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Abstract. We have computed mean field dynamo models in a
deep spherical shell, without restriction on spatial symmetries,
in which the growth of the magnetic field is limited solely by the
back reaction of the large scale Lorentz force on the large scale
motions. A parameterization of the Reynolds stress tensor is
included to describe the generation of differential rotation. We
find for moderate values of the Taylor number, when the differ-
ential rotation is also small, that the stable magnetic fields are
nonaxisymmetric, with the same basic topology as a ‘perpendic-
ular dipole’. For larger Taylor numbers, and stronger absolute
differential rotation, we expect axisymmetric fields to be stable.
We briefly discuss the relevance of our results to the large scale
nonaxisymmetric structures and extended starspots observed on
late type ‘active giant’ and other stars.
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1. Introduction

Observational evidence has accumulated that nonaxisymmetric
structures of global scale are present on the surfaces of active
stars with deep outer convection zones, both giants (see, e.g.,
the discussion in Moss et al. 1991 and Jetsu et al. 1993) and
dwarfs (e.g. Jetsu 1993). From analogy with the solar spots, it
seems probable that there are corresponding global scale mag-
netic structures present, i.e. large scale nonaxisymmetric mag-
netic fields.

Active late-type stars show rotational modulation of their
brightness, indicating surface inhomogeneities. Such surface in-
homogeneities are usually associated with starspots, although
their size distribution is probably rather different from the solar
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case. Surface temperature maps show that such cool starspots
extend over as much as 20-30 degrees (e.g. Piskunov et al. 1990,
1994). The use of spectral lines with different Landé factors has
allowed determination of approximate correlations of magnetic
and temperature images (Saar et al. 1994). However, the polar-
ity of the field remains unclear, as does whether the field within
the spots is more-or-less uniform, or is divided into small scale
fields of opposite orientation. In the near future we may hope to
obtain from spectropolarimetric observations information about
the polarity distribution of such magnetic fields associated with
these strong large scale nonaxisymmetric structures.

In the present paper we investigate the possibility of explain-
ing such large scale fields in terms of mean field dynamo theory.
Some sort of ‘turbulent dynamo’ is usually accepted as being re-
sponsible for the solar magnetic field and, by extension, a similar
mechanism is believed to operate in other, chromospherically
active, late type dwarfs with deep convection zones. Such a dy-
namo would then operate in the late type ‘active giant’ stars,
such as mentioned above.

Nearly all detailed models of solar dynamos have adopted
the ‘mean field” approach (Krause & Rédler 1980). A quite gen-
eral prediction from simple models of this sort, where the large
scale velocity fields are chosen a priori to have a simple form
(usually only differential rotation is present), is that axisym-
metric mean fields are preferentially excited: in linear theory
such fields are generally excited at lower dynamo numbers than
nonaxisymmetric but, more importantly, axisymmetric fields are
usually stable in the nonlinear regime. Riidiger & Elstner (1994)
have shown that including plausible anisotropies in the a-tensor
results in lower critical dynamo numbers for nonaxisymmetric
field generation than for axisymmetric, provided that the dif-
ferential rotation is not too large. Further, Moss (unpublished)
has shown that such solutions are stable when an a-quenching
nonlinearity is included.

It is possible to choose simple but rather artificial distri-
butions of differential rotation and alpha effect such that non-
axisymmetric fields are easier to excite and/or are nonlinearly
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stable (e.g. Ridler et al. 1990; Moss et al. 1991). In the pres-
ence of a sufficiently strong differential rotation there are clear
magnetohydrodynamic reasons for this preference for axisym-
metric field generation, associated with the winding up of the
nonaxisymmetric field lines (Rédler 1986; Moss 1992). How-
ever the differential rotation in the interior of stars other than the
sun is unknown. Further, we have no knowledge of the merid-
ional circulation. A self consistent approach to stellar dynamos
should determine the large scale velocity fields consistently and
simultaneously with the large scale magnetic field: for example
it is clear in general terms that magnetic fields will both drive
a meridional circulation (that, inter alia, advects angular mo-
mentum) and act to reduce differential rotation (e.g. Moss 1992).
The eventual state of the system will depend on the competition
between the various dynamical processes. Simple models of
mean field dynamos including incompressible hydrodynamics
by Barker & Moss (1994) show that, contrary to previous experi-
ence, stable nonaxisymmetric magnetic fields can be found over
a range of parameters without any ‘tuning’. This result seems
largely attributable to the latitudinal dependence of the dif-
ferential rotation, together with the dynamically driven merid-
ional circulation (both self-consistently determined). However,
in these models the magnitude of the differenti;l} rotation is al-
ways small, it being driven solely by the azimuthal component
of the Lorentz force.

To solve the global problem of turbulent compressible con-
vection and magnetic field generation is, at present, impossi-
ble, although significant steps have been taken towards smaller
scale simulations in box geometries that might be considered
as models for processes occurring locally in turbulent convec-
tion zones (see, e.g., the review by Brandenburg 1994). In some
earlier work, the global solar dynamo problem was tackled with-
out introducing the a-effect parameterization, solving the full
Navier-Stokes equations, but still parameterizing the smaller
scales of the turbulence by introducing a scalar turbulent vis-
cosity (e.g. Gilman & Miller 1981; Gilman 1983; Glatzmaier
1985; and references therein). These calculations were impor-
tant, not least because they successfully demonstrated the exis-
tence of dynamo action, but they have failed so far to reproduce
important features of the solar cycle.

An alternative, computationally less expensive, approach
that allows an exploration of parameter space, whilst avoiding
some of the arbitrary features of kinematic dynamo theory, is to
use a parameterization of the turbulent Reynolds stresses. This
concept is in some ways akin to the approach of mean field elec-
trodynamics. In its most recent form it is known as the ‘A-effect’
(e.g. Riidiger 1989 and references therein). This A-effect has
already been included in dynamically consistent axisymmetric
dynamo models (e.g. Brandenburg et al. 1991, 1992a). Further,
a preliminary, quasi-kinematic investigation of the effects on the
excitation of nonaxisymmetric magnetic fields of including such
dynamics was reported by Barker & Moss (1993). They solved
the purely hydrodynamical problem with a simple form for the
parameterized Reynolds stresses (A-parameter V© = +1, see
Sect. 2), and used the resulting large scale velocity fields as
input into a kinematic, nonaxisymmetric dynamo calculation,
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with a simple a-quenching nonlinearity. They did not attempt a
comprehensive survey of parameter space, but for a moderately
supercritical dynamo number and a Taylor number of 10° they
found a stable nonaxisymmetric solution. For smaller Taylor
numbers only axisymmetric solutions were stable. Differential
rotation becomes stronger with increasing Taylor number and,
for a Taylor number of 108, the increased differential rotation
effectively discriminated against the nonaxisymmetric fields. In
general terms, we can naively expect that these computations,
ignoring any back reaction of the magnetic field on the fluid
motions, will overestimate the role of the differential rotation at
given Taylor number, although in practice the interactions are
likely to be quite complex and hard to predict in detail.

We note that there have been a number of recent papers in-
vestigating the possibility that the solar dynamo operates at or
just below the base of the convection zone (see, e.g., Durney et
al. 1993; Riidiger & Brandenburg 1994), although the question
is certainly not yet resolved. For example, it may be that a ‘dis-
tributed dynamo’ operates through much of the convection zone,
but that there is a turbulent pumping of magnetic flux down-
wards, towards the bottom of the convection zone (e.g. Kitchati-
nov 1991; Brandenburg et al. 1992b; Brandenburg 1994). Per-
haps more relevantly in stars with very deep subsurface convec-
tion zones, the base of the convection zone/overshoot layer is
geometrically of small relative volume, and it is not at all clear
that the ‘bottom dynamo’ concept is appropriate for these stars.
(It clearly does not apply to late type fully convective dwarfs!)
Thus we adopt a conventional ‘distributed dynamo’ model in
this paper.

We report the results of mean field dynamo calculations that
include consistently the effects of the large scale incompressible
dynamics with parameterized turbulent Reynolds stresses. This
allows a driver for differential rotation to be present, whilst per-
mitting competition between such turbulent angular momentum
transport and the angular momentum transport by the magnetic
stresses. Note that there is no longer any necessity to impose an
a-quenching nonlinearity to limit the growth of the solutions
at finite amplitude, as the Lorentz force feeds back directly on
to the dynamics. The question of whether some form of a-
quenching should be simultaneously considered is one that we
bypass in this investigation.

We again find wide parameter ranges where nonaxisymmet-
ric magnetic fields are the only stable solutions to the dynamo
equations. We experienced difficulties (see Sect. 2) that pre-
vented us from proceeding to Taylor numbers as large as we
would have wished, and so were unable to verify directly our
expectation that in general for strong enough differential rota-
tion, stable nonaxisymmetric fields are not found. However we
feel that this point is not really in doubt: the interesting result
is that stable nonaxisymmetric magnetic fields are quite readily
excited for intermediate values of the Taylor number.
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2. The model
2.1. Equations

We solve the standard mean field dynamo equation
0B/0t=V x (ux B+aB —nrV x B),

and the modified Navier-Stokes equation

D’U,i oP 0 .
Dt = oz, 5;;(in;’)+(.] x B)i, 2

in an incompressible fluid shell, Ry < r < R (r, 6, ¢ are
spherical polar coordinates). In Eq. (1), B is the mean field, o
is the conventional a-effect parameter and nr is a turbulent
resistivity. In Eq. (2), j is the current corresponding to B, and
the reduced pressure P includes the gravitational term.

€]

p

Qij = Dij — vr(ui j + uj0) (3)

is a parameterization of the turbulent Reynolds stresses in an
incompressible fluid (e.g. Riidiger 1989). The first term on the
right hand side of (3) gives rise to a turbulent angular momen-
tum transport and the second term represents a conventional
turbulent diffusion, with eddy viscosity vr.

2.2. A and « effects

We adopt a simple model for the A-effect, with

0 0 Ay sin6
D;; = 0 0 Apgcost | Q. 4)
Ay sind Agcosf 0

Following Riidiger (1980) we write
Ay = vp(VO + VD sin® 0) (), Q)
Ag =vpHW sin? 0f(r), (6)

where VO, V® and HD are expected to be of order unity. See
Riidiger (1989) and Brandenburg et al. (1991, 1992a) for further
details. We introduce for numerical convenience the factor f(r),
whichisunity inr > Ry+0.2 R and goes smoothly to zero at Ry.
The terms V" and H® become important for larger angular
velocities, and should be included for the regime in which we are
really interested. However we have restricted ourselves in these
exploratory calculations to the case V(" = H® = 0, in order
to reduce the number of parameters (but see, e.g., Kitchatinov
& Riidiger (1993) who have recently given a relation between
HD, VD and VO for a certain turbulence model; also Tuomi-
nen & Riidiger (1989)). We write o = aigg(r) cos 6, where oy is
aconstantand g(r) = 1in Ry+0.2 < r < R and goes smoothly
to zero at r = Ry.

2.3. Boundary conditions

Boundary conditions are that the flow be stress free at = R, and
atr = Ry if Ry > 0. There is no radial flow at the boundaries.
The magnetic field fits smoothly onto a vacuum field at 7 = R
and if Ry > 0 the condition is that the region 7 < Ry is a perfect
conductor. If Ry = 0, regularity conditions determine u and B
there. '
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2.4. Numerical procedure

The magnetic and velocity fields can be written quite generally
as

B=V X (ad)+bd+V x V x (BF) + V x (IF), @)
u=V x (1) +vd+V x V x (S#) + V x (TH), ®)
where a, b, v, ¥ are independent of ¢, and we put

K
O(r,0,0) = Y Bpn(r, 0)e™™? )

m=1

with similar modal expansions in ¢ for ¥, S, T and the reduced
pressure P. (We find it convenient to separate the axisymmetric
and nonaxisymmetric parts.)

We use as scalings ¢ = /R, 7 = (np/R*t, B* =
R/(5puo)' /B, u* = (R/nr)u and o* = Ra/nr. The nondi-
mensional a-effect parameter is then C,, = apR/nr, and this is
an input to the calculations. We take the magnetic Prandtl num-
ber v /nr to be unity. The other important input parameter is
the Taylor number, T'a = (20 R? / vr)?, where € is the angular
velocity of uniform rotation with the given angular momentum.
Effectively, T'a specifies the (conserved) angular momentum.
For diagnostic purposes it is useful to define

Ca,e = [UR,7/2) — QRo, 7 /2)I1R* /nr, (10)
and
Cﬂ,g = (Qmax — Qmjn)Blz/")T- (1

Here © = ugg/(r sin ), with ugyg the ¢- independent azimuthal
velocity. In (11), maximum and minimum values of 2 are taken
either in the equatorial plane or globally. Note that in our model,
Cq, is not defined a priori, but emerges as part of the solution.
Cm = UR/nr, where U is the mean square meridional ve-
locity (axisymmetric), is a magnetic Reynolds number for the
meridional flow. We also define the global parity and symmetry
parameters,

(E(S) _ E(A))

" (E®) + EAW)y’ (12)
M=1_ .’?E_O (13)

where E is the total magnetic energy, E®® and E“ are the
parts corresponding to dynamo solutions symmetric and anti-
symmetric with respect to the rotational equator respectively,
and Ej is the energy in the axisymmetric part of the field.
It is sometimes convenient to follow the evolution of solu-
tions in a (P, M) diagram. The four ‘corner solutions’, with
(M, P) = (0,+1),(0,—1), (1,+1),(1, —1), can be associated
with the nonlinear continuations of the linear modes SO, AOQ,
S1, A1 respectively (e.g. Ridler et al. 1990), and thus we sim-
ply refer to them as such. There are so far no cases known where
solutions with dominant m = 2 (or higher) modes are stable.
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We integrate in time the K + 1 modal components of equa-
tions derived from (1) and (2). The numerical procedure is de-
scribed in more detail in Barker & Moss (1994). In addition to
a modified Dufort-Frankel scheme, we here also used a second
order Runge-Kutta method. The latter was slightly more robust,
and was used at higher Taylor numbers. It is also necessary to
solve Poisson type equations for the ¢-component of the ax-
isymmetric vorticity and the modal components of the reduced
pressure, Py, (r, 6).

In general we found retaining just four Fourier modes to
be adequate, in that the energy in modes with m > 1 rapidly
becomes small (see also Table 2 in Ridler et al. 1990). For
Ta < 10%, ameridional spatial resolution of 21 x 41 grid points
overzg < = < 1,0 < 6 < 7 was satisfactory (zg = Ro/R).
WhenTa 2 10*, higher meridional resolution was needed. This
appears to be because of the formation of a boundary layer of
Ekman type in the nonaxisymmetric part of the flow described
by Eq. (2). This can be demonstrated as follows.

If 6 is a radial scale of variation, from the pressure and
diffusion terms in Eq. (2) we can make the order of magnitude
estimate

R*P vurS
=~ 14

5 52 (14)
After taking the divergence of Eq. (2), we can obtain also the
estimate

Qs

~ = 1
Pro—, (15)

and s0 § ~ vr/(QR), or §/R ~ Ta~'/2.

We alleviated this problem by introducing a shell, 0.8 <
z < 1, in which the viscosity increased smoothly, to ca 10-fold
its normal value at z = 1. We stress that this is a purely artificial
device. This enhancement was only included in the nonaxisym-
metric dynamics, and did not appear to affect significantly the
dynamo solutions. Even this device, together with enhanced
spatial resolution (to 61 x 61), was only sufficient to obtain so-
lutions to T'a = 5 x 10* in general, and to Ta = 10° for some
restricted calculations. The finer spatial resolution (and smaller
time steps) required make further computations prohibitively
expensive.

Table 1. Values of Cq,. from a purely hydrodynamical model. The
entries in parentheses for T'a = 5 x 10* are interpolations from neigh-
bouring values

V(‘l)
Ta -2 1 2
10° —64 49 6.7
104 —200 50 76
5x10* (=380) (120) (180)
10° —530 150 240
108 —1600 440 759
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3. Background results for differential rotation

If the m = 0 azimuthal component of Eq. (2) only is solved,
with a A-effect with f(r) = 1 and V) = H® = 0, the solution
is

Q=A4z"V", (16)

where A is a constant determined by the prescribed total angular
momentum, e.g. Riidiger (1989). If the m = 0 meridional hydro-
dynamical equations are also solved simultaneously, a merid-
ional circulation is introduced and 2 = Q(z, 8), but the under-
lying solution (16) is still clearly apparent. (The kinetic energy
in the meridional motions is no more than about 1% of that of
the differential rotation.) In Table 1 we reproduce some results
from Barker (1994) to illustrate the variation of Cq with T'a and
VO for such solutions. (The differences between the values of
Table 1 and those of Brandenburg et al. (1991) are largely due
to the difference in shell thickness: the code used here is con-
sistent with that of Brandenburg et al.) We note that the rotation
law (16) with |V @] 2 1, and also the hydrodynamical solutions
summarized in Table 1, give an unrealistically large ratio of an-
gular velocity at the surface and at the bottom of the thick shell.
When the Lorentz forces are included (see below), this ratio
is generally significantly reduced, but may still be considered
rather large. However we adopted a standard value V@ = +1
for most of the calculations, in order to study solutions with a
strong driver of differential rotation, in contrast to the work of
Barker & Moss (1994) who took V@ = 0.

4. Results

We performed systematic sets of calculations with V@ = +1 for
Taylor numbers of 10, 10 and 10*. We also obtained limited
results for T'a = 5 x 10* and a single result, at reduced resolu-
tion, at Ta=10°. When T'a = 103, most of the calculations were
performed in the complete sphere, but some have =y = 0.2. Ex-
periments suggest that this difference makes little quantitative
and no qualitative difference, and the two cases are not distin-
guished in what follows. For other values of Ta and V©® = +1,
our results are for the thick shell, ¢ = 0.2.

For Ta < 10% the results of Barker (1994) when zy = 0.1
show that C,, = 10 is clearly supercritical for the A0, SO, A1l
and S1 modes, and our results show that these critical C\, values
do not change much when zy = 0.2. When T'a > 10, Barker
showed that the A1 and S1 modes become progressively harder
to excite as T'a increases. However at Ta = 5 x 10* it can be
estimated that C, = 12 is clearly supercritical for all the basic
modes.

For Ta < 10* the AO and SO solutions are steady. When
Ta = 5 x 10* they are oscillatory. This, together with the in-
creased values of C, suggest that the aw dynamo regime is just
being reached at the largest T'a values for which our code could
handle computations in which P and M were not restricted in
value by boundary and initial conditions.

© European Southern Observatory ¢ Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/cgi-bin/nph-bib_query?1995A%26A...294..155M&amp;db_key=AST

FTI9OLARA © 72947 “I55M

D. Moss et al.: Nonaxisymmetric dynamo solutions and extended starspots on late-type stars

For orientation and interpretation of our results, note that
the magnetic field strength for equipartition with the turbulent
motions is given by

2 2
By = popus;. 17)
In dimensionless form, with ny ~ %Eu%, ut and £ a typical
turbulent velocity and length scale, this becomes

(18)

If R ~ (3 — 10)4, then B;‘qz ~ 10% — 103, and the dimensionless
global equipartition magnetic energy Eumag,eq ~ 20(R/£)* ~
200 — 2000.

In Sect. 4.1 to 4.4 we discuss our ‘standard’ case, V© = +1.
In Sects. 4.5 and 4.6 we briefly report assorted experiments with
other values of V@ For some of the calculations of Sect. 4.6,
Ig= 0.0.

B3 ~ 10(R/).

4.1.Ta=10

Taking C,, = 10, we first computed the SO, A0, S1, A1 solutions:
basic properties are given in Table 2. We then perturbed these
solutions, both in global parity (P) and azimuthal symmetry
(M), typically by less than 0.1% in each of these parameters,
and followed the subsequent evolution of the system. We found
the S1 solution to be stable, and the other three to be unstable.
In particular, we followed the evolution of the configuration
starting near (M, P) = (0, —1) for a number of diffusion times.
It at first evolved with P ~ —1 until M was very close to unity
and then, at first very slowly, P began to increase with M ~ 1.
In fact, when we perturbed the exact Al solution, it moved
away from the (—1,0) corner rather more rapidly than did the
perturbed AO configuration when at its closest to the A1 corner,
as the distance of the latter from P = —1 was for a significant
time smaller than the size of our standard perturbation in P.
Without rather extensive calculations it is difficult to be quite
certain that other stable solutions do not exist, perhaps with
quite small basins of attraction in (P, M) space. We did start one
computation near the centre of the (P, M) diagram, with a fairly
arbitrary initial field configuration. This evolved on a timescale
of about a diffusion time to the P = +1, M = 1 state (see
Fig. 1). Figure 2 gives angular velocity contours and meridional
circulation streamlines for the S1 solution. With C,, = 12.5, the
evolution was qualitatively similar. A general feature of these
and all the other solutions presented is that both the kinetic and
magnetic energies are concentrated in the lowest order modes.

4.2. Ta =103

The properties of the pure parity, ‘corner’ solutions are given
in Table 2 for C,, = 10. When these were perturbed, the results
were quite similar to those with T'a = 10 and, again, the only
stable solution was that with P = +1, M = 1. Evolution was,
in general, somewhat more rapid. In particular, we followed
the evolution of the perturbed AO and Al configurations for
a number of diffusion times. The former also lingered near to
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Fig. 1. Evolution in P and M at Ta = 10, V® = 1, Cs = 10 of
configuration starting with P =~ 0, M ~ 0.15

the A1 corner for several diffusion times, as discussed above
for T'a = 10, before evolving towards the stable S1 solution.
Similarly, the perturbed A1 configuration was at first very slow
to move away from P = —1: some details of its evolution are
shown in Fig. 3. Again we did not find any other stable solution:
for example a configuration starting near P = 0.3, M = 0.4,
eventually evolved to P = +1, M = 1, after spending several
diffusion times near P = —1, M = 1. Repeating the latter
computation with C,, increased to 12.5 yielded similar results.
We show surface magnetic field contours for C,, = 10 and P =
M =1 in Fig. 4. (These contours are, in fact, quite typical of
surface field contours for the S1 solutions for other values of
Ta.)

4.3 Ta=10*

We first examined, at relatively low spatial resolution (21 x 41),
the behaviour of solutions restricted to pure parity P = +1.
(For reasons that we did not determine, these solutions were
less demanding numerically than those with a P = —1 com-
ponent). With C,, = 10 we found limit cycle behaviour, with
0.97 £ M 5 0.99. With C,, = 12, 14 the corresponding vari-
ations were 0.73 S M $0.94 and 0.81 < M 5 0.95 respec-
tively. We give some details of the C,, = 12 solutionin Fig. 5. A

© European Southern Observatory ¢ Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/cgi-bin/nph-bib_query?1995A%26A...294..155M&amp;db_key=AST

FTI9OLARA © 72947 “I55M

160

Fig. 2. Equally spaced contours of constant angular velocity and merid-
ional circulation streamlines for S1 solution, Ta = 10, V@ = 1,
Ca =10

test run atresolution 61 x 61 suggested that these limits changed
somewhat, but that the limit cycle character of the solution re-
mained. When C, = 12 we verified that the limit cycle was
unstable to perturbations in P.

Turning now to the pure parity solutions, the A0 solution
was found to be stable to small perturbations in M and P with
C, = 10, and the other pure parity solutions were unstable.
The S1 solution is stable when perturbed in P alone — see also
Sect. 4.5 and the discussion in Sect. 5. Details of these basic
solutions are again given in Table 2. For the A0 solution with
C, = 10, we show angular velocity contours and circulation
streamlines in Fig. 6.

44.Ta=5x 10*

Because of numerical problems/large cpu requirements, we
were only able to make a limited investigation of this case. With
C,, = 10, from the results of Barker (1994) it can be deduced that
the pure parity modes are, at best, only marginally excited. Thus
we took C,, = 12, when we found all the pure parity solutions to
be unstable to arbitrary perturbations. When the solutions were

D. Moss et al.: Nonaxisymmetric dynamo solutions and extended starspots on late-type stars

Table 2. Results for the saturated pure parity modes with V@ = 1.
Ca = 10, except for Ta > 5 x 10%, where C, = 12. A few Ci
values were not calculated, but there is no reason to expect them to
differ very much from those given. Oscillatory solutions are denoted
by asterisks. In these cases the energy values are means of the maxi-
mum and minimum values in the oscillation (which may be markedly
non-sinusoidal), whereas the Cq, 4, Cq,e and C,, entries are merely
typical values. Kinetic energies are in the inertial frame and include the
kinetic energy of solid body rotation at angular velocity o, which is
7wTa/15. In the last column, 2, /€; is the ratio in the equatorial plane
of the angular velocity at the surface to that at z = 0.2. Stable solutions
are shown in bold face

Ta mode  Fngg Ein Ca,y Cae Cm 2./
10 A0 235 71 86 —27 13 02
S0 335 96 66 —08 3.1 —0.9
Al 447 120 59 21 0.04
S1 614 180 56 1 1.0
10° A0 238 274 87 —11 0.7 0.7
S0 227 286 74 22 0.9
Al 407 293 54 28 1.6
s1 651 364 67 21 29 -—12
10* A0 301 2200 115 20 1.1 1.4
S0 136 2170 89 62 10 23
Al 481 2130 54 47 18 37
S1 1140 2180 56 27 3.5 1.9
5% 108 AO* 610 10800 180 84 14 24
SO0* 1770 11200 200 74 1.7 2.1
Al 2090 10600 79 43 42 1.5
S1 4540 12300 129 46 5.3 1.6
10° S1 3200 24600 102 65 4.7 1.6

Table 3. Some results for the saturated pure parity modes with
V©® =0.3, Cy =10 (12 when Ta = 10°). Details as in Table 2

Ta mode  Eingg EBin Cagy Cae Cn
10° Sl 701 367 56 10 2.8
10 A0 310 2170 103 5 1.4
S0 283 2120 103 7
S1 957 2240 57 25 34
10° St 3460 21200 98 37 43

restricted to be axisymmetric, then the A0 solution was stable.
When the parity was restricted to P = +1 (at low resolution and
still with C,, = 12), we again found limit cycle behaviour, with
093 S M 5 0.99, whereas when C, = 11 and P = +1, the
eventual state is M = 1.

45. V9 =03

We made a limited investigation of the case V@ = 0.3 for
Ta = 10? to 10°. Results for the pure parity modes are given in
Table 3. For C, = 10, the S1 solution is stable to an arbitrary
perturbation when Ta = 10°. When T'a = 10*, the S1 solution
is unstable (in contrast to the situation when V@ = 0, cf. also
Barker & Moss 1994), but the instability develops very slowly.
In this case, the AO, SO and A1 solutions are also unstable:
in particular we found that the perturbed A0 solution evolved
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Fig. 3. Evolution in time of P and the energies of the m = 1 and
m = 3 parts of the magnetic field for the perturbed A1 case: T'a = 10°,
V©®=1,C, =10. The energies in the m = 0,2 parts of the field are
always small

2 4

rapidly, at firsttonear P = —1, M = 1 and then, with M keeping
very close to unity, to the S1 configuration. This is in apparent
contradiction to the finding that the S1 solution is unstable:
the resolution of the situation appears to be that the basin of
attraction of the S1 solution contains a very narrow wedge with
M = 1 near P = +1: our arbitrary, but small, perturbation took
the solution outside of this wedge. When T'a = 10%, C,, = 12,
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Fig. 4. Equally spaced contours of total field strength |B| (top) and
radial field B, (bottom) for S1 solution at one grid point beneath the
surface, Ta = 10%, V@ = 1, C,, = 10. Longitude (0, 27) runs from
left to right, latitude (0, 7r) from top to bottom. Broken contours repre-
sent negative values. Maximum values of total field strength occur at
mid-latitudes, and are of order 5(¢/ R) B,

the S1 solution is stable to an arbitrary perturbation, but weakly
in the sense that the return to P = M = 1 is relatively slow.

4.6. Other values of V©

Starting from arbitrary field configurations near the middle of
the (P, M) diagram, we found evolutionto P = +1, M = linthe
following cases. Ta = 10%: C,, = 10, V@ = 42 and —1. Ta =
10%: Cy = 10, VO = +3 and +2. We made only short runs with
other parameters, that were insufficient to determine the final
state; in no case did we find evidence for evolution to any state
otherthan P = +1, M = 1 with Ta < 10°. However when T'a =
103, VO = -2, C, = 10, the system again closely approaches
P = —1, M = 1 from arbitrary initial conditions, and was
extremely slow to move away. However it seemed clear (Fig. 7)
that the eventual state is not the A1 solution, although we did not
run this case long enough to determine the final configuration:
from comparison with the corresponding calculation with V@ =
+1 it is plausible that the eventual state is again S1. When Ta =
5x 10%, V© = _2 Barker (1993) showed that the m = 1 modes
are much harder to excite than those with m = 0 and that the
S0 mode is significantly easier to excite than the AQ with these
parameters. In this case, when C\, = 10 an arbitrary initial field
configuration unsurprisingly evolves to the SO solution.
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Fig. 5. m = 0 and m = 1 magnetic and kinetic energies during the
approach to the limit cycle for the Ta = 10*, V® = 1, C, = 12
solutions with the restriction P = +1

5. Discussion

Our principal result is that, in a model where the large scale
velocity fields are determined consistently with the magnetic
field, stable nonaxisymmetric magnetic fields can be excited
at moderate values of the Taylor number for a range of values
of the Reynolds stress parameter V@, These fields are of S1
type — i.e. of the same general topology as a ‘perpendicular
dipole’. The results seem to be insensitive to Taylor number for
10 < Ta < 107, and also not to depend strongly on V© for
these values. The controlling factor seems to be the magnitude
of the differential rotation, but inspection of Table 1 shows that,
for T'a < 10%, the absolute differential rotation |Cp | is small for
all values of V@ However, Barker & Moss (1994) found the
S1 solution to be stable at T'a = 10* with V@ = 0, in contrast
to our results with V@ = 0.3 and 1. This suggests that in tran-
sitional regimes stability properties may be sensitive to model
parameters. We note that the magnetic energy of the S1 solution
is always by far the largest among the pure modes for given T'a
and V© (see Table 2); the significance of this result is unclear.
We were unable to calculate self-consistent nonaxisymmetric
models for Taylor numbers larger than a few times 10*. Table 1
confirms thatitis in this regime that | Cq| generally attains values
of a few hundreds, where the aw regime of kinematic dynamo

D. Moss et al.: Nonaxisymmetric dynamo solutions and extended starspots on late-type stars

Fig. 6. Equally spaced contours of constant angular velocity and merid-
jonal circulation streamlines for AO solution, Ta = 104, V@ = 1,
Cy=10

models is approached. This is confirmed by our axisymmetric
solutions being steady for T'a < 10* and oscillatory at 5 x 10*
when V@ = 1. We were also restricted to only mildly super-
critical values of C,. In the range investigated, results do not
appear to be very dependent on Cl,, provided that the basic dy-
namo modes are all excited. Nevertheless, previous experience
with kinematic dynamos, and with axisymmetric hydrodynam-
ical dynamos, does suggest that some results might depend to
an extent on the value of Cy: naively, larger C, might produce
stronger fields and hence more effective Lorentz torques and so
smaller |Cgq)|.

We note the interesting situation found with the V@ = 0.3,
Ta = 10* solutions. A configuration initially far from the S1
corner of the (P, M) diagram evolves to S1, approaching this
solution along the line M = 1. However the S1 solution is
unstable to an arbitrary perturbation in P and M, and evolves
with P and M decreasing (we did not follow this evolution
very far, as it was extremely slow.) Thus any evolution to S1
will be followed by movement away from it, if there is a finite
perturbation in M . (A somewhat similar situation may have been
encountered by Rédler et al. (1990) with a kinematic model,
but their computation does not seem to have been continued
for long enough for the outcome to be certain. Inter alia, they
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Fig. 7. Part of the evolution in P and M of a run starting with
P ~ 0, M =~ 0.35, showing the approach to and slow divergence
from P = -1, M =1.Ta = 10>, V¥ = -2, C, = 10. The anomalies
at 7 = 5 are caused by some data having been lost

pointed out that the evolution through the (P, M) plane can
take hundreds of (turbulent) magnetic diffusion times (see also
Barker & Moss 1994).) There is no completely stable solution
available for these parameters, and it seems plausible that the
system will eventually again be captured by S1, approaching
along M = 1. Thus an irregular cycling may result, if any noise
is present. Although we did not investigate the corresponding
V® =1,Ta = 10* case in so much detail, the results of Sect. 4.3
suggest a somewhat similar situation, except that the AO solution
is now stable. We can speculate that the V® = 1, T'a = 5 x 10*
case may also be similar.

In fact, the argument against the existence of strictly non-
axisymmetric solutions for large Taylor numbers (differential
rotation) is simple: as soon as the differential rotation becomes
large enough (|Cq| typically a few hundreds), the critical C,, val-
ues for nonaxisymmetric modes increase to values significantly
larger than for the axisymmetric modes. (Magnetic torques will
oppose the growth of |Cq|, but it is probable that the hydrody-
namical effects will eventually dominate; cf. also Moss 1992.)
Thus there is a range of C,, values for which the only pure parity
modes that can be excited are axisymmetric. If C, is very su-
percritical for these modes, then m > 0 modes can be excited,
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but there is no evidence that such solutions would be stable,
unless perhaps the dynamo operates in a regime well past this
bifurcation (cf. Jennings 1991). Likewise there is no numerical
evidence to date for the existence of mixed m = 0 and m > 0so-
lutions existing in a regime where only m = 0 modes are excited
in linear theory. This, together with the general argument by
Ridler (1986), many kinematic results and the quasi-kinematic
calculations of Barker & Moss (1993), suggests strongly that for
larger Taylor numbers and, correspondingly, differential rota-
tion, only axisymmetric solutions are stable. By this reasoning,
the reversion to a stable axisymmetric solution at T'a = 10%,
VO = +1, would appear to owe more to the changing spatial
structure of {2 (see below) than to the magnitude of the differen-
tial rotation. It is unclear how the situation at T'a = 5 x 10* fits
into this picture, and there are clearly other important effects
that influence stability in intermediate regimes.

It is interesting to assess the importance of the azimuthal
restoring torques, by comparing the Cg, . values of Table 2 with
the Co entries in Table 1, remembering that in the models of
Barker & Moss (1994) a Cq value of about 50 can be generated
by the action of the Lorentz force alone, and so for Ta < 10
the differential rotation (Table 2) is predominantly driven by
the Lorentz force. For T'a > O(10*) there is a small but clear
reduction. A similar conclusion follows from inspection of the
relative differential rotation in the last column of Table 2.

We note that for T'a = 10, differential rotation contours
for the S1 solution are ‘disc-like’ (Fig. 2), whereas for Ta 2
10%, Q is almost constant on cylinders (Fig. 6). Comparison
of the € contours at Ta = 5 x 10* for the SO and S1 solutions
shows that Q ~ €(2) is perhaps rather more effectively enforced
in the S1 solution. In general, Lorentz torques seem slightly
more effective at controlling differential rotation when m = 1,
compared to when m = 0.

We distinguish between the absolute differential rotation
parameter C, which is important for dynamo theory, and the
relative rotation 2, /2;. Whereas |Cgq| is never very large in our
models, a somewhat unrealistic feature of some of our solutions,
if we want to apply them toreal stars, is the relatively large value
of Q, /€. Also, there are even some negative values! The lat-
ter seem to arise since, for smaller values of T'a, the azimuthal
velocities produced by the Lorentz forces are comparable to
those from the A-effect. Moreover our choice of A-profile, with
A — 0 at the base of the envelope, means that the Reynolds
stresses are ineffective there and so the Lorentz stresses dom-
inate locally. For comparison, the underlying rotation solution
(16) gives Q,/Q; = 5 for V@ = 1 — the marked deviations
from this value (Table 2) are a measure of the effectiveness of
angular momentum transport by meridional flows and Lorentz
stresses. (For V@ = 0.3 the corresponding ‘background’ value
of Q,/Q; is 1.6.)

In general, we are encouraged that overall our results appear
not to be very sensitive to the value of V. Indeed, our results
differ in detail, but not in substance, from those of Barker &
Moss (1994). In that paper, V@ = 0, and there was thus no
external driver for the differential rotation. This also means that
the large values of Q25/Q; of some of our models (see above)
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are not crucial to the existence of stable nonaxisymmetric solu-
tions. As previously noted, our choice of A parameter is strictly
appropriate only to relatively slow rotation. A more extensive
investigation would certainly include non-zero values of V)
and H (Egs. (5) and (6)). However, given all the uncertainties
of detail associated with the model, we feel that such elaboration
at the moment would be premature.

We have completely neglected any micro-feedbacks on to
the dynamics (e.g. a-quenching, buoyancy, A-quenching) or
turbulent diamagnetic effects, all of which have recently been
discussed. It would be important to assess their relative impor-
tance (see recent work by Kitchatinov & Riidiger 1993), but here
we have chosen to isolate the effects of the large scale feedback
from the Lorentz force. It is plausible that any A-quenching
might, by reducing the effective value of A, reduce the abso-
lute differential rotation for given V@ — see the above discus-
sion. (Note that the calculations reported in Barker & Moss
(1993) could be considered to apply to the limit of a dominant
a-quenching, that is effective at field strengths below those at
which the Lorentz force has a significant effect on the large scale
dynamics.) Likewise we have neglected possible anisotropies in
the a-coefficient and in the turbulent resistivity and viscosity.

6. Concluding remarks

We have shown that stable nonaxisymmetric magnetic fields
may quite naturally be excited in deep convective shells. We
recognise that our solutions do not directly suggest the pres-
ence of equatorial spots, such as are indicated by surface imag-
ing techniques (Piskunov et al. 1990, 1994), but rather spots at
mid-latitudes (Fig. 4; cf. also Moss et al. 1991). Certainly the
situation in these stars is rather more complex than anything
produced by our models: the ‘flip-flop’ phenomenon, reported
in several stars (e.g. Jetsu et al. 1993, 1994) is particularly in-
triguing. Nonetheless we feel that our models may be capturing,
in a very simple way, the essence of the field generation process
in these stars.

There is some observational evidence that latitudinal differ-
ential rotation on the surfaces of late type giant stars is small, i.e.
|AQ/Q| < 1. There is also some evidence (e.g. Hall 1991) that
the differential rotation is smaller for active than for non-active
giant stars. On the sun, the surface differential rotation is much
larger, and it is there associated with a radial differential rota-
tion of comparable magnitude. If such a comparison is valid,
then this may be evidence for relatively weak radial differen-
tial rotation in late type active giant stars, that is for conditions
favourable for nonaxisymmetric field generation.
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