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ABSTRACT

We study a simple, kinematical model of a galactic fountain flow and show that a
horizontal field in the galactic plane can be pumped into the halo to a height of several
kiloparsecs. This pumping effect results from the topological structure of the flow in
which the updraughts (represented by hot gas) form a connected network, whereas the
downdraughts (associated with isolated cool clouds) are disconnected from each other.
Such a flow traps the large-scale magnetic field in the disc and deposits it at the top of
the fountain flow. Unlike previously studied models of topological pumping, in our case
the flow is not constrained to a closed box and horizontal magnetic flux can leak out at
the top. We find significant pumping of mean magnetic field into the halo, which can
be parametrized by an advection velocity of order 1-10kms~!. The resulting magnetic
field strength at a height of several kiloparsecs above the galactic plane is comparable
with that at the base of the flow.

Key words: magnetic fields - MHD — ISM: magnetic fields — galaxies: haloes — galaxies:

kinematics and dynamics — galaxies: magnetic fields.

1 INTRODUCTION

The hot gas produced by supernovae in the discs of spiral
galaxies rises to a large height above the disc plane where it
cools, undergoes thermal instability and comes back to the disc
in the form of discrete dense clouds. This flow is known as the
galactic fountain (Shapiro & Field 1976). The filling factor of
the hot gas monotonically increases with height, so that it is
plausible that, at least above a certain height, the updraughts
form a connected network. Therefore, the hot gas can trap a
large-scale magnetic field in the disc and carry it to the top
of the fountain flow. On the other hand, the downdraughts
are always disconnected from each other at any height (this is
merely another way of saying that the downdraughts are in the
form of individual clouds). The downdraughts are then unable
to pull this field back to the disc, but rather produce only
small-scale indentations and loops on a magnetic line of the
large-scale field. Altogether, such a topological structure of the
fountain flow, with connected updraughts and disconnected
downdraughts, will result in a net upward advection of the
large-scale magnetic field by the galactic fountain from the
disc to the halo.

* Present address: Nordita, Blegdamsvej 17, DK-2100 Copenhagen @,
Denmark.

T The National Center for Atmospheric Research is sponsored by the
National Science Foundation.

This effect is known as topological pumping of the large-
scale magnetic field. It was first suggested by Drobyshevski
& Yuferev (1974) as a mechanism of a downward transfer of
magnetic field to the bottom of the convective zone of the Sun.
In Bénard convection (e.g. Chandrasekhar 1961), when the up-
draughts are at the centres of the cells and the downdraughts
around the peripheries, the updraughts are topologically dis-
connected from each other, whereas the downdraughts occupy
a topologically connected region in a horizontal plane. As
a result, a large-scale magnetic field (extending over many
convection cells) is trapped by the descending flows to be ad-
vected downwards (see also Moffatt 1978). However, numerical
simulations of stratified convection (Stein & Nordlund 1989;
Brandenburg et al. 1990, their figs 13 and 14) indicate that
this mechanism might not work deep in the Sun, because the
downdraughts form a connected network only in the upper
part of the convection zone, and are no longer topologically
connected below a certain level (but see Rast et al. 1993).
This is a consequence of the vertical density stratification that
concentrates the downdraughts into narrow columns. Thus,
neither updraughts nor downdraughts form a continuous net-
work across the whole convective layer. Galactic haloes are
also density stratified. The difference, however, is that here the
downdraughts remain disconnected at any height while the
updraughts can be connected.

It is important to realize that it is the large-scale magnetic
field that is pumped upwards by the galactic fountain, ie.
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the field averaged over scales much larger than the scales of
individual up- and downdraughts, which are below 1-2kpc in
the horizontal direction.

Since topological pumping relies on advection of the mag-
netic field by the flow, it is clear that it is most efficient at large
values of the magnetic Reynolds number R;,, when induction
effects are stronger than effects of magnetic diffusion (Droby-
shevski, Kolesnikova & Yuferev 1980; Arter 1983). According
to Arter (1983), topological pumping becomes a dominant
mechanism for R, = 50.

The advection time-scale from the topological pumping is
rather short, being of the order of the turnover time of the flow
(Drobyshevski & Yuferev 1974; Arter 1983). This effect can be
expected to be important for the origin of large-scale magnetic
fields in the haloes of spiral galaxies, where the kinematic
time-scale for fountains is 10’-10%yr. In this paper we do
not aim at constructing a realistic model directly applicable
to real galaxies. Our goal is merely to assess (and confirm)
the potential importance of this effect in spiral galaxies and
to discuss a convenient parametrization so that it could be
included into models of magnetic field evolution in spiral
galaxies. In this spirit, our model is strictly kinematic.

2 THE MODEL

Apart from the necessity for an appropriate topology of the
flow, the central role in the theory is played by the magnetic
Reynolds number Ry, = UpaxL/1, Where Upay, is the maximum
velocity of the fountain flow, L its horizontal length-scale, and
7, the turbulent magnetic diffusivity. Thus, the model explicitly
includes the velocity field of the fountain flow and the effects
of turbulence on all smaller scales are described by a turbulent
magnetic diffusion with #, ~ %vl. Here, v is the turbulent
velocity and [ the typical length-scale of ‘the turbulence. Thus,
we have

U

Ry ~3 T (1)

Estimates of U at the base of the fountain flow range
from 140kms™! (Kahn & Brett 1993) to 200kms™! (Nor-
man & Ikeuchi 1989). The typical horizontal size of the re-
gions occupied by the hot gas in the disc can be adopted as
L ~ 1-2kpc, close to that of superbubbles (Tenorio-Tagle &
Bodenheimer 1988). Using standard estimates of the turbu-
lence parameters in the disc, v ~ 10kms™! and I ~ 100pc,
we have Ry ~ 500-1200 which is a quite optimistic estimate
with regard to the efficiency of the topological pumping by
the fountain flow, because this effect is expected to be efficient
for Ry, = 50 (Arter 1983). Our estimate is, however, likely to
be very much an upper limit on R, because in spiral galax-
ies the turbulent magnetic diffusivity probably increases with
height (see Sokoloff & Shukurov 1990; Brandenburg et al.
1992, 1993; Poezd, Shukurov & Sokoloff 1993). To obtain a
lower estimate, we take v to be equal to the sound speed in
the hot (T = 10°K) gas, v = 100kms~!, and I = 0.3 kpc. This
yields Ry, ~ 10-40. We conclude that for galactic fountains the
expected value of the turbulent magnetic Reynolds number is
between 10 and 1000, covering the range where the topological
pumping is expected to be efficient. The ‘local’ value of Ry
is expected to be a decreasing function of z, the coordinate
perpendicular to the disc plane.

Another parameter that will be of importance below is
the strength of the large-scale magnetic field at the base of
the fountain flow. Since only the hot, dilute gas is involved in
the flow, the relevant field strength is lower than the average
value in the galactic disc. Following Kahn & Brett (1993) [see
also Kahn (1991)] the large-scale magnetic field at the base
of the fountain flow can be estimated as follows. The radius
of a supernova remnant is R, ~ 70 pc when it merges with
other remnants to form a superbubble. The mass of gas in
this volume is about 200 M, and the radius of the region
initially occupied by this gas with a number density of 1cm~>
is Ry ~ 13 pc. Assuming that the large-scale magnetic field in
the interstellar medium is B; ~ 2 uG, we obtain the relevant
magnetic field strength in the hot interstellar medium (HIM)
from flux conservation as By =~ Bi(Ri/R;)? ~ By/30 =
6 x 108 G.

2.1 The velocity field

To explore the topological pumping under galactic conditions,
we use a model velocity field that has the required topological
properties and also satisfies mass conservation for a gas density
that varies in space in a realistic manner. We consider a velocity
field that is periodic in the horizontal directions and restrict
our analysis to a single cell, by imposing periodic boundary
conditions for magnetic field.

Our velocity field is based on Arter’s (1983) velocity
field (which he denoted as SSW, because it was suggested
by Schmidt, Simon & Weiss 1985), which we modify in order
to account for a density distribution of the form

2 e(x,y), @)

pz)= coshz/zg

where (x,y,z) are Cartesian coordinates (with the y-axis di-
rected along the azimuth and z along the vertical), po is the
midplane gas density, zo is the scale height of the asymptotic
exponential distribution of p at large z, and g(x, y) is a certain
function devised to model the density contrast between a rising
hot gas and descending cold clouds. Specifically, we take

g(x,y) = 1+ A(cos2nx + cos 2my) 3)

with constant 4, which is the density contrast between dense
and rarefied regions. With this density distribution, the down-
draughts should be placed at (x,y) = (0,0) and at periodically
shifted positions. In many of the runs discussed below we
neglect horizontal density variations and put 4 = 0, whilst in
Section 3.6 we consider the case 4 = 0.4.

We should note that this model is very simplistic: we
model clouds as columns of descending material. We model the
discrete nature of clouds by introducing a time dependence of
the flow (Section 3.7).

To ensure mass conservation, V - (pU) = 0, our velocity
field U is defined by

pU =V xVxS(x,y,z)2, 4)

with p given by equation (2), £ the unit vector in the z-direction
and

S(x,y,z)
= —Cf(z)[cos 2nx + cos 2ny — $(cos4nx + cos4ny)l, (5)
z
fl@)= m >
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Figure 1. The velocity field (6) with A = 0, i.e. p is a function of z
alone. (a) Contours of the vertical velocity in the xy plane; solid lines
refer to positive U,, dotted lines to negative U, and dashed lines to
U, = 0. (b) Projections of velocity vectors on the vertical cross-section
indicated by a dashed-dotted line in (a) are shown at randomly chosen
positions on this plane. ‘

where C is a normalization constant, and the function f(z)
has been chosen to have U, = 0 at z = 0 and to ensure a
sufficiently rapid exponential decay of U with z at z > z,
(the resulting exponential scale height of U is %zo). Note
that we adopt the opposite sign of S(x,y,z) to that used
by Arter (1983) in order to have connected updraughts and
disconnected downdraughts, whereas Arter’s velocity field has
the opposite topological property.

The resulting velocity field, illustrated in Fig. 1, has iso-
lated downdraughts centred at (x,y) = (n,m) with n,m =
0,1,... and mutually connected updraughts. For the reader’s
convenience, we write out the explicit form of the velocity field

Galactic fountains as magnetic pumps 653

[although numerical differentiation of equation (5) was used
when performing the simulations described below]:

_ 2=C
©p(%),2)
x{f'(sin 2nx — 1 sin4nx),
f'(sin2my — % sindny),
—2nf[cos2nx + cos2my — 3(cos4nx + cos4ny)]},  (6)

where the prime denotes derivative with respect to z.

2.2 Basic equations

We solve numerically the induction equation,

%:Vx(UxB—%Vn.xB—mVxB), )
for the large-scale magnetic field with the velocity field U de-
fined above. In equation (7) we allow for the spatial variation
of the turbulent magnetic diffusivity #,. This leads to an addi-
tional term which can be described as a field advection with
the velocity —%Vm. This phenomenon is known as turbulent
diamagnetism (e.g. Vainshtein & Zeldovich 1972, section I1.6),
and is sometimes also called turbulent pumping, as opposed to
topological pumping, which is our main subject here. We shall
investigate the effects of variable #, in Section 3.5, but we put
n: = constant elsewhere.

The initial condition is B, = By exp[—(2z/z0)?] and B, =
B, = 0, which describes a horizontal magnetic field initially
confined to a layer whose Gaussian scale height is half the
density scale height at z < z.

Equation (7)issolvedin0 < x < 1,0<y <1, 0<z<zp
with the boundary conditions
B(0,y,z) = B(l,y,z), B(x,0,z) = B(x,1,z),
0B, 0B,

5 =5, =B =0 at z=0, ®)

B,=B,=0 at z=z,

The first line represents the periodicity conditions. The bound-
ary conditions imposed at the midplane z = 0 single out those
solutions for which the horizontal magnetic field is symmetric
with respect to the midplane. At the top of the computational
domain, z = z,, we assume the magnetic field to be purely
vertical. By virtue of the solenoidality condition, V- B = 0, we
have 0B,/dz = 0 at z = z,. This is the simplest local bound-
ary condition that does not restrict the horizontal magnetic
flux through the computational domain. (A perfect conductor
condition, which was used by Arter, would conserve horizontal
magnetic flux.)

The horizontal size of the periodicity cell is taken as L =
1kpc. We measure x, y and z in units of L, U and v in km s~
and, correspondingly, time in units of 1kpc/(kms™!) = 1 Gyr.
The velocity field U is normalized such that Up,, = 100kms™!
(C =22 for A=0 and C =~ 0.5 for A = 0.4). We adopt a
density scale height of zy = 1kpc, which approximately equals
the scale height of the Reynolds (1991) layer, and impose
the boundary conditions at z,, = 5. We restrict z, and zy to
these relatively low values in order to have sufficient spatial
resolution (especially near the midplane), keeping the number
of uniformly distributed meshpoints in the vertical direction
to an acceptable minimum of 101.
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Figure 2. The horizontal magnetic field for Ry, = 500 averaged over horizontal planes z = constant at different times, starting from ¢t = 0 to
t = 1 Gyr with an interval of 0.05 Gyr. The initial field is shown by the solid line, which is the uppermost at z = 0. Note that the field strength at
z > 3kpc monotonically increases with time during the run. The magnetic field is measured in units of the initial magnetic field at the midplane.
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Figure 3. Snapshots of the projection of the magnetic field averaged along the x-axis on to the yz plane for Ry = 500, at different times. The
magnetic field vectors are plotted at randomly chosen positions, with length proportional to the local magnetic field strength.
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Figure 4. Snapshots of the projection of the magnetic vectors at different heights on to the xy plane, for ¢ = 1Gyr, Ry = 500. The magnetic field

is represented in the same manner as in Fig. 3.

The control parameter in our problem is Ry, Thus, our
results can be easily rescaled to other values of Umax> L, 2o,
and z, by choosing an appropriate value of R, (which is
proportional to both Uy, and L). The unit of time then scales
with Unax/L. For example, the magnetic field distributions
discussed below, which were computed for L = 1 kpc, Upay =
100kms™! and z, = Skpc, will be the same for I = 2kpc,
Umax = 200kms™, zy, = 10kpc and a value of Ry, that is four
times larger, at the same time. :

The root mean square values of the total velocity and
of its z-component are very close to each other, at about
Ums = 19kms™ for Upa = 100kms~!. Thus, the effective
turnover time of the flow, based on its scale height %zo, is
T = 20/2Upmys ~ 0.026 Gyr.

Equation (7) is written for the averaged magnetic field, so

that it includes the turbulent magnetic diffusivity. However, we
present our results in terms of the magnetic field further aver-
aged over horizontal planes, which we denote (B) = (0,(B,),0).
(With the chosen velocity field and the initial field directed
along the y-axis, (B,) is the only non-vanishing component
of (B).) In other words, we consider turbulence and the foun-
tain flow as two levels of small-scale motions and perform a
two-step averaging to obtain physically meaningful results (cf.
Drobyshevski et al. 1980).

We employ finite differences using the compact sixth-
order scheme of Lele (1992) and a third-order Hyman (1979)
scheme for the time step. We adopt equal mesh spacing in all
three directions with the mesh interval of 0.05; thus, we have a
20 %20 x 101 mesh. This limits our magnetic Reynolds number
to be below about 500.
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Figure 5. The same as in Fig. 2 but with a fixed magnetic field at z = 0. Note that now the magnetic field monotonically increases with time at

z 2 1kpc.

3 RESULTS
3.1 Magnetic field evolution

In Fig. 2, for R, = 500 we show the y-component of the mag-
netic field averaged over horizontal planes’as a function of z at
various times. The average magnetic field is rapidly pumped to
a height z = 2-3 kpc, where the flow velocity falls off rapidly
(see Fig. 1b), and then follows a slower evolution: the mag-
netic ‘wave’ drifts towards the top until it eventually decays.

The total flux of (B,) is approximately conserved during the -

evolution whenever the magnetic field at the upper boundary
remains small. This is true for all other runs described below.

A remarkable feature is that the average field at z =~ 0
even changes sign under the action of the velocity field: it is
positive at ¢t = 0, then becomes negative, reaching a value of
about —0.6B, at t = 0.23 Gyr, and then slowly approaches zero.
A similar reversal of the field was also noted by Drobyshevski
et al. (1980) and Arter (1983). The origin of this is clearly seen
from Fig. 3, indicating that it is to be associated with patches
of negative horizontal flux advected to the bottom by isolated
downdraughts, which appear clearly in the plots for ¢t = 0.1
and 1Gyr.

In Fig. 4, magnetic field vectors in horizontal planes are
shown at various heights for ¢ = 1 Gyr. One can see a striking
contrast between a highly ordered magnetic pattern near the
top (z = 3kpc) and a complicated picture at the base. We
recall that at ¢t = 0 the magnetic field was ordered at z = 0
and negligibly small at z > 1kpc. We also see from Fig. 4
that at the top (B,) concentrates into magnetic ropes centred
above the lines connecting the downdraughts along the y-axis.

Since the magnetic field is not replenished at the bottom,
and since horizontal flux is allowed to leak out at the top, the
magnetic ‘wave’ eventually decays, so that there is no steady
state with non-zero magnetic field. (We also checked this with
a trial run until ¢ = 10Gyr.) However, we also computed
the magnetic field evolution for the boundary condition B, =
0B;/0z = 0 and By =1 at z = 0, which is meant to simulate
the action of a dynamo in the disc. This condition maintains

a constant magnetic field at z = 0. Results of this experiment
are presented in Fig. 5 for R, = 500. Comparing this with
Fig. 2, we see that the large-scale magnetic field at z ~ 3 kpc
becomes considerably stronger and monotonically grows with
time. Even at t = 1Gyr, (B,) at z ~ 3kpc is already as strong
as at t = 0 and it continues to grow. The drift of the secondary
maximum towards larger z appears to occur at a progressively
smaller rate at larger heights.

It is interesting to note that the distribution of (B,) near
z = 0 is rather narrow, and (B,) changes sign not far from
the midplane and again at z ~ 0.5kpc. Such a reversal of the
large-scale magnetic field does not occur in the Milky Way. As
we shall see below, this feature is typical only for large values
of Ry. For smaller R, the field is sign-constant: horizontal
inhomogeneity of p and time dependence of U (Sections 3.6
and 3.7) also remove the field reversal. Thus we do not consider
this to be a robust feature of our model.

3.2 Effects of varying R,

In Fig. 6(a) we show the time evolution of the vertical distribu-
tion of the horizontal magnetic field for R, = 50. As expected,
the effect of the flow is weaker than for R, = 500 (cf. Fig. 2).
In particular, there is no field reversal at small z, and (B,) at
z = 0 monotonically decreases with time. However, even for
this relatively small value of R, the field strengths at z = 0
and z = 2kpc are almost equal to each other at later times.

The value R, = 50 seems to be close to the critical value
for topological pumping to work (in agreement with Arter’s
result). For smaller values of R, the magnetic field evolution
resembles a diffusive spread of the initially concentrated distri-
bution. We verified this for R, = 20, where the effect is weak,
even though (B,) has a secondary maximum at z > z.

In Fig. 6(b) we show the corresponding plot for Ry, = 200,
which is intermediate between the previous two cases. An
immediate conclusion is that the horizontal field strength at a
given height (z > z;) and given time monotonically increases
with Ry,. In Fig. 7 we present the maximum magnetic field at
t = 1 Gyr and the absolute maximum (with respect to both z
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Figure 6. The same as in Fig. 2 but for (a) Ry = 50 and (b) Ry, = 200.
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Figure 7. The maximum magnetic field at t = 1 Gyr (filled circles) and
the absolute maximum magnetic field for z > zp and 0 < ¢t < 1 Gyr
(open squares), as functions of Rpy. Power-law fits to the data at
Ry = 50, 100, 200 and 500 are shown by solid and dashed lines,
respectively. The data at Ry, = 20 deviate considerably from these fits.

and t) as functions of Ry. The fits shown in the figure have
the form By, = aR®, which are shown by a solid line for
t = 1Gyr (with a =~ 0.032 and b ~ 0.36) and a dashed line

for the absolute maximum (with a =~ 0.035 and b =~ 0.41). As
expected, the results for R, = 20 do not lie on this fit, which
confirms that diffusion effects become important at this small
R, whilst topological pumping is dominant for R, = 50.

~

3.3 Downward pumping

To demonstrate more clearly the topological nature of the
pumping, we solve the induction equation using a velocity field
with the opposite topology, i.e. with connected downdraughts
and disconnected updraughts. For this purpose, we simply take
the velocity field —U, where U is specified by equation (6). We
denote these runs by negative values of R, (cf. Drobyshevski
et al. 1980). In Fig. 8 we illustrate the magnetic field evolution
for R, = —500 in the same form as for R, = 500 in Fig. 2. The
result is dramatic: it can be seen that the velocity field with
connected downdraughts strongly compresses the magnetic
field at z = 0. The magnetic field is negligible at z = 2 and
negative at z ~ 1.2, and grows with time at z = 0, whilst
the width of the magnetic field distribution strongly decreases.
This implies that the effects described above are connected
with non-trivial topological properties of the flow.
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Figure 8. The downward topological pumping of magnetic field by a flow with connected downdraughts and disconnected updraughts. R, = —500.
The setup is the same as in Fig. 2, except for the opposite sign of Ry. The difference between Fig. 2 and this plot verifies the topological nature of

the upward magnetic field advection seen in Figs 2 and 6.
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34 Parametrization of the pumping effect

As argued by Moffatt (1974) and Drobyshevski et al. (1980),
topological pumping can be described in terms of off-diagonal
elements of the so-called ‘a tensor’ «;;, defined by the relation
&; = o;;Bj, where &; is the i-component of the electromotive
force (e.g. Krause & Ridler 1980). In this language, topological

pumping can be described by a mean advection velocity W,
acting on the mean, or large-scale magnetic field, with «; =
—e;ijx Wi and W being proportional to an odd power of R
when Ry, is small. This is clearly seen to be true when one
inspects the time evolution of the mean magnetic field shown
in Figs 2, 5 and 6. For R, > O the field propagates towards
larger z as a whole, being advected at a certain velocity (i.e.
W = W32). (Simultaneously, the width of the field distribution
increases due to (turbulent) magnetic diffusion.) For R, <
0 (Fig. 8), we expect that W < 0 and the field is indeed
compressed at z = 0.

In Fig. 9(a) we plot the velocity W, at which the max-
imum of the field travels upwards, as a function of z. We
only succeeded in finding a more or less reasonable fit to the
rightmost parts of the curves (corresponding to relatively late
times): W ~ t7!(z — z) with t =~ 0.04R%* and zy ~ 1.5R%".
Note that the curves start at certain finite heights depending
on Ry, This is a manifestation of a peculiar feature of the
pumping mechanism: the large-scale magnetic field is almost
instantaneously (within a few turnover times) advected to a
finite height and then follows a relatively slow drift.

In Fig. 9(b) we show the half-width ¢ of the secondary
maximum of the magnetic field, which occurs at large height,
as a function of z. More precisely, o2 is the dispersion of a
Gaussian fitted to the field distribution near the maximum. The
growth of ¢ can be naturally explained by diffusion effects. We
should note only that the background turbulence alone does
not determine the effective turbulent diffusivity, but that the
fountain flow itself also makes a considerable contribution.
The diffusive widening of the field distribution leads to ¢ oc
t/2, Since the maximum of the field propagates at variable
speed, the dependence of ¢ on z is more complicated than
a simple square root behaviour. When plotted as a function
of t, the half-width exhibits an approximately ¢t!/? behaviour
for a relatively small value of R, but again deviates from it
for a larger R,,. This can be understood as an indication that
the contribution of the fountain flow to the effective turbulent
diffusion grows with Ry, (cf. Drobyshevski et al. 1980).
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Figure 11. The same as in Fig. 1 but for a horizontally non-uniform
density distribution, with 4 = 0.4 in equation (2).
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Figure 10. Topological pumping with turbulent magnetic diffusivity growing with z. The same quantities are plotted as in Fig. 2, but with 5 given
by equation (9) for Ry = 500. Individual curves almost overlap at later times.

3.5 Non-uniform #;: turbulent diamagnetism

Up to now, we have considered the behaviour of the large-
scale magnetic field in the galactic fountain assuming that the
background turbulent magnetic diffusivity is independent of z.
However, the turbulent velocity in galactic haloes grows with
z, so that we expect that #, is a growing function of z.

A variation of #; with z brings about another effect leading
to a net transport of magnetic flux along the vertical direction,
known as turbulent diamagnetism (Zeldovich 1956): the large-
scale magnetic field is advected at the velocity ¥V = —%Vnt: this
is explicitly included on the right hand side of equation (7).
For 5, growing with z, we have V, < 0, so that the effect
opposes the topological pumping.

It is clear that turbulent diamagnetism will decelerate and
possibly halt the upward propagation of the magnetic field.
Let us assume that

e = no(1 +2%), ®)

where 7 is the turbulent magnetic diffusivity at the midplane,
so that #, grows by a factor of 26 over the distance z = 5kpc.
Then the upward propagation of the large-scale magnetic field
owing to the topological pumping is balanced by the downward
transport due to the turbulent diamagnetism at a height z =
W /no. As an example, we took 1o = 0.2kms 'kpc = 6 x
10 cm? s~!. Taking W = 0.5-1kms~! as a typical value of
W at z = 3kpc (see Fig. 9a), we can estimate that in a
quasi-steady state the large-scale magnetic field will be kept at
z >~ W /no = 2-5kpc.

To illustrate the result of the competition between the
topological pumping and turbulent diamagnetism, we solved
the induction equation with #, of the form (9) and o specified
as in the previous paragraph. The result for R,, = 500 is shown
in Fig. 10. It is instructive to compare Fig. 10 with Fig. 2. It
is clear that turbulent diamagnetism decelerates the upward
propagation of magnetic field and shifts the maximum towards
smaller values of z.

3.6 Effects of dense downdraughts

In this section we briefly discuss the role of the density contrast
between regions occupied by updraughts and downdraughts.
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Figure 13. The same as in Fig. 2, but for a horizontally non-uniform density distribution with 4 = 0.4 in equation (2), combined with an unsteady

velocity field.

In galactic fountains, this contrast arises because the gas falls
back to the disc only after it has cooled and condensed into
clouds. To model this, we take a horizontally non-uniform
density distribution of the form (2) with 4 = 0.4 (leading to
a lateral density contrast of 1:9). Since the velocity field (6)
follows from mass conservation, this results in weaker down-
draughts (because the area occupied by the downdraughts
remains the same in our model). In Fig. 11 we illustrate the
resulting velocity field in a manner similar to Fig. 1. It can be
clearly seen that a horizontal non-uniformity of p makes the
downdraughts weaker.

In Fig. 12 we show the evolution of the mean magnetic
field for A = 0.4 and 5, = constant (to be compared with
Fig. 2). The result is not entirely as expected: the pumping be-
comes weaker (in the sense that B,y is smaller) and the results
obtained for R, = 500 resemble more those for p = constant
and Ry = 200 (see Fig. 6b). This indicates the important role
of downdraughts for pumping negative flux downwards.

3.7 The effects of an unsteady velocity field

To conclude our exploratory discussion of various effects that
might affect the efficiency of topological pumping, we consider
a time-dependent velocity field. Our intention here is to model
the discrete nature of clouds. We introduce a time dependence
into the velocity field such that the downdraughts persist at
any given position only for a certain interval (taken to be
0.01 Gyr, corresponding to a quarter of the turnover time),
and then the whole velocity field is shifted along the line x = y
by 0.7kpc. As can be seen from Fig. 13, the result of this
is an enhancement of the pumping in comparison with the
case of non-uniform p and steady U. The field maximum at
z ~ 2.5kpc becomes higher and narrower, and the ratio of the
field at the maximum to that at z = 0 becomes considerably
larger than in Fig. 12. Nevertheless, the unsteady velocity field
produces lower values of By, than does a steady one, at least
for t < 1 Gyr.
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The results of the latter two subsections apparently imply
that more realistic models of topological pumping in galactic
fountains might confirm that this effect is a powerful mecha-
nism of magnetic field transfer in galactic haloes.

4 DISCUSSION

The efficiency and direction of the topological pumping are de-
termined by the magnitude of the magnetic Reynolds number
and the topology of the flow. Upward motions in the galactic
fountain originate in regions occupied by the hot phase of the
interstellar medium in the galactic disc. The requirement that
these regions form a connected network can be formulated in
the language of percolation theory (see e.g. Feder 1988, chap-
ter 7; Vicsek 1989) as a requirement that the hot phase forms
a percolating cluster. A percolating cluster forms only when
the filling factor f of the hot gas exceeds a certain threshold.
Numerical simulations of percolation on three-dimensional
lattices show that this threshold is found at f = 0.137-0.428,
depending on the lattice geometry (Nakayama, Yakubo &
Orbach 1994, table 1). This range of filling factors is at the
lower end of that estimated for the hot phase of the inter-
stellar medium, which ranges from f = 0.1 (for the chimney
model see Norman & Ikeuchi 1989; Cox 1990) to 0.7 (Mc-
Kee & Ostriker 1977). We conclude that the hot phase of the
interstellar medium can form a connected network, thereby
acting as a magnetic pump that continuously transfers the
large-scale magnetic field into the halo as described above.
Starburst galaxies may provide the optimal conditions, the en-
hanced star formation rate giving a larger filling factor and
so favouring the flow topology required for the mechanism to
operate.

The situation might be different in the case of the chim-
ney model (Norman & Ikeuchi 1989). In this model, the hot
phase occupies only 10 per cent of the disc volume and there-
fore it does not form a percolating cluster (in other words,
chimneys are isolated outflows). Thus, the updraughts cannot
drag large-scale magnetic field into the halo. If, however, the
downdraughts were connected, the results of Section 3.3 would
apply and the large-scale magnetic field would be compressed
into a thin layer in the disc. However, the latter possibility
seems to be hardly plausible, because the downdraughts still
occur in the form of isolated clouds for any filling factor of
the hot medium.

The vertical variation of the turbulent magnetic diffusivity
plays an important role in establishing a quasi-steady state of
the large-scale magnetic field in the halo: this effect opposes
the topological pumping in that it can prevent the outward
propagation of the magnetic field beyond the upper boundary
of the halo.

Altogether, we expect that the combined action of topo-
logical pumping by the galactic fountain and turbulent dia-
magnetism results in a relatively strong horizontal magnetic
field in the halo at a height of several kiloparsecs. Since this
field originates in the disc, it-is clear that it has the same
direction in two belts above and below the galactic plane, be-
cause this is the symmetry of the large-scale magnetic field in
galactic discs.

An interesting feature of our results is the rather strong
vertical magnetic field concentration in the downdraught re-
gions (see Fig. 3). The volume average of the vertical field is,
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of course, zero, i.e. it does not contribute to the large-scale
magnetic field. Nevertheless, such vertical fields might be of
importance in explaining vertical magnetic fields in the galaxy
NGC 4631 (Golla & Hummel 1994), provided that it is con-
firmed that the relatively high polarization of the synchrotron
emission from its halo is not caused by a large-scale magnetic
field, but rather arises from ordered (but anti-aligned) orien-
tations of magnetic field vectors as in Fig. 3. This suggestion
is closely related to the model of a ‘spiky wind’ of Elstner et
al. (1995), who considered a local amplification of a vertical
magnetic field by a strong vertical shear just above the galactic
disc. However, our model also reveals another physical effect,
namely the topological pumping.

The horizontal magnetic field produced at large heights
above the disc is rather strong and, if we take our results
literally, it can considerably exceed the field strength at z = 0.
For instance, at t = 1 Gyr we have B,|,~25/Bumm =~ 2 for Ry, =
100 and about 5 for R, = 200, where By was estimated to
be about 1077 G in Section 2. This result is non-trivial because
the ambient density rapidly decreases with z. Of course, one
should not consider these specific values of the ratio of the
field strengths as reliable estimates, because for R, ~ 500 the
field evolution at z = 0 is complicated and By|,—o can even
pass through zero. More quantitative results should await a
consistent inclusion of the topological pumping effect into
galactic dynamo models, which might in turn be modified by
the presence of the pumping. What can be said now is that
this effect is undoubtedly strong and it can profoundly affect
the structure and strength of the large-scale magnetic fields in
the haloes of spiral galaxies.

Topological pumping offers an attractive possibility to
explain the large-scale horizontal magnetic field observed in the
halo of NGC 253 (Beck et al. 1994). The measurements of the
Faraday rotation measure in this galaxy (seen edge-on) indicate
that the magnetic field has the same direction on both sides of
the galactic plane. Such a configuration would be difficult to
explain by in situ dynamo action in the halo, because then the
horizontal field should exhibit an odd parity with respect to
the midplane (Sokoloff & Shukurov 1990; Brandenburg et al.
1992). We stress that the energy density of the magnetic field
produced by the dynamo is usually believed to be of the order
of the kinetic energy density, which for p = 1.7 x 10~*" cm™3
and v = 100kms™! yields ~ 1.5 uG. However, the models of
Brandenburg et al. (1992) indicate considerably weaker fields
in the halo. An advection of magnetic field from the disc
under local flux conservation (e.g. by a galactic wind) results
in very weak fields in the halo because then B scales as p~%/>
decreasing down to about 108G at p = 1.7 x 107 cm™3.
On the other hand, a stronger field could be the result of
topological pumping of the magnetic field from the disc into
the halo. Since the efficiency of topological pumping is related
to the filling factor of the hot gas in the disc, it is worth noting
that there is quite active star formation in NGC 253, and the
filling factor is therefore indeed expected to be large.

Topological pumping leads to relatively strong magnetic
fields above the disc, comparable to those at the base of the
fountain flow. We stress a non-trivial aspect of this fact: the
field at z ~ 3 kpc is stronger than that at z = 0, even though
in our simulations the density is smaller by a factor of 10. Of
course, this is a result of continuous pumping by the fountain
flow.

The model discussed above is purely kinematic, since we
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have not included the effects of the Lorentz force on the
fountain flow. A consistent analysis of the non-linear effects
must await more realistic models of topological pumping in
galaxies. It is clear, however, that topological pumping, if too
strong, could completely destroy the dynamo in the parent
galaxy provided the upper boundary is open, allowing the
field to leak out of the galactic halo (as in our simulations).
Given the time-scales estimated above, this is unlikely to be
important, if the dynamo in the galactic disc is as strong as
it usually believed to be (that is, the dynamo time-scale is
103-10° yr). On the other hand, if the rate of magnetic field
regeneration is larger than the rate of its escape, or if the
upward migration is halted by turbulent diamagnetism (see
Section 3.5), a steady state can be reached with non-vanishing
magnetic field. The steady-state strength of the magnetic field
pumped by the galactic fountain can be roughly estimated from
equipartition between magnetic and kinetic energy densities as
B ~ (4npU2%,)V? ~ 107°G, where p ~ 1.7 x 107¥ gcm™>
is the typical gas density in the halo. This estimate is based
on the assumption that the magnetic field cannot suppress
the pumping by just modifying the topology of the flow, but,
instead, has to choke the fountain flow completely. Note that
the mean field is predominantly horizontal which maximizes
its effect on the vertical motions.

We should note that earlier pumping models with closed
boundary conditions showed that the steady-state strength of
magnetic field grows with magnetic Reynolds number (Droby-
shevski & Yuferev 1974; Drobyshevski et al. 1980; Arter 1983).
Our results, obtained with different (open) boundary condi-
tions, seem to indicate that a steady state cannot be reached
without non-linear effects, whereas R,, determines the rate of
magnetic field transfer (see Section 3.4) and turbulent diamag-
netism only halts the upward migration of the field maximum
without preventing the growth of magnetic field strength at
the field maximum.

The values of the density scale height, zp = lkpc, and
the upper height of the region considered, z,, = Skpc, are
rather low for galactic haloes where the values zp = 3 kpc and
zm = 10kpc seem to be more plausible. However, our intention
is only to illustrate the importance of the topological pumping
under galactic conditions. Our results can be rescaled to the
larger values of L, zy and z,, as discussed in Section 2.2.

We have deliberately omitted the effects of rotation from
our analysis. If included, this would add self-excitation of
magnetic field by the dynamo in the fountain flow, as discussed
by Sokoloff & Shukurov (1990), Brandenburg et al. (1992) and
Kahn & Brett (1993). It is, however, clear that the topological
effect discussed here might strongly affect dynamo action in
the disc-halo system since its time-scale, t ~ 3 x 107 yr, is
significantly shorter than the conventional dynamo time-scale,
(5-10) x 10% yr. We thus expect that galactic fountains could
significantly enhance dynamo activity in the disc-halo system
of a spiral galaxy.
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