of magnetic flux from dense clouds, as originally pro-
posed by Mestel & Spitzer (1956), and for the damping of
hydromagnetic fluctuations (Kulsrud & Pearce 1969); see
McKee et al. (1993) for a recent review of these processes.

When the ionization fraction is low and the momentum-
exchange time between ions and neutrals is short, it is natural
to treat ambipolar drift in the strong coupling approximation
(Shu 1983). The essence of this approximation is that the ion-
neutral drift velocity, u; — u,, is balanced by the Lorentz force,
leading to terms in the magnetic induction equation which
resemble nonlinear diffusion, with a diffusion coefficient pro-
portional to the square of the magnetic field strength.

It is well known that sharp fronts can form and propagate in
the presence of nonlinear diffusion (e.g., Zeldovich & Raizer
1967), and we have recently carried out a preliminary
investigation of this process in the interstellar medium
(Brandenburg & Zweibel 1994, hereafter BZ). We found that if
the field has a null and the medium is static, the magnetic
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profile in the vicinity of the null relaxes to a z!/3 profile (where

z measures the distance from the null); the corresponding elec-
tric current density is infinite. If the field does not have a null
but is forced by a sheared velocity field, sharp current profiles
also develop, although the current does not formally become
singular. Effects of this kind were also seen by Proctor &
Zweibel (1992) and by Mac Low et al. (1995).

This mechanism for developing sharp structures and large
current densities in the interstellar magnetic field seems to us to
be of considerable importance. Without such a mechanism, it is
difficult to understand how the magnetic field could ever
reconnect on astrophysically interesting timescales: the enor-
mous length scales and relatively large electrical conductivities
argue for long reconnection times. Only by reducing the mag-
netic length scale can reconnection times be appreciably short-
ened.

The strong coupling approximation must break down in the
vicinity of a singularity. The purpose of this paper is to investi-
gate this breakdown and to assess how far singularity forma-
tion actually proceeds when the assumption of strong coupling
is dropped and resistivity is included. We do this by solving the
time-dependent, compressible MHD equations for two fluids,
one charged and one neutral, which interact with one another
through ionization, recombination, and collisional momentum
exchange. In § 2 we discuss the basic equations and derive
approximate formulae for predicting their behavior. Our basic
result is that the z!/3 steady solution is replaced by a profile
which is linear in z as z approaches zero, so that the current
singularity is removed. The location at which the transition
from z/3 to z occurs depends primarily on the resistivity, colli-
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sion rate, and recombination rate, with all these factors enter-
ing because the inductive electric field associated with the
inflow must be ohmically driven near the stagnation point, and
the advection of ions inward by the flow must be balanced by
recombination. If we assume that these parameters have their
interstellar values, we find that the peak current density is
approximately inversely proportional to the resistivity. Thus,
ambipolar drift appears to remain a viable mechanism for pro-
moting magnetic reconnection in the weakly ionized inter-
stellar medium.

2. GOVERNING EQUATIONS AND LIMITING CASES

We consider the relaxation of a slab of weakly ionized fluid
containing a straight magnetic field. The electron and ion
fluids are well coupled by an ambipolar electric field over
length scales of interest (the Debye length is expected to be by
far the shortest length scale in the problem), so we treat only
two fluids: one charged, the other neutral. For simplicity we
consider only one ionized and one neutral species. We assume
that all quantities are functions of time ¢ and one space coordi-
nate z and that the magnetic field B points in the x direction.
Flow is driven by magnetic and gas pressure gradients and is in
the z direction. We simplify the problem by assuming that both
the charged and neutral fluids remain isothermal; thus, we
assume that radiative cooling dominates compressive and fric-
tional heating. This probably leads to an underestimate of the
effects of pressure, but solving the energy equations correctly
would complicate an already challenging problem, as it would
be necessary to include ohmic heating, viscous heating (from
both self- and interspecies collisions), collisional excitation and
radiative decay, and heat conduction by the neutrals and ions.

The governing equations are (e.g., Draine 1986)

0B 0 0B
E=—éz<u,-3—/1—5;>, (1)
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where

F = —pyvi(u; — w,) + {p,u, — ap?u; , (6)
G= Cpn - apxz . (7)

Here c is the sound speed (kT/m)'/2, p is the density, { is the
cosmic-ray ionization rate, « is the recombination rate per unit
volume, and A and v are the magnetic diffusivity and the kine-
matic viscosity, respectively.

In principle, these viscosities should differ from one another
and should include the effect of momentum transfer between
species over a collisional mean free path. In practice, it will
turn out that the dynamics of the neutral fluid is rather unim-
portant, so the treatment of its viscosity does not matter much.
The major role of viscosity in the ion dynamics is numerical
stabilization.

The factor of 2 multiplying the ion pressure accounts for
electron pressure. The subscripts i and n refer to the ion and
neutral components, respectively. The ion-neutral collision fre-
quency is given by v;, = yp,, where y is the drag coefficient due
to the momentum exchange in ion-neutral collisions, and y =
{ov)/(m; + m,), where {ov) is the momentum transfer rate,
and m; and m,, are the particle masses of ions and neutrals.

We first review the strong coupling approximation. This
consists of taking the ion density to zero in equation (2) every-
where but in the friction term and in assuming that G is the
dominant term in equation (4). That is, the Lorentz force is
assumed to be balanced by ion-neutral friction, and ionization
equilibrium is assumed to hold. Moreover, the neutral pressure
P, is assumed to dominate the magnetic pressure P, so the
fractional neutral density perturbation required to balance
magnetic forces is small, i.e., of order P,,/P,. This means that
the ion pressure perturbation itself is small, so ion pressure
gradients are negligible.

This is the essence of the strong coupling approximation.
When it is valid, the ion dynamics need not be calculated
explicitly, and the neutral dynamics are ignorable. Therefore,
the evolution of the magnetic field can be determined from the
magnetic induction equation alone. A less restrictive form of
the strong coupling approximation would be to neglect ion
pressure and inertia, but to include the effect of Lorentz forces
(transmitted by friction) on the neutrals. This case is obviously
of great interest in the interstellar medium. Applying the strong
coupling approximation to the case in which the magnetic field
initially has a null at z = 0 and setting the magnetic diffusivity
J = 0, we find that the location of the null is preserved and that
the magnetic field profile relaxes to a steady state with B oc z*/3
(BZ). The Lorentz force, and the ion velocity, then go as z 713,
This singularity in u; (or near singularity, as any resistivity at
all will remove the strong current at the origin) means that the
ion density must be driven away from ionization equilibrium
near the origin. The resulting ion pressure peak formed by the
strong convergent flow must become dynamically important
near the null. One of the main purposes of this paper is to
calculate the effect of ion pressure near the null point.

It is also interesting to consider the opposite limit, in which
ionization recombination, and frictional momentum transfer
are all negligibly weak. In this case, a steady state is reached (in
the nonresistive limit) when ion pressure and magnetic pres-
sure balance each other. The final state can be calculated
explicitly for any initial magnetic and ion density profiles using
Lagrangian methods. In general, the ion pressure has a peak in
the vicinity of the magnetic null. But if slow ionization and
recombination are turned on once equilibrium is reached, the
ion pressure peak will gradually disappear and the magnetic
field profile will approach a step function, with constant posi-
tive and negative values on either side of the null. This, of
course, is even more singular than the magnetic profiles pre-
dicted by the strong coupling approximation. However, we
have never seen evolution of this type in our simulations, pre-
sumably because ion-neutral friction cannot be neglected in
the parameter regime examined.

Returning to the full problem, we solve the equations of
motion numerically using the following (nonconservative)
formulation:

0B 0B u; *B
wT W By A ®)
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ou; ou; ,0lnp, 1 BoB It is worth noting that the second inequality in equation (16)
o U; oz 2¢; 0z an ; %z does not hold globally in the ISM, particularly in molecular
! clouds. It should be understood that we are looking at a local
¢ 0%*u; 0Ou; dlnp; model of the neighborhood of a neutral sheet, so the gas pres-

P\ 7+ (u; — u,) + v 02 + 0z oz )’ © sure is certainly expected to dominate over some range.

Pi We vary c; between 2.0 and 1, and put p,; = 0.1 and p,, =
ou, ou, ,0lnp, 10. This density ratio of ions to neutrals is not nearly as small
o W T ‘"o, as the ratio in cool H 1 and cold molecular gas, but computa-

tional problems arise if we make p; too small, so we hope that

Pi o*u, ou,dlnp, the value adopted is low enough to see effects that are typical

Ty e o (i — ) +v 022 + oz o0z )’ (10 for weakly ionized media. We furthermore put L = 1, which
" then fixes the units of length and time. Using y = 1-100, we

dlnp; Olnp; 0w ¢ Pn 1) have 7, = 1-100, which is much shorter than the ohmic diffu-

aw . 4T T oz + ;i %Pi » sion time 7o = 4 x 103, The Alfvén and acoustic times are

Ta; = 0.32, 74, = 3.2, 7; = 0.5, and 7, = 1. We vary { between

Olnp, u Olnp, Ou, ¢+ ap 2 (12) 107* and 107! and, in order to ensure initial ionization/

a " oz 0z Pi on recombination balance, we put « = {p,o/p%. Thus, 1, =

As boundary conditions, we require that the magnetic field and
the velocity vanish at z = 0, i.e, B = u; = u, = 0. In order to be
able to approach a steady state, we prescribe the densities and
magnetic field on the outer boundary z = L, where L is the
length of the computational domain, i.e., B = By, p; = p;9, and
Pn = Pno- As an initial condition, we choose B = B, z/L, u; =
U, = 0, Pi = Pios and Pn = Pno-

We solve the system of equations using a third-order Hyman
scheme for the time step and second-order finite differences on
a uniform mesh. We choose a value of A that is close to the
minimum value required for numerical stability. This value is
given by the maximum grid Reynolds number for the magnetic
field, R&¢ = ¢ §x/A, where dx is the mesh width and ¢ = max
(c;, ¢,). In practice, R&' cannot exceed the value of ~4. In all
cases presented here we used 1024 mesh points, ie.,
A = 2.4 x 10 *cL. The magnetic Prandtl number, P,, = v/4, is
kept fixed to a minimum value of P,, = 0.1. The time step is
always controlled by the Courant condition ¢t = 0.25dx/
c2 + v2;)"/2, where the numerical factor is determined by accu-
racy considerations for the scheme and v,; is the Alfvén speed
in the ionized component. Magnetic diffusion and viscosity are
too small to affect the time step. We have chosen the most
stringent of several possible time step conditions; in particular,
the fluid velocities never become large enough to compete with
the magnetosonic speeds.

Important timescales in the problem are the ohmic and
ambipolar diffusion times,

ta=LYL, tap=Lhup, (13)

where A,p = B2/(4nyp;o pro) is the ambipolar diffusion coeffi-
cient with respect to the outer values of the densities and the
magnetic field, the ionization/recombination timescales
Tion = (CpnO/piO)_l s> Tree = (“Pio)_ ! ’ (14)
and the acoustic and Alfvén timescales for ions and neutrals
T = L/(2c) , Tai = L/Vai» Tan= L/Van>
(15)
where v,; = Bo/(4np;0)'/? and v,, = Bo/(4mp,)'/%. The param-
eter regime of interest is

Pio¢i < B3/(4m) < pcq . (16)

Thus, we put ¢, = 1 and B2 = 4=, which gives the dimensions
for the velocity and magnetic field.

TC'I = L/C" b

Trec = 0.1-100. The mean free path of ions is [ = c,/v;, =
107'-1073, which is short compared to the macroscopic
scales, a point which we return toin § 3.3.

3. RESULTS

3.1. Oscillations

Immediately after starting the simulation, we find decaying
oscillations in all variables with a period P =~ 3.8 + 0.02 (for
y = 10). It is reasonable that there should be oscillatory relax-
ation, because the initial conditions do 'not satisfy force
balance. For comparison, we solved the dispersion relation for
compressive waves with a uniform background magnetic
field with B, for k = n/2, i.e., the lowest wavenumber consis-
tent with the boundary conditions. Both frequencies and decay
rates agree well with the numerical solution for a nonuniform
field. In the absence of a magnetic field, these oscillations still
exist as purely acoustic oscillations of the neutrals. In Table 1
we compare the decay rates obtained from the numerical solu-
tion and from the dispersion relation (denoted by
approximation).

In the parameter range investigated, we find that the ampli-
tudes of the five variables scale according to the following
approximate relation:

0B _ou; ou, op; Op,

BO Cn Cn Pi Pn

The decay rate is of the order of the ambipolar diffusion time,
but it does not scale linearly with 7,p,, which is in agreement
with the dispersion relation (see Table 1).

In Figure 1 we show the oscillations of all five variables (at
z =0.5) about their mean value. Note that the velocities
advance the magnetic field by n/2, whereas the densities are in

(17

64 66 68 70 72 74 76 78
4

Fi1G. 1.—Oscillations of all five variables (at z = 0.5) about their mean
value. { = 1073, y = 10 (run B0). Here f stands for one of the terms in eq. (16).
Solid line is for 6B/B,, dotted lines are for u,/c, and u,/c,, and dashed lines are
forélnp;and d1np,.
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TABLE 1
SUMMARY OF THE RUNS AND COMPARISON WITH APPROXIMATION
NUMERICAL SOLUTION APPROXIMATION
RUN y logl ¢« ¢ po REY B, z, ptpw ! B, z Pt T}
AO...... 10 —1 1 1 0.1 4 0.47 0.004 1.6 0.015 0.53 0.005 1.7 0.010
Al...... 10 -1 1 1 0.1 1 0.31 0.011 1.3 0.011 0.40 0.013 14 0.010
BO...... 10 -3 1 1 0.1 4 0.88 0.021 30 0.014 0.89 0.023 3.0 0.013
Bl...... 10 -3 1 1 0.1 1 0.80 0.047 2.6 0.015 0.81 0.052 2.7 0.013
B2...... 1 -3 1 1 0.1 4 0.99 0.018 34 0.038 0.99 0.020 34 0.038
B3...... 100 -3 1 1 0.1 4 0.49 0.037 1.6 0.002 0.53 0.045 1.7 0.002
CO...... 10 -3 0.5 1 0.1 4 0.75 0.010 6.7 0.009 0.76 0.010 6.7 0.010
Cl...... 10 -3 0.5 1 0.1 1 0.63 0.023 5.0 0.010 0.64 0.026 5.1 0.010
DO...... 10 -3 1 2 0.1 4 0.85 0.031 2.8 0.003 0.86 0.034 2.8 0.002
EO...... 10 —4 1 1 0.1 4 0.96 0.061 33 0.012 0.96 0.064 33 0.013
El...... 10 —4 1 1 0.1 1 0.92 0.117 3.1 0.012 093 0.135 32 0.013
Fl...... 10 -3 1 1 0.02 1 0.74 0.007 79 0.034 0.75 0.007 8.0 0.038

NoTe. The e-folding time of the oscillations, 7, is compared with the approximation obtained by solving the dispersion relation for a

uniform magnetic background field.

phase with the magnetic field. The neutral velocity advances
the ion velocity by a very small amount (see the two neighbor-
ing dotted lines), and similarly the neutral density advances the
ion density. This sign of phase shift is to be expected for mag-
netosonic waves in weakly ionized gas. For smaller values of y
(i.e., stronger ambipolar diffusion) this phase lag becomes
larger and close to 7/2.

3.2. Asymptotic Scaling Properties

In this section we investigate scaling properties of various
quantities and compare the numerical results with analytical
approximations. The various runs are summarized in Table 1,
and the solutions are parameterized in a way that is explained
below.

It is very time consuming to solve until we obtain a truly
steady state. Therefore we consider quantities that are aver-
aged over two periods. We are secure in doing so because, as
discussed in the preceding section, we have verified that the
oscillations are not caused by numerical errors but are fric-
tionally damped magnetosonic waves. Furthermore, we show
in § 3.4 that there is a reduced set of equations for the ions
which lead to the steady state that we now describe, without
oscillatory behavior.

On average, the center of mass does not change, so we have

(18)

Since p; < p,, 4, is small compared with #; (but only on
average!) and will be neglected for the current discussion. (In
the numerical computations it is, of course, always included.) A
comparison of the two profiles is given in Figure 2.

Sufficiently far away from the origin resistive effects will be
unimportant, and we expect asymptotic scaling properties. The

ﬁiai + ﬁnﬁn ~0.

0.10

T

Nl

rup(pa/ )

0.01

0.10

0.01

1.00
z
Fi1G. 2—Comparison of the averaged ion and neutral velocities for y = 10
and { = 0.1 (run A0). Deviations occur near z = 1.

ion pressure is only important near the origin and can be
neglected in the asymptotic regime; see Figure 3. Thus, on
average, we expect a balance between the Lorentz force and the
drag resulting from elastic collisions between ions and neutrals
as well as the momentum transfer associated with ionization
and recombination. From equation (9), we then obtain
B 0B
PiVin 0z

U X —

(19)
Here we have assumed that {p, < p;V;,. If that is not the case
(for example, in run AOQ, where (p, = 0.1p;V,,), we have to
replace p; Vi, = p; Vin + (Py -

In the steady state, or on average, the electric field is con-
stant, ie., i; B = —E, where E itself is positive. Using equation
(18), and integrating over z, we obtain

E3 = B(3) + lanﬁi ;’,'n(z - L) s (20)

which clearly satisfies the outer boundary condition. It is con-
venient to rewrite B in the form

B~ B,(1 +2/2,)'?, @1)

where B = (B3 — 12nEp, v;, L)'/ is the value of B extrapolated
to z =0, and z,/L = [(Bo/B,)* — 117! is the (negative) value
of z at which the extrapolated value of B would go through
zero. The asymptotic form of the ion velocity is

ai X ui*(l + Z/Z*)_l/3 H

where u;,, = — B2/(12nz, p;V;,)-

In Figure 4a we show the profile of B3 versus z, illustrating
that the Boc(z + z,)'/* scaling is indeed well reproduced.
Note, however, that there is a marked “offset” between the
outer solution and the origin such that the magnetic field
profile becomes even sharper than the ideal z!/3 solution (at

22

0.30F
0.25F — b e
i (¢pn/) % ]
g 0.20F E
0.15F —
0.10F ]
0.01 0.10 1.00

FiG. 3.—Profile of ion density and comparison with ({p,/x)"/? for run BO
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FiG. 4—(a) Profile of B? vs. z for two different values of the ohmic diffusion
(solid line, R¥® = 4; dashed line, R&' = 1). The inset shows B vs. z in the inner
part (0 < z < 0.1). Note the crossover from diffusive scaling (near z = 0) to the
ambipolar diffusive scaling (linear slope). (b) The corresponding current density
0B/0z for runs BO and B1.

least some distance away from z = 0). This offset is measured
by the quantity B, (see also Table 1). In order to understand
this somewhat surprising behavior and to predict its value for
given input parameters, we need to match the asymptotic
(outer) solution to the inner solution that is valid near the
origin.

3.3. Matching the Solution near the Origin

Near the origin, where the ion velocity must go to zero,
magnetic diffusion must dominate induction in order to keep
the electric field, E = — &; B + 10B/0z, uniform. Sufficiently
close to the origin we have A0B/dz = E, and the solution that
satisfies the inner boundary condition B(0) = 0 is therefore

= (E/)z = B,z/z, . (23)

Requiring now that the two solutions (20) and (21) match at the
transition point z = z,, we can eliminate E and obtain

24

where b = B,/B, is the normalized magnetic field at the tran-
sition point. Here we have assumed z, < L, which is satisfied in
the (for us) relevant case where A < 4,p.

In order to fix the value of z,, we need another relation
between B; and z;. Let us therefore recall that there are two
effects that prevent the asymptotic (z + z,)'/? solution from
extending all the way to the origin. Both ohmic diffusion itself
and the buildup of ion pressure prevent the ion velocity from
becoming singular at the origin (see also Fig. 2). In the com-
plete absence of ion pressure, resistivity alone would make the
magnetic pressure gradient, and thus u;, linear at the origin.
We will see that when the parameters of the problem take
values appropriate to the interstellar medium, ion pressure is
large enough to decelerate the flow outside the region where
resistivity would dissipate the current. However, once the flow
is decelerated, resistive effects begin to compete with inductive
effects. This means that both resistivity and pressure gradients
together determine the shape of the final solution.

In Figure 5 we see that the magnetic pressure gradient is
balanced by the ion pressure gradient near the origin, and by
the ion-neutral collisions away from the origin. Near the origin
we can therefore estimate the ion density by

- 2 2
58] -())
Pio B 2z

where B = 16mp,,c?/B2 is the plasma beta (at z = L) with

(25)
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FiG. 5—Balance of the magnetic pressure gradient by (i) the ion pressure
gradient near the origin and (ii) the ion-neutral collisions away from the origin
for run AO.

respect to the charged fluid. For the maximum density (see
Table 1), we have p¥/p,, = 1 + b%/B. The excess of charged
particles near the origin is a consequence of the ion inflow. In
the steady state, or on average, this convergence of ion velocity
can only be compensated by recombination. Integrating equa-
tion (4), evaluated at z = z,, and using equation (25), we obtain

z1 5.\2
—uil - é’%'ﬁ j [(ﬁl-) B 1:]dz
Pi Jo Pio

4p? 2 b?
et (20
Pio 3B 58
where pi(z,) = p;o; see equation (25). At the transition point we

have — u;;B; ~ AB,/z,, sO we can approximate the ion veloc-
ity there by

(26)

Uy ~ —Azy . @7

Combining equations (25)—-(27) we obtain a second equation
between z; and B, :

3B Apio 2 b\
3 ol1+2=) .
AW o, \ T3P

From equations (24) and (28) we eliminate z, and obtain the

(28)

equation for b
2
1 —b3?% — : %2 (,B + = b2>b“ =0, (29)
where
CPno
e= )m) ( Pio ) 30

The roots of equation (29) give the value of b = b(Q, f) at the
transition point. It turns out that there is oniy one real root
within 0 < b < 1. In Figure 6 we give the graph of b versus Q
for different values of §. In practice, we are most interested in

2.0
1.5
1.0}
0.5}
0.0
-05
) -1.0
-8 -6 -4 -2 0 2 -8 -—6 -4 -2 0 2
log @ log Q

FiG. 6.—Graphs of B, = B,(Q, p) vs. Q for different values of § (left panel)
and z,4,p/A (right panel).

log (z; Ap / A)
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the case f <b <1, Q/f <1, and then the relevant root of
equation (29)is b ~ 1.11(8/Q)'/3.

Note that Q is governed by the geometrical mean of ohmic
diffusion and ionization timescales relative to the ambipolar
diffusion timescale. It is illuminating to rewrite Q in terms of
basic timescales in the problem. In order to do this we assume
that the resistivity #, which is related to A by A = (c?5)/4n, is
caused by electron collisions with neutrals, which occur at a
rate v,,. We take for the collision rate

8kT\!/?
Vew =4 X 10‘15<——) n,s '=25x10"°T"?n,s7",

me
Gy

where we use the velocity independent cross section given by
Krall & Trivelpiece (1973), take T = 10 K, and express n, in
cgs units. We compute the ion-neutral collision frequency
assuming that HCO™* and H, are, respectively, the dominant
ion and neutral species and find, using the collision rates from
Draine, Roberge, & Dalgarno (1983),

v, =13 x 1070, 571, 32)
We then find that Q can be written in the form
Ve ¢ \'? -8 2 -2
Q = 31A“vi,, —(O_ — =28 x10 n,,ch Bu s (33)

where L and B are measured in parsecs and microgauss,
respectively, and w,, ; are the electron and ion gyrofrequencies.
These gyrofrequencies are typically much larger than other
frequencies in the problem.

The parameter f§ is estimated to be

B=69x10"2n;B,;2 =176 x 10" 'n)?B;*,  (34)

where we have used the approximate relation for molecular
clouds n; ~ 1.1 x 10731}/ (McKee et al. 1993). We therefore
find

B/Q =2Tn, 3L ! < 1

for conditions of interest.

The magnetic profile makes the transition from linear to z'/3
scaling at approximately the point z,. According to equation
(24), z, is proportional to the ratio 4/A,p. In the second panel
of Figure 6, the quantity z,1,p/4 is plotted. Making use of the
approximation for § < 1, we have z,/L = 3.3(4/A,p)(8/Q)*/3, or

23/ 4 1/6
1 Tai / TAD Tion /
— =29 — —=
L Tei Tq

=5 x 10°L¥3n32B; % em (36)

where the unit of length appears on the right-hand side because
we are scaling L in parsecs. Note that this scale decreases
almost proportionally with 4. For comparison, the skin depth
0, which is the scale that arises from balancing advection and
diffusion, i.e., & = (4/Lu,)*/?, is proportional to 1*/2, Using A =
2 x 10%n,/%, we have & =2 x 10'°L}[*n;/* cm, where we
assumed for the turbulent velocity u, = 10km s~ *.

The scale for z, is so small that it cannot be real. Instead of
singularity quenching by pressure or resistivity, there must be
some effect outside the scope of fluid theory which limits the
sharpness of the magnetic profile. Two length scales emerge as
likely candidates: the ion mean free path, and the ion gyrora-
dius. The latter is expected to be much smaller; the gyroradius
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for HCO* at T = 10 K is a; = 1.6 x 107/B, cm, where B, is
the magnetic field in microgauss. Since the ions are tied to the
field lines, sharp structure could persist down to these scales
much as quasi-perpendicular collisionless shocks exhibit tran-
sitions in the fluid properties on scales as small as an ion
gyroradius.

The considerations above have illustrated the importance of
numerics in testing and motivating analytical scaling relations.
The range of different time and length scales relevant to the
interstellar medium is so broad that it would be very hard to
apply the numerical computations directly to those values.
Instead, what we have done here is to use the simulations to
identify the relevant balance mechanisms in the system of
equations and to obtain clear guidance as to how to construct
an approximate relation that would be valid beyond the
regime accessible to the numerics, provided of course that no
new physics enters.

3.4. Reduced Equations for the Ions

In the approximation above, we neglected the dynamics of
the neutrals. It is indeed a good approximation to solve just the
reduced set of the following equations:

0 OB

E(u,ﬁ—lg)—O, 37
0 2, o)
az(ZPiCi"'gnB)— PiVinth; (38)

2 (i) = Lpno — ap? (39)

P Pilhi) = LPno Pi -

Although we found it more convenient to solve these equations
time dependently and with viscosity included, the solution is
much more easily obtained, because the oscillations discussed
in § 3.1 are now absent, and we therefore do not need to
compute a time average. We repeated runs B0 and F1 and
found the same numbers as given in Table 1.

It should be noted that the reduced set of equations for the
ions is quite distinct from the usual one-fluid approximation,
where one solves for the neutrals in the strong coupling limit.
In our one-dimensional model, the breakdown of the strong
coupling approximation can affect the solution even far away
from the null.

4. MAGNETIC RECONNECTION

We have shown in the preceding section that ambipolar drift
in the vicinity of a magnetic null results in large current den-
sities over small scales. We have argued on intuitive grounds
that this behavior promotes rapid reconnection, and in this
section we quantify that claim. We first show that magnetic
field and current profiles of the type seen in Figure 4b are
indeed unstable to the resistive tearing mode (Furth, Killen, &
Rosenbluth 1963, hereafter FKR). We then compute the
growth rates and find them to be so large that the time to form
the profile, and not the tearing mode time, is the longest time-
scale in the problem.

The tearing instability can be treated in two dimensions
using stream functions for the velocity and the magnetic field.
We follow the analysis of White (1983) and express the mag-
netic field as V x yp, where

Y(x, z, t) = Yo(2) + Y4(2) cos kx exp ot . (40)
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(We rely here on pressure instead of a third component of the
magnetic field to render the motion incompressible.) In tearing
mode theory, the Alfvén and resistive timescales are assumed
to be well separated, and resistivity is unimportant outside a
thin layer in which the tearing takes place. The condition for
instability, however, depends on the equilibrium magnetic
profile and can be derived from the differential equation satis-
fied by ¥, in the outer region, in which resistivity is negligible,

¥i=(k*+B'/By,, (41)

with the boundary conditions y; = 1 at z =0 and ¢, = 0 for
z — oo. (Here primes denote differentiation with respect to z.)
Note that equation (41) has a singular point at z = 0 because of
the null in B; in fact, the solution must be matched to a solu-
tion in the inner region, which includes resistivity.

We solve equation (41) for different values of k. FKR showed
that the equilibrium magnetic profile is unstable to tearing if
the derivative of y/, at the origin, ¥/1(0,) = A’/2, is positive (see
Adler, Kulsrud, & White 1980 for a demonstration that the free
energy available to drive the tearing mode is proportional to
A’). In a fully ionized medium, the growth rate is given ap-
proximately by

0, = Tq P(kva)?PAH5 42)

In the first panel of Figure 7 we plot A’ versus k for runs BO
and B1. Referring back to Table 1, we see that these runs have
the same parameters except for resistivity, which is 4 times
larger for run B1 than for run B0. Evidently the broadened
current profile and enlarged linear region in run Bl substan-
tially reduces A'.

In all the cases given in Table 1, the growth rate increases
with decreasing k. We assume x is bounded by L and impose
periodic boundary conditions, requiring k > k;, = 2n/L. In
the second panel of Figure 7 we plot A’ versus z, for all runs,
assuming k = k;,. Evidently log A’ is remarkably well corre-
lated with log z, ; the best fitis A’ = 0.26z; 2.

We can now draw the resulting field lines by plotting con-
tours of ¥ using equation (40); see Figure 8. We obtain y, by
integrating B. Near the origin we have to match the outer
solution y; to the inner solution. For the purpose of this
picture, we fitted the outer solution to a parabola at the
turning point of ¢/,

Applying the tearing mode instability to molecular clouds,
the growth rate o, can be written as

0, =14 x 107*n}*B(z,/a) ™% s7*, 43)

where we have normalized the reconnection scale by the ion
gyroradius g; in view of our remarks at the end of the previous
section; z, /a; is expected to be of order unity. This growth rate

(a) 600
400
200} 1 3

-200¢1
—400¢
-600 b s L . " .
10 100 -25 -20 -15 -1.0
k log z,
FI1G. 7—(a) A’ vs. k for runs BO (solid line) and B1 (dashed line). (b) Scatter
plot of A’ vs. z, for all runs given in Table 1. Linear fit is A’ = 0.26(z,/L) 2.
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typically exceeds the ion-neutral collision frequency. Therefore
ions and neutrals are not well coupled over a tearing mode
growth time, and the growth rate is given by o, (Zweibel 1989).
In fact, the growth rate might be better analyzed by a collision-
less theory. In any case, the growth time is so short that the
effective time for reconnection in this case is the time it takes to
form the nearly singular current profile in the first place, which
in this problem is of order 7,p ~ 2.5 x 10°n}?LZ. B, 2 yr. In
other situations, such as shear flows like the rotating eddy
studied in BZ, the timescale could be influenced by dynamics
as well.

5. CONCLUSIONS

Magnetic reconnection is thought on phenomenological
grounds to occur in a wide variety of astrophysical settings,
including collapsing, magnetized interstellar clouds (Mestel
1966; Galli & Shu 1993), interactions between strong poloidal
field lines and molecular clouds near the galactic center
(Serabyn & Morris 1994), tangled field lines in molecular
clouds (Clifford & Elmegreen 1983), and finally, on the largest
scale, the galactic dynamo itself. In order to amplify the large-
scale magnetic field of the galaxy within its relatively short
lifetime, it is crucial that the magnetic field topology can
change rapidly on a dynamical timescale and virtually inde-
pendently of ohmic diffusion. However, only ohmic diffusion
can change the field topology, and, in order for this process to
be fast, one needs to produce magnetic field gradients at very
small scales.

Turbulence can create sufficiently small scales by winding up
the field around vortex tubes. This is an important mechanism,
especially when the field is not strong enough to counteract
this windup process (which can be particularly severe in two
dimensions; see Cattaneo & Vainshtein 1991).

The formation of sharp structures by ambipolar diffusion,
on the other hand, can in principle be initiated even when the
field lines are almost straight, although this then requires the
presence of magnetic nulls. In actual turbulence, however,
there is always some amount of shear, so that ambipolar ion-
neutral drift can create sharp gradients even when there are no
perfect nulls; see BZ and Mac Low et al. (1995). These gra-
dients are formed through the action of Lorentz forces on the
ions, and, in the example we have studied (BZ), lead to a state
in which the field is nearly force-free everywhere except in thin
layers of intense current. Very little windup of the field—
approximately one rotation—is required to establish the mag-
netic geometry necessary for this state, suggesting that the
mechanism can work even when the field is near equipartition.

Our mechanism of generating sharp structures is somewhat
reminiscent of the scenario of hydrodynamic vortex reconnec-
tion (Kerr 1993), where antiparallel vortex tubes attract each
other until they finally reconnect. Here too there is no windup
but, again, in actual turbulence there is always some shear, so
that this mechanism will hardly be realized in isolation.
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We should point out that linear theory cannot be adopted
near nulls. This explains partly why such theory predicts that
ambipolar drift damps fluctuations and works against energy
transfer to sufficiently small scales (Kulsrud & Anderson 1992).

Although we have demonstrated this only in two dimensions
(BZ), we expect that also in three dimensions ambipolar drift
acts to make the field force-free (J x B — 0), because the ions,
having little inertia, quickly respond to Lorentz forces. This
has the interesting consequence that it can inhibit dynamo
action, because it can be shown from the magnetic induction
equation that the growth of magnetic energy is proportional to
{u - (J x B)). Therefore, although we pointed out above that
ambipolar diffusion might facilitate dynamo action by enhanc-
ing the rate of magnetic reconnection, the net effect of ambipol-
ar diffusion on dynamos might not be wholly salutary. In any
case, more examples of turbulent MHD flows with ambipolar
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diffusion are needed to assess the prevalence of the singularity
and its effects.

Finally, we would like to reiterate that the strong coupling
approximation, which was used in BZ, evidently breaks down
near the singularity. Our present investigations have shown,
however, that this in no way impedes the formation of sharp
structures. Indeed, the more consistent treatment using the
two-fluid theory shows that oppositely oriented magnetic fields
can be pushed together down to scales shorter than the
hitherto known dissipative cutoff scales. Since the fluid approx-
imation breaks down at scales shorter than the gyroradius, we
can consider this new scale as virtually zero.

We thank Mark Rast for comments on the manuscripts
E. G. Z. is happy to acknowledge support for this work by the
NASA Astrophysical and Space Physics Theory Programs.
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