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Abstract. - The fractal dimension of iso-vorticity surfaces is estimated from a 3-dimensional 
simulation of homogeneous turbulence at  moderate Reynolds numbers, performed by Vincent 
and Meneguzzi. The results are found to be compatible with a recently proposed theory which 
predicts a crossover from a 2-dimensional geometry at small scales to a fractal geometry at larger 
scales, with a dimension D = 2.5 + 112, with 1 being the exponent characterizing the scaling of 
velocity differences. 

One promising venue for the search of universal aspects in fluid turbulence is the study of 
universal geometrical structures. Mandelbrot [ l]  has suggested that such universal 
structures may be fractal, exhibiting the self-similarity on a range of scales which is at the 
heart of the scaling properties of turbulence. Some encouraging progress in identifying 
candidates for universal fractal structures has been achieved experimentally [2], but only 
little help was provided from theoretical studies; most of these were completely 
phenomenological [3,4], and theories based directly on the equations of fluid mechanics failed 
to provide insight towards the existence and the characterization of fractal structures in 
turbulence. 

Recently, an approach based on fluid mechanics and on concepts of geometric measure 
theory was proposed [5], and some progress in calculating the dimensions of level sets of both 
passive scalars [6,7] and vorticity magnitude [8] were reported. The results concerning the 
properties of passive scalars were compared directly with experiments [7]. In this letter we 
offer a comparison of the predictions on the geometries of iso-vorticity surfaces to the results 
of numerical simulations of homogeneous turbulence at  moderate Reynolds numbers [91. 

We begin with a short summary of the theoretical predictions. Consider the 
Navier-Stokes equation 

(1) 

where v, p and F are the viscosity, pressure and external forcing, respectively. Equation (1) 
is considered in three spatial dimensions, in a volume V (of linear scale L )  and is 

&/at - vV2u i- U - V U  -t V p  = F ,  
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supplemented with the incompressibility condition V.u = 0. The vorticity w is the curl of U ,  
w = V X U ,  and its magnitude I w I is denoted by w. To derive an equation of motion for w one 
takes the curl of eq. (l), multiplies the result by w, and divides by 20. The resulting equation 
reads (for w f 0) 

where 

The term on the r.h.s. of eq. (2) is the only difference between the dynamics of w and the 
dynamics of a passive scalar like the temperature, aT/at + U .  VT - K V ~  T = 0. In the regions 
of space where the coefficient f(x,t) ( x  - vJV[12) is positive, w grows rapidly; in regions 
where it is negative, w decreases rapidly. I t  is this term that must be responsible for the 
rapid concentration of the field w, if there is one. The geometrical objects that are the subject 
of this letter are the regions in 3-space in which the magnitude of the vorticity w has a 
constant value a t  some instance of time. The theoretical question is what are the generic 
geometrical properties of these iso-vorticity sets, and what is their fractal dimension if they 
turn out to be fractal. 

The technique [5-8] to estimate the dimension of iso-w surfaces rested on a calculation of 
the area of a piece of this surface contained in a ball B of diameter r. By changing the 
diameter r one obtained an expression for the r-dependence of this area. For a smooth 
2-dimensional surface this area should scale like r 2 .  For a wrinkled, fractal surface the 
exponent is larger than 2. The estimate of this exponent, denoted as D, was the goal of 
ref. [8]. In order to achieve a generic, rather than an atypical value of the dimension which 
might result from fluctuations, an average over a short interval of time (of the order of a turn 
over time), and an average over a band of w values has been achieved. The calculation takes 
into account explicitly the fast increase in w in regions where the r.h.s. of eq. (2) is positive; 
see ref. 181 for details. The final result of the calculation can be written in the form 

where cl,cz are nondimensional constants, and the quantity 6u, is defined as 

to T 6t 

where 6t is the interval of time over which the averaging is done. uo is the average velocity in 
the ball B. 

The 1.h.s. of eq. (4) represents an average value of the square of the area of the pieces of 
the iso-w sets contained in a ball of radius r ,  averaged over a short interval of time. For 
sufficiently small r, or sufficiently large viscosity, the first term c1 r4 dominates, and the iso-w 
surfaces are smooth. The entire w field is then nicely foliated by the iso-w surfaces, and there 
is nothing irregular about the geometry of the vorticity. However, when the viscosity v goes 
down (i.e. the Reynolds number Re = UL/v goes up, with U being the typical velocity a t  the 
integral scale L),  the other term on the r.h.s. of (4) takes over, and the geometry of the iso-w 
surfaces changes qualitatively. The result embodied in (4) is based on a rigorous bound on the 
area of the level sets. In order to proceed, one can introduce a scaling assumption, i.e. that 
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6u, scales with r, 

6u, - U(r/L)i - I U0 I (r/L)C , (6) 

with i being 1/3 in the Kolmogorov theory [lo]. With this assumption in mind one can see that 
the second term in eq. (4) contributes an overall r5 + l .  The second term begins to dominate 
the first on length scales r B I.*, where R* is defined by 

We notice that eq. (7) is nothing but a statement about the local Reynolds number, calculated 
on the scale r = L*. When this scale-dependent Reynolds number exceeds the value cl / e 2 ,  the 
iso-w surface will not appear smooth. It has been found before [7] that the crossover between 
smooth and fractal behaviour occurs a t  a scale A* which is about an order of magnitude larger 
than the standard Kolmogorov dissipative scale q-. (%* scales with the Reynolds number 
exactly like q-; the reason for the difference in order of magnitude is that q- is computed from 
an equation like (7) but with 1 on the r.h.s. Typically cl/cz differs significantly from unity.) 
Thus, we expect that for scales r larger than I,* the iso-vorticity structures would appear 
fractal with a dimension D d 2.5 + (/2. Although the rigorous result implies an inequality, it 
is possible that the bound is saturated; if it does, this has interesting implications on the 
general theory of turbulence[8]. Also, the theory cannot exclude the possibility that the 
scaling exponent D in eq. (4) depends on r. One of the aims of the present study is to assess 
these issues further with the help of numerical simulations. 

To test these predictions we have analysed the data obtained by a numerical simulation of 
homogeneous turbulence [9]. The resolution of this simulation is 2403 Fourier components 
and periodic boundary conditions are assumed in all 3 directions. The flow is incompressible 
and forced with constant amplitude on the lowest wave numbers. The Reynolds number is 
around 1000, and the Taylor-microscale Reynolds number Rei. is approximately 150. The 
Kolmogorov dissipative scale q- is about 2 f 4 mesh sizes, whereas the Taylor microscale is 
about 10 -+ 20 mesh sizes. 

The fully developed flow shows a large number of vortex tubes with a typical thickness of 
a few q-, extending through a substantial fraction of the system size (see fig. 13 in ref. [91). We 
are interested in level sets of w. These are obtained by considering the sets of mesh points for 
which this quantity lies in given windows, w1 d w d wz. The typical 3-dimensional 
appearance of these sets can be seen in fig. 1, which portrays the set for a particular window 
which is frequently used below, i . e .  50 d w d 51. It appears that on the larger scales this set 
is neither 2-dimensional nor space filling, and it is possible that it indeed possesses a fractal 
geometry. 

To examine this apparent fractal geometry we determine the dimension of the set using 
the Grassberger-Procaccia correlation integral [ll]. As is well known, in general this method 
furnishes the correlation dimension [ l l ]  rather than the Hausdorff dimension, but for an 
iso-level set there is no difference between the two. (Only singularities in the measure can 
lead to a difference, and by definition the measure is constant on a level set.) Denoting the 
locations of the mesh points in the set by xi, we calculate the correlation integral [lll: 

(8) 

where O(x)  is the Heaviside step function. The correlation integral scales like rD, where D is 
the dimension of the set {xi}. In fig. 2 we show a log-log plot of C(r) vs. r for a typical window 
of w, which is the window used in fig. 1. We have averaged the correlation integral over 26 
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Fig. 1. Fig. 2. 

Fig. 1. - Visualization of the set of pixels for which the pointwise magnitude of the vorticity lies in the 
window 50 < w < 51, for #226. 

Fig. 2. - The correlation integral C(r), averaged over 26 snapshots, vs. r for the window shown in fig. 1. 
The inset shows the slope d In C(r)/d In r us. r. 

equally spaced snapshots between # 151 and # 401, covering approximately 50 turnover 
times. The duration between subsequently stored snapshots in this data set is about 2 
turnover times. 

Examining the results one concludes that C(r) typically shows a crossover between two 
different scaling laws with an exponent close to 2 for r < 1 0 ~  (which is A*, or approximately 
one Taylor microscale), and an exponent of about 2.7 for r > 1 0 ~ .  The shape of C(r) changes 
somewhat with time. This can be seen in fig. 3, where we plot d In C(r)/d In r for the 26 
snapshots between # 151 and #401. If we accepted the value of D = 2.7 we would deduce a 
value for ( which is about 0.4. One should also notice the tendency towards space filling a t  the 
high end of the scaling range. It is difficult to determine a t  this point whether this is an 
artifact or a real worry about the existence of scaling behaviour. 

Obviously, in qualitative terms, the findings reported here are in accord with the 
theoretical expectations. To gain a quantitative comparison we rewrite eq. (4) in the 
form 

(9) 

Assuming that the 1.h.s. of eq. (9) is proportional to C(Y)~ we can use our result to fit ( and 
c2 /cl simultaneously. In practice we plot 

d In [C(Y)~ /r4 - a] 
d l n r  g =  

and vary the value of a in order to find optimal scaling for r > A* over a reasonable range. 
The value of g for which this is the case corresponds then to 1 + i. From this fit to 
In [ C ( T ) ~  /r4 - a] us. In r, we can obtain the ratio c2 /cl. The procedure is demonstrated in 
fig. 4. This way of fitting produces a somewhat larger estimate for i, and shows that the 
uncertainty is around (20 + 30)%. Anyway, we can conclude that this data set is consistent 
with a value of i which is significantly different from 1/3, which is the Kolmogorov value. 
Note that a direct estimate of i in ref. [9] gives a value consistent with 0.4. 

In summary, we presented some numerical evidence for the existence of a crossover 
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Fig. 3. Fig. 4. 

Fig. 3. - Variation of the local slope d In C(r)/d In r between snapshots # 151 and # 401 for different 
values of r (10 (-), 16 ( - a - ) ,  26 (---), 41 (.-.-.), 66 (-...-) mesh sizes). 
Fig. 4. - The fit of In [C2 /r4 - a] vs. In r for viscous values of a. The slope g gives the ratio c2/c1 shown in 
the inset. 

between smooth and fractal behaviour of the level sets of the vorticity magnitude. Due to the 
modest scaling range in these simulations it is impossible to  state with confidence that the 
fractal behaviour is clear-cut. However, if we fit an exponent D in the scaling range, we find a 
value that is in encouraging agreement with the theoretical predictions. Obviously, further 
experimental and simulational tests of these issues are called for before final conclusions can 
be reached. 
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