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Abstract. We simulate numerically convection inside the solar
convection zone under the influence of rotation at different lat-
itudes. The computational domain is a small rectangular box
with stress-free upper and lower boundaries, and with period-
icity assumed in the lateral directions. We study the transport
of angular momentum, which is important for the generation of
differential rotation. The sign and the latitudinal dependence of
the horizontal Reynolds stress component turn out to be in good
agreement with correlation measurements of sunspot proper mo-
tions and with predictions from the theory of the A-effect. We
also investigate the other components of the Reynolds stress as
well as the eddy heat flux tensor, both of which are needed in
mean field models of differential rotation.

Key words: the Sun: differential rotation — convection - turbu-
lence

1. Introduction

In the last few years computers have become efficient enough
to make three-dimensional simulations of stellar convection. Al-
though the systems which can be handled are still quite modest
compared to real stellar environments, it is possible to study
physically interesting aspects, such as stratification and rota-
tion in turbulent convection. Preliminary results (Pulkkinen et al.
1991) suggest that rotational effects on convection can be studied
to some extent using local models as a complement to global
models of convection in spherical shells (e.g., Gilman 1977).

We briefly review some important studies in modelling con-

vection. Hurlburt et al. (1984) used a two-dimensional simulation
without rotation to study the onset of convection as well as the
time-dependence of convective motions. In a second paper (1986)
they included penetration of convective motions into stable layers.
In these papers the importance of a sufficiently large aspect ratio
(horizontal dimension/vertical dimension) of the computational
domain was emphasized. If the aspect ratio was too small the
solution remained time-dependent whereas an otherwise similar
simulation with larger aspect ratio resulted in a steady state.

A three-dimensional model with a somewhat different setup

was studied by Chan & Sofia (1986, 1989). They tested the mixing
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length concept and noticed that the relative pressure fluctuations
were not small compared to density and temperature fluctua-
tions, in contrast to the standard mixing length and Boussinesq
approximations. However, the correlation length was found to be
of the order of the pressure scale height, thus supporting one of
the basic assumptions of mixing length theory.

Convection under the influence of rotation using threc-
dimensional simulations in a box, where the angle between the
directions of gravity and rotation was varied, was addressed by
Hathaway & Somerville (1983). Qualitatively different behaviour
occurred at different latitudes. Near the poles rotation generally
suppressed convection (smaller Nusselt number), whilst at lower
latitudes there was also a regime where the Nusselt number in-
creased with the Taylor number. This behaviour was found to
be associated with a more regular flow pattern at lower latitudes
allowing the convection to be more efficient there.

In this work we direct our interest towards rotational effects
on convection that are relevant for the generation of differential
rotation. The main transporter of average angular momentum in
a rotating fluid is, apart from meridional motions, the Reynolds
stress Qi; = (uju}), ie. the correlation of fluctuations of velocity
components. Nondiffusive contributions to the stress tensor result
from anisotropies of turbulent convection in the presence of
rotation and stratification (Riidiger 1977). This was formulated
in terms of the A-effect which quantifies the dependence of the
Reynolds stress on rotation. The horizontal component Qp, has
also been measured from sunspot proper motions (Ward 1965,
Gilman & Howard 1984, Tuominen & Virtanen 1988, Virtanen
1989, Paterno et al. 1991).

For the numerical simulations presented in this paper we use
a modification of a code by Nordlund & Stein (1989) in which
time is advanced by a sécond-order Adams-Bashforth scheme
and spatial derivatives are calculated from cubic splines. The
dependent variables are In p, u, and the internal energy e = ¢, T.
(For further details and test calculations of this version of the
code see Brandenburg et al. 1990). Here we compute the Reynolds
stress and the energy transport tensor from convection simulated
in a box placed at different latitudes in the solar convection zone.

2. Setting up the system

We place the computational domain at some depth in the con-
vection zone in the southern hemisphere. The vertical (z-) axis of
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the box points downward (anti-parallel to the radial direction),
the x-axis points north, and the y-axis east. Since the box is
small in size we may assume the angular velocity to be uniform
and so omit curvature effects. It is then also natural to employ
averages over both horizontal directions. The number of mesh
points inside the box is 31 x 31 x 31 with an aspect ratio 4 =2
so that the mesh size in the vertical direction is half of that in
the horizontal directions.

The equations to be solved and stepped in time are the equa-
tions of continuity, momentum, and energy. In addition we need
an equation of state (for ideal gas) to relate the thermodynamic
quantities to each other. These equations are, in a rotating frame
of reference, i

0

L=V (pu, (1)
ou 1 1

— =—u-Vu— —Vp—-2Q ~V-1, 2
3 u-Vu ) P ><”+.‘leﬂ+p T (2
p‘%(cVT)=——pu-V(cVT)—pV-u+V'(KVT)+<D, 3)
p=RoT. @

In the equation of motion (2) the viscous tensor is defined by

_ Ou;  Ouj 2. O
= # (6xj + 0x; 35" Bxk) ’ )
and in the energy equation (3) the viscous heat is
@ = (1)’ /2u. ©6)

All physical quantities are denoted with their usual symbols; p is
density, ¢ time, u velocity, £ angular velocity, g.q effective gravity,
p pressure, u dynamical viscosity, T temperature, ¢y specific heat
at constant volume, K thermal conductivity, and £ is the gas
constant.

We assume all quantities to be periodic in the horizontal
directions. The upper and lower boundaries are taken to be im-
penetrable and stress free, i.c. the vertical velocity component
and the vertical gradient of the horizontal components vanish.
These conditions ensure that mass is conserved. The heat flux at
the lower boundary is assumed to be constant, thus the temper-
ature gradient is prescribed at the lower boundary. At the upper
boundary the temperature is kept constant.

The height of the box is chosen as the length unit. Thus, the
z-coordinate (depth) varies from z, (at the top) to zo+1 (bottom).
The time unit is related to the sound travel time f dz/c which in
our case is 0.6. The initial state is a polytrope (see e.g. Hurlburt
et al. 1984), with T = @z and p = po(z/z0)", where m is the
polytropic index, related to the temperature gradient @ by
m= 5}% -1 )
According to Schwarzschild’s criterion m has to satisfy: m+ 1 <
y/(y — 1) for convective instability. For the ratio of the specific
heats, y = cp/cy, we use 5/3. Thus the condition for instability
is m < 3/2 and we use m = 1 for a superadiabatic reference
atmosphere. Initially, in addition to the polytropic stratification,
we impose a velocity field consisting of small random perturba-
tions. In the cases presented in this paper we used zy = 2, i.e. the

density ratio y between bottom and top is initially 1.5 and the
number of pressure scale heights is m™'(m + 1) Iny = 0.8.

The basic units may be scaled freely in our simulation so that,
in principle, the domain may be placed at any depth in the Sun.
However, because of the wide range of different time and length
scales that occur in the Sun, it would be too expensive in terms
of computer resources to make a model where all quantities have
solar values. Therefore we have to consider a model in which we
artificially bring these different time scales closer together. For
our purpose the most important time scale is the rotation period
which, for the Sun, is 25 days. In our model the ratio between
sound travel.time and rotation period is only about 50, whereas
at the bottom of the solar convection zone this ratio is close
to 5000 (and even larger in the upper layers). Thus, we could
consider either a model which rotates 100 times faster than the
Sun, or one in which the sound speed is decreased by a factor of
100. The main reason why we feel that our model may still be
relevant for understanding rotational effects on convection is that
the Rossby number, which measures the ratio between turbulent
and rotational velocities, is of order unity both in our model and
at the base of the solar convection zone.

The main difference between the Sun and a numerical model
is, of course, encountered with the viscosity. The molecular vis-
cosity inside the Sun is relatively small (~ 0.1 m?/s) so that the
Reynolds number exceeds 10'° from which we expect fully devel-
oped turbulence. The ratio between convective and viscous forces
may be measured by the Rayleigh number

4

Ra = (&i— L 95) , 8)

KV ¢, dz i
where s is the specific entropy and all quantities are evaluated at
z, = zo + 1/2 for the hydrostatic reference solution. Here, k =
K /c,p is the thermal diffusivity, and v = u/p is the kinematical
viscosity. Inside the Sun, Ra exceeds 10% which is far too high
to be handled in computer simulations, because the Reynolds
number (Re= u,d /v, where u, is the rms velocity) would become
too large for the available resolution. In order to resolve the
small scales one usually requires that the effective grid Reynolds
number u,Ax/v does not significantly exceed unity. One must
accept the possibility that stellar convection at such high Rayleigh
numbers might be qualitatively different from modest Rayleigh
number convection accessible to current computer simulations.
(We recall that in laboratory convection a number of qualitative
changes have been detected as the Rayleigh number is increased,
cf. Castaing et al. 1989.)

The efficiency of convective energy transport relative to ra-
diative energy transport may be measured by the Nusselt number
Nu = Lo Fa - Faa ©)

F rad — Fa

where F, is the sum of convective, radiative, kinetic, and viscous
fluxes, F,q is the radiative flux for an adiabatic stratification, and
Fr(a(a)()i is the radiative flux for the hydrostatic (polytropic) reference
solution. In the hydrostatic state, when there are no convective
motions, Nu is equal to unity. When the temperature gradient is
large enough, the Rayleigh number exceeds its critical value, and
Nu begins to increase.

Other dimensionless parameters that describe the system are
the Taylor and Prandtl numbers,

40244
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The first one is a measure of rotation and the second is the ratio
between kinematic viscosity and thermal diffusivity. In Table 1 we
summarize the input parameters and the quantities derived from
them. Three of the initial parameters are dimensionless numbers,
and the initial temperature gradient and the polytropic index
determine the instability of the layer. To change the physics of
the system is possible only through changing these parameters.

Table 1. Quantities derived from Egs. (7)-(10)

Input parameter
Rayleigh number Ra
Taylor number Ta
Prandtl number Pr
polytropic index m
depth of top layer z¢
latitude 0

Quantities derived from them
viscosities v, p

angular velocity Q

thermal diffusivity «

initial entropy grad. ds'* /dz
initial density contrast y
g2

The only input parameters that are varied in our simulations
are the Rayleigh number and the latitude. The Taylor number
is 10* and the Prandtl number is unity in all runs. The latitude
is varied from —90° (south pole) in steps of 15 degrees (or less)
to the equator. We also performed some runs for the northern
hemisphere and found in all cases the expected symmetry prop-
erties with respect to the equator. For the Rayleigh number we
consider two values (30000 and 60000) allowing us to study the
behaviour as the strength of convection is varied. We typically
simulate about 500 time units corresponding to about 20 turnover
times, long enough for the medium to mix completely.

One time step takes about 0.3 sec on a Cray X-MP and one
run with typically 10° time steps corresponds to 8 hours of CPU
time. In order to estimate the total cost this has to be multiplied
by the number of runs for different values of Ra and latitude (at
least 2 x 7).

3. Turbulent transport coefficients
3.1. Angular momentum transport

Let us write the velocity as a sum of a mean-field and a fluc-
tuation about the mean, ie. u = (u) + «'. In this section we
consider spherical coordinates (r, 6, ¢) and define mean-fields as
¢-averages. A new term, the Reynolds stress Qi; = (u;u;), appears
in the mean-field momentum (or Reynolds) equation

O{u

P (—at—) + <u>-v<u>) ==V-(pQ)+pg—Vp+V-(r). (1))

Here, we have suppressed the fluctuations of pressure and density
and supposed that the Reynolds rules hold (see e.g. Riidiger
1989). For the results presented here we have checked that the
difference between (puju}) and (p)(uu;} is small. This Reynolds
stress is the main transporter of angular momentum (for a review
see, e.g., Stix 1989). Assuming axial symmetry of the averaged
quantities the equation of angular momentum transport is
(,%(prz sin’0Q) + V - (pr? sin” 0Q(u) + prsin 0(uju’)) =0, (12
where Q = (uy)/rsin@ is the local angular velocity in a non-
rotating frame of reference.

A traditional way to approximate this stress tensor is the¢ so-
called “Boussineésq ansatz” (fot to be confused with the Boussi-
nesq approximation), Q;; = —vr(u;; + u;;), where vy is an eddy
viscosity. This ansatz turns out to be insufficient for two reasons.
Firstly, Qay is observed to be positive in the northern hemisphere
(and negative in the southern hemisphere), see Ward (1965). This.
however, could not be explained by the Boussinesq ansatz. which
yields Qyy = —vr sin l)‘(;-‘(}. This is negative in the northern hemi-
sphere of the Sun, because Q increases toward the cquator and
vr is positive. Secondly, since the Boussinesq ansatz is nothing
but a diffusion term, it always tends to reduce gradients in an-
gular velocity. Thus, if the Reynolds stress is really the source of
differential rotation. some further, nondiffusive. terms are needed
in the expression for Q;;. It is clear that stratification will always
give a preferred direction to the turbulence so that it becomes
anisotropic. Such an anisotropic turbulence may give additional
contributions to Q;; which are proportional to Q itself (and not to
its gradient) and thus do not vanish - even for uniform rotation.
This was formulated by Riidiger (1977. 1980) who introduced the
theory of the A-effect, which has some resemblance to the theory
of the a-effect in mean-field electrodynamics (Krause & Riidler
1980). The Reynolds stress is expanded as
Q,'j = Aiijk — N;_ik,P(uk)/Fxl + (13)
where higher derivative terms may be ignored if there is a sep-
aration of scales (e.g. Riidiger 1989). The Boussinesq ansatz
corresponds to Ny = v (dxd; + djdy). The tensor A is sym-
metric in i and j and can therefore not be isotropic, because it
would vanish otherwise. The two cross-correlations which enter
in Eq. (12) may explicitly be written as

1403 (—-é%? + VO 4 ygin2g + V‘Z’sin"()) sin 0Q, (14)
vr

) .
Qoo _ (_('_) (‘a% + HWcosOsin@ + H?cos sin3o) sin 0Q.
vr

(15)

Here, the latitudinal dependence of the coefficients in the A-
tensor has been expressed in powers of sin?0; for further details
see Riidiger (1980).

In principle, the tensor Ny, may also be anisotropic; e.g.
Kichatinov (1986). As pointed out by Riidiger & Tuominen
(1987), the concept of anisotropic viscosity (e.g. Kippenhahn
1963) corresponds to the A-effect with nonvanishing V% Thus,
radial differential rotation may be generated via the Q.4-term,
but Qps would still remain negative — in disagreement with ob-
servations.

Equation (15) plays a particularly important role, because
both Qps and 9Q/06 have been observed. The solar surface
rotation rate is often written in the form Q = A + Bcos’0 +
C cos*0. Using this in (15) we obtain

Qo = vrQ.(w; + w, sin® 0) cos 0 sin’ #), (16)
where

wy = HY +2(B +20)/Q., 17)
w, = H® — HO(B +20)/Q. —4C/Q., (18)

and Q. = A + B + C is the rotation rate at the poles. This form
for Qgs is useful for comparing results from our simulations
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with observations at the solar surface. Below we use solar values
B/Q. = —0.17 and C/Q. = —0.23 and compare mainly with
results obtained by Virtanen (1989), who finds the values w; = 1.0
and w, = 5.6. It should be noted that the latitudinal dependence
of Q and the A-terms might be more complicated, but for the
present purpose the above representation seems sufficient.

3.2. Energy transport

The averaged equation for the energy transport is

(19)

m(%9+@vn0=—v@mww—www

+ V- (KV(T)) + (D),

where to the simplest approximation the turbulent heat flux (/' T")
may be written as
W,T") = xiB)» (20)
where p = —(VT —g.5/cp) is the superadiabatic temperature gra-
dient. Egs. (19) and (20) are only an approximation in that certain
correlations involving density fluctuations have been neglected.
This is consistent with mixing length arguments (Riidiger 1989),
but cannot be justified for strongly compressible flows. In our
runs the stratification is weak and this approximation therefore
appropriate.

The eddy heat flux tensor is written in the form (only radial
and meridional components)

G _ (10 VW sin’0 + V@ sin*0 jeee
xr \01 HV® sinf cosd + HV® sin®0 cosh ;...
(21

(Tuominen & Riidiger 1989), where yr is the (isotropic) eddy
conductivity, and ... stands for further components which de-
scribe the flux due to the f; component (which vanishes in our
idealized simulation with periodic boundary conditions in the
horizontal directions).

4. Results
4.1. Summary of the computations

Before we present the results for the Reynolds stress and eddy
heat flux tensor we first present some general properties of our
simulations.

In Table 2 we give a summary of various quantities derived
from the simulations for Ra=30000 and 60000. All the val-
ues are spatial and temporal averages, except those quantities
where a maximum value is given. As a general trend, the Nusselt
number, as well as the maximum Reynolds and Mach numbers
(Ma= u,/c, where c is the local sound speed) increase from the
pole to the equator which indicates that convection is stronger in
the equatorial regions. For Ra=60 000 the Nusselt number shows
a minimum at 45°. This is in agreement with results of Gilman
(1977) who finds that convection in equatorial regions is most
favoured and that polar regions are favoured next, whilst middle
latitudes are not favoured. Both at the equator and at the poles
pressure gradients can balance the Coriolis force and can thus
help neutralize the stabilizing effect of rotation. However, at the
poles, where the Coriolis force has only horizontal components,
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Fig. 1. A snapshot from a simulation with Ra=30000 and latitude —45°.
Note the tilt of the cell structures parallel to the direction of Q
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T

400

300
time
Fig. 2. A time sequence of the Nusselt number at latitudes —30°
(dash-dotted), —45° (solid), and —60° (dashed) for Ra=60000

100 200

strong swirling motions are produced which increase the dissipa-
tion there. Similar results have been obtained by Busse & Cuong
(1977), who associate this behaviour with the different convection
pattern at high and low latitudes.

From the Nusselt numbers obtained for the two values of Ra
we may also estimate the critical Rayleigh number, Ra,, plotting
InNu vs. InRa and extrapolating a straight line to InNu=0 which
corresponds to Ra=Ra, (last row in Table 2). This extrapolation
becomes obviously inaccurate for small critical Rayleigh num-
bers. We find that Ra, is smallest at the equator and largest at the
poles. There is no tendency for Ra, to increase from the poles
to middle latitudes, but rather that Ra, has a local minimum
at 45°. This is unexpected and may be due to either non-linear
dependence of Nu on Ra or transients and uncertainties arising
from relatively strong temporal fluctuations in the time sequence
of the Nusselt number; see Fig. 2 where we have plotted the
evolution of Nu for Ra=60000 at three different latitudes.

Note that the maximum Reynolds and Mach numbers typi-
cally increase with Ra, except for the equator, where high peak
velocities occurred for Ra=30000.

The entropy difference between top and bottom, A(s), de-
creases slightly from the pole to the equator meaning that the
layer becomes more adiabatic towards the equator. This is con-
sistent with convection being more efficient there. The kinetic flux
points downwards (i.e. Fyi, < 0), because the downward directed
flow is more concentrated. Both F,, and | Fyi, | increase toward
the equator. )
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Table 2. Various quantities obtained from the simulations. In the upper row of each quantity Ra is 30000 and int the lower one it is
60000. The critical Rayleigh number for the onset of convection is given in the last row

latitude -90° —75° —60° —45° —30° —15° 0°
2.69 2.68 2.69 2.87 290 325 398
Nu 3.68 3.65 3.56 3.39 3.80 4.06 4.70
18 19 20 21 21 23 40
Re(max) 20 20 21 2 2 27 37
0.028 0.029 0.031 0.033 0.033 0.036 0.062
Mamax) 09030 0031 0033 0033 0035 0042 0056
] 0.086 0.087 0.087 0.086 0.085 0.082 0.076
Als) 0.079 0.079 0.080 0.080 0.078 0.076 0.074
FF 0.83 0.83 0.82 0.81 0.81 0.81 0.79
rad/ Frot 0.81 0.81 0.81 0.81 0.80 0.80 0.79
Foni/F, 0.18 0.17 0.18 0.19 0.19 0.20 0.22
conv/ Ttot 0.19 0.20 0.19 0.20 0.21 0.21 0.23
—0.002 -0.000 —-0.002 —-0.005 —0.003 —0.007 —0.008
Fin/Fiot —0.003 —0.003 —0003 —0.007 —0.009 —0011 —0.021
Ra, 3330 3270 2540 600 (7) 1970 1030 260
The orientation of convection elements is somewhat tilted
against the vertical and the structures seem to line up with the
rotation vector; see Fig. 1. This is expected if the Taylor numberis  (0,0030F " M " T ' T ™
sufficiently large (Taylor-Proudman theorem, e.g. Chandrasekhar
1961).
We now consider the latitudinal dependence of the degree of 0.0020 - |
anisotropy of the flow. This may be quantified by measuring the :
relative magnitudes of (u), (u}), and (u?); see Fig. 3 where the
average has been taken also in the radial direction. Note that e
(u3) increases more strongly toward the equator than (u?) and 0.0010| .
(uj) such that between latitudes 0° and 60° (u3) is larger than
both (u2) and (u?), whereas at higher latitudes these components
are more or less equal. If we consider only horizontal averages 0.0000 - . . . =

then we find that they vary strongly with depth. In Fig. 4 we give
the latitudinal dependence of the quantity

(u?) — (u3)

W= )

(22)

at depths z = 2.13 and z = 2.63 as well as its average over
all depths In the upper layers the velocity fluctuations in the
¢-direction dominate and the slope of this curve retains its sign.
In the mid-layer (z = 2.63) the flow in the radial direction
dominates — as expected (cf. Fig 10 in Brandenburg et al. 1990),
and is smallest at mid-latitudes indicating a possible change of
anisotropy there.

Before we proceed to compute Reynolds stress components
and heat fluxes we need to discuss the statistical error involved
in the computation of averages of a simulated time sequence. As
a typical example of such a time sequence we show in Fig. 5 the
evolution of Qg4 at —60° close to the upper layer of the box. As
with all time dependent quantities, we exclude the first 100 time
units in order to minimize the influence of the initial transient
phase. The duration of the runs was limited by economical as-
pects. In Fig. 5 we show also the average value and the standard

deviation s = v/x? — X2 denoting the width of the fluctuations.
We could estimate the statistical error of the average value by us-
ing the mean error of the mean ¢ = s/,/n, where n is the number

0 15 30 45 60 75 90
latitude in degrees south

Fig. 3. Latitudinal dependence of the radially and horizontally averaged
components of the turbulent velocity

10F ..

(u,")=(uy")

o5 /N ]
z=2.63
0.0+ W i

O8fazeas ]

-1.0L, . . . . . =
0 15 30 45 60 75 90
latitude in degrees south

Fig. 4. Latitudinal dependence of the relative magnitude W (r, ¢) (eq. 22)
at depths 2.13 and 2.63. In addition the average over all depths is shown.
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Fig. 5. A time sequence of Qgg at —60° close to the upper layer of the
box. The solid line in the middle is the average value whilst the inner lines
(dashed) denote the modified mean error of the mean where the non-zero
autocorrelation time between successive time steps has been taken into
account. The outer lines (dotted) show the standard deviation, ie. the
width of the fluctuations

of data points. However, due to the numerical integration of the
equations the successive data points are not independent of each
other. Therefore, we have to take into account the autocorrelation
of the time sequence vector x. This autocorrelation is computed
with the quantity

n—q n—q n
1 1
I‘q = (Z XiXiyq — n—gq Z Z ijk> m,
i=1 Jj=1 k=q+1
qg=1,..,4q. (23)

The index ¢, is reached when I'; becomes smaller than some
fixed (small positive) value. Then there is no correlation be-
tween data points x; and xi, . Finally, the error is defined as
& =1+ Z‘;;l I'; |)o, so it is larger than the mean error of
the mean. Should the data points be distributed randomly, the
autocorrelation would vanish and we would get just the mean
error of the mean. For a reference, see e.g. Priestley (1981). In the
following plots the error bars always indicate this modified error.

4.2. The Reynolds stress

The Reynolds stress may be computed directly from simulations.
With 4} = u; — (4;), we obtain

() = ((w — (i) (w; — (u;))) = (wirgj) — (i) (u)).

In Fig. 6 the horizontal cross-correlation Qg is plotted at depth
z = 2.97 (close to the lower boundary) for a run with Ra=30000.
In upper layers a similar shape as in the lower ones is obtained,
but in the middle layers Qg is small and may change sign.
However, the average over the vertical direction of Qg4 is neg-
ative throughout the southern convection zone. The latitudinal
dependence of Qg is qualitatively the same when we adopt total
averages over the box instead of horizontal averages.

The behaviour of Qpgy with Ra=60000 is found to be quite
similar to the one with smaller Rayleigh number (cf. Fig. 8).
For higher Rayleigh numbers, however, the adopted resolution
may become insufficient and therefore we focused mostly on the
results for Ra=30 000.

(24)
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-0.0002} { .
-0.0004} ]
-0.0006 } * |
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Fig. 6. The simulated horizontal Reynolds stress Qg at the depth z = 2.97
with Ra=30000. The error bars indicate the time-dependent data taking
the autocorrelation time of the successive time steps into account (cf.
Fig. 5)
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Fig. 7. The fit for Qg¢/vr at depth z = 2.97 with Ra= 30000, where vr
is latitude dependent

Simulations performed at different latitudes for the same
Rayleigh number are not necessarily directly comparable with
each other because the critical Rayleigh numbers for the onset
of convection differ (see the last row in Table 2) and therefore
the strength of convection is different. This gives rise to different
values for the effective viscosity vr ~ §(u,)d, which then also
depends on latitude. Here we made the crude assumption that
the mixing length is equal to the depth of the box corresponding
to about 0.8 pressure scale heights. In Fig. 7 we have made a
least-square fit for the normalized values Qg4 /vr using Eq. (16).

In Table 3 we give the w-coefficients of various sources. The
Boussinesq ansatz gives a negative sign for w; if solar values
are inserted in Egs. (17) and (18), but using HY = H® = 0.
The study by Ward (1965) is based on the Greenwich sunspot
proper motions between years 1925-1954. The result by Virtanen
(1989) is a fit to the Greenwich data until 1976. From these works
we may conclude that the horizontal correlation Qgg has been
observed to have positive sign in the northern hemisphere and
to change its sign at the equator. The values of our simulations
are from fits to the data of Figs. 6 and 7, in the first of which
we have a constant eddy viscosity and in the second one it is
latitude-dependent. The values in the last two rows are based on
work by Tuominen & Riidiger (1989). They used the observations
as constraints in a model for differential rotation and derived the
H® (and V®©) coefficients inside the convection zone through
inversion. From these models we determined the coefficients w;
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Table 3. Comparison of the coefficients w, and w, derived from

different sources (see text)
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N

Wy W)
Boussinesq-ansatz -1.1 +0.1
Ward (1965) +2 0
Virtanen (1989) +1.0 +5.6
This work; vy=const.=vr(45°) +0.11 +1.2
This work; vy = v (0) +0.18 +1.0
. - (0) +6.2 +1.3
Tuominen & Riidiger {(S) 445 429
10 o S
0.5+ ,/’Bouss. S \\\ 4
,’ Ra=60000 —— .
T&R Sall
0.0f fit to ObS. e s
-0.5+ =
S | .. il N .

0 15 30 45 60 75
latitude in degrees south

Fig. 8. The horizontal Reynolds stress Qg at z = 2.97 obtained from our
simulations with Rayleigh number 60000 (solid line) compared with the
standard Boussinesq-ansatz (dashed line), a fit (crosses) to observations
by Virtanen, and results of a theoretical model by Tuominen & Riidiger
with two (dotted line). Note that the crosses cover only latitudes 0-40°. All
the profiles have been scaled so that the absolute value of the extremum
is equal to unity

90

and w, at the bottom of the convection zone by including the
observed differential rotation profile (O) into Eq. (16). The values
in the last row were based on an additional constraint using the
differential rotation profile at the bottom of the convection zone,
as estimated by Stenflo (1989) who used magnetic tracers. In
Fig. 8 we compare the various profiles for Qg4/vr, which are
normalized to have an extremum of +1. This normalization
allows a better comparison of the shape of the different profiles
than is possible from Table 3. According to the observations the
extremum of the correlation Qus occurs at a latitude 25-30°;
the simulations show the same behaviour. The extremum of the
correlation of the work by Tuominen & Riidiger is at higher
latitudes than in our simulations, about 30-35°.

We now consider the correlation Q,4. Because of the stress-
free boundary conditions of our model, Q,, vanishes at the upper
and lower boundaries. Therefore we choose to evaluate Q,, in the
mid-layer of the box. Fig. 9 shows a fit of Q,4 to Eq. (14) again
using a latitude dependent profile for vr. Q,4 is clearly negative
and maintains its sign also in the northern hemisphere, because
the radial and latitudinal flows do not change their sign at the
equator. In this fit we have neglected 6Q/dr. However, we note
that the fit obtained may be sensitive to this term. We estimated
0Q/or by measuring 0{us)/dr from our simulations and found

0.010F" ‘ i ' | "
Fit for Q,, (2=2.47)
0.000+ .
-0.010+ 8
S
-0.020+. { -
-0.030+, . . , . . =
0 15 30 45 60 75 90
latitude in degrees south
Fig. 9. The fit for Q,,, at depth = = 2.47
0.0 Ra=30000 —— /1
0°L Ra=60000 ~~ - 7]
0.21 T&R, (0) 7
-0.4F .
-0.6F ]
-0.8} .
-1.0E, . LT . . o
0O 15 30 45 60 75 90

latitude in degrees south

Fig. 10. The component @4 of the Reynolds stress obtained from simu-
lations with Rayleigh number 30000 (solid line) and 60000 (dash-dotted)
compared with results by Tuominen & Riidiger with two differcntial
rotation profiles (O) (dotted line) and (S) (dashed line). All the profiles
have been scaled with their absolute maximum

that 0Q/dr > 0 at high latitudes and ¢Q/dr < 0 at low latitudes.
At higher latitudes the effect of this gradient is small, only a few
per cent of the other terms but closer to the equator thc angular
velocity gradient begins to dominate. If we take these gradients
into account we find significant deviations from the fit in Fig. 9,
especially at lower latitudes where the resulting shear is large.
However, this large shear may be an artifact of the local model
and may be absent in a more realistic setup where the influence of
boundary conditions is reduced. Helioseismological observations
also suggest that 0Q/0r is small inside the convection zone, and
it seems therefore sensible to neglect this term. For example
Dziembowski et al. (1989) estimate for the change of the angular
velocity in the radial direction to be about 10% at the equator
and less elsewhere.

In Fig. 10 we compare the fits obtained from runs with two
different Rayleigh numbers with the profile O and S used by
Tuominen & Riidiger. All these profiles have in common that
V©® and V@ are negative and V" is positive. Our simulations
show that Q,, is negative and possibly increasing in magnitude
between the equator and 55° latitude. The two solutions used by
Tuominen & Riidiger (1989) for the different angular velocity
profiles (O) and (S) also give a negative value for the correlation
in the middle of the convection zone. At a radius of about 0.8
solar radii the sign of Q,4 changes in their model and is positive
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Fig. 11. The fit for Q,p at dfapth z =247 0.50F , . . . . —
at the bottom of the convection zone suggesting a change of the 0.40+ X at z=2.30 |

dominant direction of turbulence at the lower parts.

Finally we consider the correlation Q.. In the past not much
attention has been paid to this quantity, because it does not
directly enter in the angular momentum equation (12). However,
Q¢ may be important for enhancing or quenching meridional
flows. Q,p must be proportional to cosfsinf and, in analogy
with Eqgs. (14) and (15), we write
0, = v; cos Osin (MY + M sin*9). 25)
The corresponding fit is shown in Fig. 11 and the coefficients are
M® = —0.03 and M@ = 0.06. Again, we used the same latitude
dependent estimate for v, as for the previous fits. Most likely
higher order terms are necessary, but for the present purpose it
is sufficient to note that our simulations indicate negative values
of Q,¢ immediately south from the equator and perhaps positive
values close to the southern pole.

4.3. The energy transport tensor

We compute the convective flux and calculate the eddy heat
transport tensor y;; using Eq. (20). Since the mid-layers of the
box are almost adiabatic B, is close to zero and y,, = (u,T')/B, is
not well defined, whilst close to the upper and lower boundaries
the radial heat flux approaches zero. Therefore, it is convenient to
evaluate y;; some short distance away from the top and bottom
boundaries. We choose the two depths, z = 2.13 and z = 2.30,
and find that y,, behaves differently in these two layers. Again,
we use a latitude-dependent eddy diffusivity yr in accordance
with Eq. (21), assuming yr = vr. In Fig. 12 we give a plot of the
latitudinal dependence of y,, with its fit to Eq. (21) for these two
values of z. Note that close to the upper boundary (first panel)
% has a maximum close to the pole whereas at the deeper layer
(second panel) a maximum is reached in the equatorial region.
The latter result agrees with the fact that the Nusselt number is
larger at the equator; see Table 2. However, although (u,T’) is
largest at the equator in both cases, a different behaviour of f,
with latitude at the two depths changes the behaviour of y,,. At
z = 2.13 the superadiabaticity is smallest at the equator which
is a result from the more efficient convection there (cf. Table 2).
We see that y,, is positive everywhere which is to be expected,
because f, as well as the convective flux are directed upwards in
the convection zone.

Figure 13 shows the results of simulations for yxg. The fit
does not apply too well for the data (z = 2.13) which show

0.30

0.20

0.10tP . . . . . =
0 15 30 45 60 75 90
latitude in degrees south

Fig. 12. The fit for x, at depths z = 2.13 (upper panel) and z = 2.30
(lower panel)

0.010F " ' ' ' ' ' '

0.005

LA

0.000

T

-0.005 |

i Xro at z=2.13
-0.010¢, . =

0 15 30 45 60 75 90
latitude in degrees south
Fig. 13. The fit for x,¢ at depth z =2.13

strong scatter about zero indicating that this result comes largely
from random fluctuations. Away from the equatorial regions g, is
mainly positive and has a maximum near 45°. For the coefficients
of the eddy heat flux we get the values shown in Table 4.

Finally, we note that we also performed a few simulations for
a domain with aspect ratio 4 = 4 using 63 x 63 x 31 grid points.
The results for the Reynolds stress and the heat flux tensor are
quite similar to those obtained for smaller aspect ratio, but we
typically find fluctuations larger than in the case with smaller
aspect ratio.
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Table 4. The coefficients for the eddy heat flux tensor

vvm Vv HY™ HV®@
z=213 065 -038 033 029
z=230 039 -095 036 —0.52

5. Discussion

The Reynolds stress results are important for at least two reasons.
First, they prove that the “Boussinesq-ansatz” is inadequate to
explain the observed and simulated results. Secondly, they show
that a global spherical model might not be required for under-
standing the rotational influence on stellar convection. A global
model has the advantage that one can directly measure the re-
sulting differential rotation in addition to the Reynolds stresses
(see e.g. Gilman, 1977). Also meridional flows, which can only be
obtained from a global model, might have some influence on the
Reynolds stress. However, in a global model it is more difficult
to properly resolve the narrow downdrafts that occur in strongly
stratified convection, and that might be crucial for the turbulent
transport properties (Spruit et al. 1989, Cattaneo et al. 1991). A
further uncertainty of our approach is how to compare the differ-
ent runs obtained for various latitudes, in particular the estimate
vr = %u,d for the latitude dependent turbulent diffusivity may
be too simple.

We observe a change in. the degree of anisotropy as we go
from the pole toward the equator. At low latitudes the (radial
and horizontal) average velocity fluctuations in the ¢-direction
tend to dominate over those in the r-direction, whilst close to the
poles the velocity fluctuations in the three directions are of similar
order of magnitude. From this we may obtain an independent
estimate for the vertical Reynolds stress versus latitude. Its sign
would lead to positive values of 0Q/dr at lower latitudes and to
a negative one at higher latitudes. This would be in qualitative
agreement with current results of helioseismology. However, this
result is based on averages taken over the entire box. Using only
horizontal averages instead we find that in the middle of the
layer the radial velocity fluctuations always dominate over the
other two. This contributes to the negative sign of Q,, and would
cause a negative value of ¢Q/0r in middle layers.

Investigations of differential rotation based on mean-field
models have the problem that there is a large number of ill-
known turbulent transport coefficients (A-effect and diffusion
coefficients). So far these coefficients have often been determined
using first order smoothing, even though it was clear that this
is not well justified under solar conditions where the correlation
time is long. The present approach to determine turbulent trans-
port coefficients from direct simulations may therefore be a useful
alternative to first order smoothing methods. Apart from the Q.4
and Qy, components of the Reynolds stress tensor we have also
estimated the Q,, component, which has often been neglected in
previous studies, but may be important for understanding the
relatively weak meridional flow in the Sun.

Finally, we should point out that the differential rotation in
our simulation cannot directly be applied to the global differ-
ential rotation of the Sun. For this purpose a global model is
needed where artificial boundaries are absent. The assumption of
impenetrable upper and lower boundaries in our model will also
have a strong influence on the quantitative results for the vari-
ous correlations. Such restrictive conditions could be somewhat

relaxed by embedding the unstably stratified region between sti-
bly stratified overshoot layers. Preliminary investigations indicate
that several conclusions might be affected by that.

Acknowledgements. P.P. is indebted to Nordita for their hospital-
ity during his visit. The computations were carried out on the
Cray X-MP/432 of the Centre for Scientific Computing. Espoo.,
Finland. R.F.S. was funded by NASA grant NAGW-1695. while
AN. was supported by the Danish Natural Scicnce Research
Council and the Danish Space Board.

References

Brandenburg, A., Nordlund, A.. Pulkkinen, P. Stein, R. F., Tuomi-
nen, [.: 1990, Astron. Astrophys. 232,277

Busse, F. H., Cuong, P. G.: 1977, Geophys. Astrophys. Fluid Dyn.
8, 17

Castaing, B., Gunaratne, G., Heslot, F., Kadanoff, L.. Libchaber.
A., Thomae, S., Wu, X.-Z., Zaleski, S., Zanetti, G.: 1989, J.
Fluid Mech. 204, 1

Cattaneo, F.,, Brummell, N. H,, Toomre, J., Malagoli, A., Hurlburt,
N. E.: 1991, Astrophys. J. 370, 282

Chan, K. L., Sofia, S.: 1986, Astrophys. J. 307, 222

Chan, K.L,, Sofia, S.: 1989, Astrophys. J. 336, 1022

Chandrasekhar, S.: 1961, Hydrodynamic and Hydromagnetic Sta-
bility, Clarendon Press, Oxford

Dziembowski, W.A., Goode, P.R., Libbrecht, K.G.: 1989, Astro-
phys. J. 337, L53

Gilman, P. A.: 1977, Geophys. Astrophys. Fluid Dyn. 8, 93

Gilman, P. A, Howard, R.: 1984, Solar Phys, 93, 171

Hathaway, D. H., Somerville, R. C. J.: 1983, J. Fluid Mech. 126,
75

Hurlburt, N. E., Toomre, J., Massaguer, J. M.: 1984, Astrophys.
J. 282, 557

Hurlburt, N. E,, Toomre, J., Massaguer, J. M.: 1986, Astrophys.
J. 311, 563

Kichatinov, L.L.: 1986, Geophys. Astrophys. Fluid Dyn. 35, 93

Kippenhahn, R.: 1963, Astrophys. J. 137, 664

Krause, F. & Ridler, K.-H.: 1980, Mean-field magnetohydrody-
namics and dynamo theory, Akademie-Verlag, Berlin

Nordlund, A., Stein, R. E.: 1989, in Solar and Stellar Granulation,
eds. R. Rutten and G. Severino, Kluwer Acad. Publ.

Paterno, L., Spadaro, D., Zappala, R. A., Zuccarello, F.: 1991,
Astron. Astrophys. 252, 337

Priestley, M.B.: 1981, Spectral Analysis and Time Series, Academic
Press, London

Pulkkinen, P, Tuominen. I, Brandenburg. A., Nordlund, A, Stein,
R.F.: 1991, in The Sun and cool stars: activity, magnetism,
dynamos, eds. I. Tuominen, D. Moss & G. Riidiger, Lecture
Notes in Physics 380, Springer-Verlag, p. 98

Riidiger, G.: 1977, Astron. Nachr. 298, 245

Riidiger, G.: 1980, Geophys. Astrophys. Fluid Dyn. 16, 239

Riidiger, G.: 1989 Differential Rotation and Stellar Convection:
Sun and Solar-type Stars, Akademie-Verlag Berlin & Gordon
and Breach, New York

Riidiger, G., Tuominen, I.: 1987, in The Internal Solar Angular
Velocity, eds. B.R. Durney and S. Sofia, p. 361

Spruit, H. C., Nordlund, A, Title, A. M.: 1990, Ann. Rev. Astron.
Astrophys. 28, 263

Stenflo, J.: 1989, Astron. Astrophys. 210, 403

© European Southern Observatory ¢ Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/cgi-bin/nph-bib_query?1993A%26A...267..265P&amp;db_key=AST

FT993A&A. © Z267. ZZ65P0

274 P. Pulkkinen et al.: Rotational effects on convection simulated at different latitudes

Stix, M.: 1989, The Sun: An introduction, Springer-Verlag, Berlin
Heidelberg

Tuominen, I, Riidiger, G.: 1989, Astron. Astrophys. 217, 217

Tuominen, L., Virtanen, H.: 1988, Adv. Space Res. 8, (7)141

Virtanen, H.: 1989, Licentiate thesis, University of Helsinki

Ward, F.: 1965, Astrophys. J. 141, 534

This article was processed by the author using Springer-Verlag IATEX
A&A style file 1990.

© European Southern Observatory ¢ Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/cgi-bin/nph-bib_query?1993A%26A...267..265P&amp;db_key=AST

