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Bifurcation phenomena of the Kuramoto-Sivashinsky equation have been studied numerically.
The solutions considered are restricted to the invariant subspace of odd functions. One possible
route to chaos via a period-doubling cascade is investigated in detail: The four-modal steady-
state loses its stability through a Hopf bifurcation and a branch of periodic motions is created.
After a symmetry breaking the periodic solution undergoes a period-doubling cascade which
ends up in two antisymmetric chaotic attractors. A merging of these antisymmetric attractors
to a symmetric one is observed. The chaotic branch depending on the bifurcation parameter is
characterized by the values of the Lyapunov exponents. Periodic windows within the chaotic
region are also detected. Finally, a further increase of the bifurcation parameter leads to a
transition from the attractor into transient chaos.

1. Introduction

It is well known and frequently published in the
literature that the Kuramoto—Sivashinsky equation
(KS), in spite of its simple structure, possesses a
very complex solution behavior.

The equation was first derived independently
by Kuramoto & Tsuzuki [1975, 1976], Kuramoto
[1977] and Sivashinsky [1977, 1980], to describe
certain reaction-diffusion systems and the dynam-
ics of two-dimensional flame fronts, respectively.
Numerical experiments by Kuramoto gave hints
that the KS equation possesses turbulent solutions.
After this discovery the equation became a topic of
intensive research to classify the solutions and to
describe their properties [Michelson, 1986; Hyman
& Nicolaenko, 1986, Hyman et al., 1986; Greene &
Kim, 1988].

The bifurcation theory provides a powerful tool
for discovering several solution branches, and for

detecting chaotic regions more systematically than
is possible using only forward integration in time.
In a couple of recent papers the steady-state bifur-
cation structure of the KS equation using higher
mode truncation has been determined [Foias et al.,
1988; Jolly et al, 1990; Kevrekidis et al., 1990].
Starting from these results the purpose of this
letter is to study the appearance of a chaotic at-
tractor and its decay. For the investigation we used
the software system CANDYS/QA which calculates
branches of steady-states and of periodic solutions
including all bifurcations of codimension 1 [Feudel
& Jansen, 1992]. We consider the KS equation in
the form
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subject to periodic boundary conditions u(z, t) =
u(z + 27, t) on the z-interval 0 < z < 27. There
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exists a unique solution u(z, t) € Hi (0, 27) for
this initial-boundary value problem in the sub-
space of 2m-periodic functions in the Sobolev space
H*(0, 27r) [Nicolaenko & Scheurer, 1984]. As in
Jolly et al. [1990] we restrict the solutions to the
invariant subspace of odd functions expressed by
the condition u(z, t) = —u(2r — z, t). One rea-
son for this restriction is to avoid degenerations of
the eigenvalues of the linearized equations and to
apply the classification scheme for codimension 1
bifurcations.

In the original form all coefficients of the KS
equation are unity and the initial-boundary value
problem is considered on an interval of length L. A
rescaling transformation of space and time leads to
Eq. (1) where the new bifurcation parameter « is
connected with the length L of the original equation
by o = L?/x? [Jolly et al., 1990]. For the bifurca-
tion analysis this normalized form is used here. We
employ a 24 mode truncation to approximate the
KS equation by means of the eigenfunctions of the
linearized operator ug(z) = sinkz. The time evo-
lution of the components of the series expansion is
determined by the following ODE

ik=(—4k4+ak2)zk—aﬁl,", 1<k<m, (2)

where
1 m
BT =5 > gzjlenr; + sen(k — Hrp—z].  (3)

The index m represents the number of modes taken
into account in the truncation and we set x; = 0
if < 1 and j > m, respectively. This particular
form of Eq. (2) has already been derived by Jolly
et al. [1990].

2. The Emergence and the
Decay of a Chaotic Branch

Greene & Kim [1988] investigated the steady so-
lutions and gave an overview of their bifurcation
structure. Jolly et al. [1990] calculated the com-
plete bifurcation diagram of steady-states consid-
ering only odd functions as solution space for the
bifurcation parameter o in the range 0 < o < 70.
Starting from these results we extended this bi-
furcation diagram to the larger interval 0 < o <
150 to present the steady solution branches in the
neighborhood of the investigated chaotic attractor
(cf. Fig. 1). Stationary states branching off the
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Fig. 1. Complete bifurcation diagram of the steady-states.
The “o” denotes the Hopf point whose resulting periodic
motion ends up in chaos.

trivial solution at o = 4k? (k € N) are called k-
modal steady-states. In particular, the first and
second modal branches are known as the unimodal
and bimodal branches, respectively. Besides these
primary bifurcations a lot of secondary bifurcations
branching off the k-modal steady-states occur. In
Fig. 1 the L?-norm |u| depending on the bifurcation
parameter o is given.

Each line in the figure represents the projec-
tion of two branches having the same norm but dif-
fering in the sign of certain modes. Additionally,
these two branches may differ in their stability and
their bifurcation behavior. However, for the sake
of simplicity we have not distinguished between the
cases where only one of the two branches of the
projection is stable and where both of them are
stable. Such differentiated stability behavior con-
cerns only the bimodal branch whose bifurcations
are described in detail by Jolly et al. [1990]. More
precisely, branches where at least one of the steady-
states is stable are drawn by bold lines.

Let us briefly discuss the bifurcation diagram
shown in Fig. 1. In general, the k-modal steady-
states have k — 1 positive real eigenvalues near to
their critical points at o = 4k?, and they become
stable after a sequence of k — 1 pitchfork bifurca-
tions. Eventually, the k-modal branches for & > 3
undergo a Hopf bifurcation and lose their stability.
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At these Hopf points periodic solutions arise whose
branches are omitted in Fig. 1.

In the following we study the bifurcation be-
havior of only one particular periodic solution that
results in a chaotic branch. We continued the peri-
odic solution which is created by a Hopf bifurcation
at a = 115.511 of the negative four-modal branch.
This special Hopf point is denoted by “o” in Fig. 1.

At first the periodic solution shows a symme-
try in the projection onto the plane spanned by the
first two modes with respect to the origin. It is
known that such symmetry conditions can suppress
a period-doubling bifurcation [Swift & Wiesenfeld,
1984; Brown et al., 1991]. Only after a symmetry
breaking at a ~ 131.92 do both antisymmetric solu-
tions undergo a period-doubling cascade. The first
three period doublings have been observed at the
values of a given in Table 1. A numerical estima-
tion of further period doublings was not possible.
Eventually, a pair of two antisymmetric attractors
is obtained firstly at o = 133.46.

Table 1. Period-doubling bifurca-
tions on the route to chaos.

a
period-doubling T" — 2T 133.110
period-doubling 27" — 4T 133.390
period-doubling 47 — 8T 133.452

Fig. 2. One of the two antisymmetric attractors shown as a
projection onto the z;—z2 plane for o = 133.6.
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To check the sensitivity with respect to small
changes in the initial conditions we calculated the
first four Lyapunov exponents. The largest one has
been found to be positive which indicates chaotic
behavior for this value of a. For the computation
of the Lyapunov exponents the algorithm developed
by Shimada & Nagashima [1979] has been used. As
an example of such a chaotic solution the projection
of one of the two antisymmetric attractors onto the
first two modes is shown in Fig. 2. At a ~ 133.77
a merging of both antisymmetric attractors into a
symmetric one occurs, which can be regarded as a
symmetry increasing bifurcation.

To discuss the chaotic properties the projection
of the chaotic attractor and the power spectrum of
its norm for fully developed chaos at a = 135.0 is
presented in Figs. 3 and 4. In Fig. 3 the attractor
is shown after the merging of both antisymmetric
attractors where it is again symmetric with respect
to the origin of the coordinate system. The power
spectrum in Fig. 4 is not purely continuous and con-
tains a large number of peaks according to peri-
odic intervals in the time series of the norm. With
increasing values of the bifurcation parameter the
attractor occupies a progressively larger region in
phase space until it decays into transient chaos at
a =~ 137.0.

Fig. 3. The attractor after merging of the two antisymmet-
ric attractors shown as a projection onto the z1—z2 plane for
a = 135.0.
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Fig. 4. Power spectrum of |u} for a = 135.0.
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Fig. 5. The largest Lyapunov exponent as a function of a.

To characterize the chaotic branch the first four
Lyapunov exponents are calculated as a function
of the bifurcation parameter within the interval
133.5 € a £ 137.0. The largest Lyapunov expo-
nent as a function of « is shown in Fig. 5. We re-
call that firstly the chaotic region was observed at
a = 133.46. But we consider here only the chaotic
branch starting from a = 133.50 where the first

periodic window of period-6 is also located. The
Lyapunov exponents are calculated with equidis-
tant step size Aa = 0.1 within the given interval
and the corresponding points are labeled by crosses.
We have connected the calculated points by a con-
tinuous line to emphasize the similarity between the
structure of this chaotic branch and the correspond-
ing diagram of the logistic map [Collet & Eckmann,
1980]. The Lyapunov exponent increases with a
nearly constant slope interrupted by several peri-
odic windows. In principle there is an infinite num-
ber of such periodic windows, but we only detected
the largest of them:

— period-6: a = 133.5
— period-5: a = 134.0
— period-7: o = 134.3
— period-3: a = 135.5

A window exists for a certain interval of the
bifurcation parameter. But because of the small
length of this interval only one value of « indicating
the window is given above. The windows arise in the
same order as it is described in the book by Collet
& Eckmann [1980]. That the window of period-3
is noticeably wider than the other windows is also
known from the logistic map.

Using the formula of Kaplan & Yorke [1979] we
estimated the Lyapunov dimension of the attrac-
tor. It is nearly constant for the chaotic branch
and varies weakly between 2.09 and 2.17.

At a critical parameter value a, = 137.0 the
largest Lyapunov exponent becomes again zero and
a new region of transient chaos occurs for a > a..
A typical trajectory for the transient chaos is pre-
sented in Fig. 6. It looks like the chaotic attractor
for a long time. At random instants the trajec-
tory leaves the vicinity of the former attractor, sur-
rounds one of two stable symmetric cycles, comes
back to the neighborhood of the former chaotic
attractor and later surrounds again one of the
cycles. After a possibly long, lifetime the chaotic
transient escapes and approaches one of the stable
cycles located symmetrically with respect to the ori-
gin of the coordinate system. Both stable periodic
solutions exist already for @ < o, but in this pa-
rameter region the basins of attraction of the cycles
and of the chaotic attractor are well separated. For
a = o the chaotic attractor collides with its basin
boundary and the trajectory can escape through a
gap created. Such a phenomenon is called a crisis
[Grebogi et al., 1987].
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Fig. 6. The trajectory of the transient chaotic solution pro-
jected onto the z;—x2 plane for o = 137.1.

3. Summary

The rich dynamical behavior of the KS equation
is studied and one particular periodic solution that
leads to chaos via a classical period doubling cas-
cade is traced. The resulting chaotic branch shows
interesting properties such as a merging of two
antisymmetric attractors into a symmetric one and
the transition to transient chaos, respectively. The
chaotic attractor is characterized by the calcula-
tion of the largest Lyapunov exponent depending
on the bifurcation parameter. Within the chaotic
branch several periodic windows were detected and
the corresponding figure (cf. Fig. 5) reveals the
typical structure for a chaotic region.
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