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Abstract. Motivated by the observations that (i) the solar cycle
is distinctly irregular on the long term, (ii) a proper treatment
of the averaging processes of mean field theory yields stochastic
terms that cannot be neglected in solar and stellar convection
zones and (iii) the inclusion of parametrized nonlinearities in
models with two spatial dimensions has not produced such ir-
regular behaviour, we investigate the effects of various forms of
noise on previously studied nonlinear o’w dynamos in a sphere
or a spherical shell. The study of the degree of fragility of the
dynamo models in presence of stochastic perturbations is also
interesting from a dynamical point of view. We investigate the
consequences of perturbing solutions of both pure and mixed
parity. In the former case we find that there can be quite pro-
nounced deviations from the pure parity, and that these seem
larger nearer to the relevant bifurcation. Effects are also stronger
in a shell dynamo than in the full sphere. However, the magnetic
period is relatively little changed in these examples. When a
2-torus solution (of mixed parity) is perturbed, the effects on
the long period variations are much greater than on the short
period, but even for quite strong perturbations the solutions do
not leave the neighbourhood of the underlying attractor. We find
our results to be robust, in that the precise nature of the noise
term is qualitatively inconsequential; this is encouraging in view
of the uncertainties present. We briefly contrast our results with
those recently presented by Choudhuri for a model with one
spatial dimension.

Key words: The Sun: magnetic fields — solar activity cycle — stars:
magnetic fields — hydromagnetics — turbulence

1. Introduction

Mean field dynamo models have had varying degrees of success
in reproducing the observed features of the solar dynamo. Kine-
matic models only require the solution of the dynamo equation
(i.e. the induction equation with modified Ohm’s law). Linear,
kinematic models prescribe the large scale velocity field (com-
monly differential rotation only) and certain properties of the
small scale velocity fields, and since these properties are ill-known
for stellar convection zones the form of the differential rotation,
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alpha effect and turbulent diffusivity is often chosen quite ar-
bitrarily. These solutions are necessarily steady or strictly time
harmonic.

Nonlinear quasi-kinematic models, in which an extra
“quenching” term is introduced, representing the feedback of
the Lorentz force on to the large or small scale motions, and
fully nonlinear models including the simultaneous solution of
the Navier Stokes equation, have also been studied, albeit much
less intensively. Although in principle more complex behaviour
is possible, the solutions found so far are again either singly pe-
riodic, or have at most two periods simultaneously present (e.g.
Brandenburg et al 1989a,b).

In contrast, the solar cycle is distinctly irregular or noisy. The
well known “11 year” cycle period for the sunspot number (22
year magnetic period) is only an average, and the durations of
individual cycles vary in the range 9-13 years, with perhaps even
larger exceptional variations. If the sunspot number is a measure
of field strength, then the implication is that this too varies from
cycle to cycle. It has been suggested that the marked nonlinearity
of the solar dynamo might be the cause of these variations
(Tavakol 1978). Certain simple “toy”nonlinear dynamo systems,
when driven to very supercritical dynamo numbers, can exhibit
behaviour that is reminiscent of the variation of sunspot numbers
(e.g. Cattaneo et al. 1984), but this kind of behaviour has not been
found so far in more “realistic” nonlinear dynamo models in two
spatial dimensions. However, even these models are so simplified
and parameterized that this is not a compelling argument against
an important role for nonlinearity. In addition, it may be that the
dynamo numbers attainable by these codes are not sufficiently
supercritical.

A complementary approach, that has been little investigated
so far, is to recognize that the usual ways of modelling processes
occurring in the highly turbulent solar (or stellar) convection
zone involve parameterizations arising from averaging processes.
An intrinsic property of such processes is that they are “noisy”,
and this aspect is lost in standard mean field models. Inclusion
of such effects in the mean field formulation means that random
forcing terms should be introduced into the dynamo equations
(see, e.g., Hoyng 1987a,b). A somewhat different simple model
with only one spatial dimension, in which the noise was assumed
to modify the o coefficient of mean field theory, has been studied
by Choudhuri (1992).

It should be emphasized here that nonlinearities will be
present in turbulent convection zones, together with the cor-
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responding attractors, prior to the introduction of noise. The
natural theoretical framework would therefore be the combina-
tion “attractors plus noise”. It then is possible to investigate, for
example, the “fragility” of solutions when noise is added: when
so perturbed do they remain near to their original phase space
trajectories or do they depart markedly from them, even wander-
ing into basins of attraction of other attractors of the system?
In nonlinear dissipative situations, the nature of the correspond-
ing attractors directly determines the effectiveness of noise as a
modifying influence on the solutions. More precisely, the effect of
noise is expected to depend on the strength of the attractors of the
system considered, with marked departures expected for weaker
attractors. This could be especially important for systems with
multiple attractors which possess complicated and intertwined
basins of attraction. A somewhat similar situation was studied
by Meinel & Brandenburg (1990) in a one dimensional model, in
which two attractors were approached alternately because of the
presence of a noise term in the equations.

In this paper we study some aspects of this problem, using
a modification of the axisymmetric nonlinear kinematic dynamo
code described in Brandenburg et al (1989a). We examine the
response of selected regular nonlinear solutions to noise that
is introduced in several different ways. We note Hoyng’s (1988)
comment that “It is to be expected that models studying the effect
of fluctuations ... will nevertheless appear in the literature, but the
difficulty ... is clear: F will be chosen essentially arbitrarily ...”.
Nonetheless we feel that some insight into the general properties
of noisy dynamos can be obtained even without a satisfactory
formulation of the noise terms. Of course, this limitation of
our work must be kept clearly in mind. Fortunately our results
appear quite robust, in that the exact manner in which the noise
is prescribed seems to have little qualitative effect on our results.

2. Equations solved

The standard mean field induction equation takes the form
0(B)/dt =V x ((u) x (B) +o(B)) —V x 57V x (B), 1)

where the vectors (u) and (B) are to be interpreted as mean
field averages and o and nr are turbulent transport coefficients.
We assume axisymmetry, so that (B) =V x a¢ + b(f&, and also
that (#) = Q X r (i.e. the large-scale velocity is a pure rotation);
o =agcosf/(1+ (B)z), with oy = constant and yr = constant.
The solutions can be classified by the usual two parameters C, =
aoR /N7, Ca = Q'R?/nr, where Q' = constant. R is the radius
of the computational volume and Q = Qy'x, where x = r/R.

To see how the noise term is formulated, we shall look
briefly at the derivation of the mean field induction equation.
The standard procedure is to write

B=(B)+ B, (#)]
u=(u)+u, 3)

where the averaging operator () is defined below. The standard
(i.e. not mean field) induction equation

0B/t =V x (ux B)—V xnV x B, )

(here 5 is the normal, not turbulent, resistivity) is then averaged
over a length or time scale that is assumed to be much greater
than the corresponding scale for the turbulent motions and much
less than the scale of the large scale structure. The formal result
is

0(B)/ot =V x ((u) x (B) +{(u x BY) —VxnVx{(B)+F, (5

where F is a function satisfying V- F = 0, and so we can
write F = V x f. Hoyng (1987b) argues that F is a stochastic
function that arises from the non-commutativity of the averaging
operator, and is thus of order either I./L or t./T, according to
the averaging process used, where I, t., L, T are small and large
scales for the space and time variables. Eq. (5) is of Langevin
type. It is conventional to neglect the term F in Eq. (5), leading to
Eq. (1), but in typical astrophysical applications I./L and ¢./T are
not very small, and so it is not obvious that this approximation
is fully justified.

For the special case of axisymmetric mean field dynamos
an alternative approach is possible. Assuming again that Eq. (4)
describes a state that is nonaxisymmetric on small scales only,
the mean field averaging process can be performed with respect
to the azimuthal (¢p) coordinate. Now Eq. (5) is obtained without
the term in F, i.e. we get exactly Eq. (1), but it is now possible to
consider o as containing a part that is noisy with respect to the
meridional spatial coordinates (r, ) and/or time.

In the remainder of this paper we are concerned with the
mean field quantities only. We consider the formulation of Eq. (5)
to be of wider application as it can be applied to both axisym-
metric and nonaxisymmetric dynamos, but in order to provide
continuity and comparison with the work of Choudhuri (1992),
some of the computations were performed by stochastically per-
turbing o. Specifically, we set

o = 0y COS 0 [%W + f(r, 9, t):| s (6)

We here distinguish two cases. We denote by Model O the very
simple ansatz

f=10)=cCr@®-1), @)

where r(t) is a random number in the range [0,1], and c is a
prescribed scale factor. In Model 1 we put f = f(r,0,t), with

f= Z c(2s; — Vexp(—d;*/d?). @

i=1

d? = (r cos 0 —r; cos ;)2 + (r sin 6 — r; sin 6;)%, where the (r;, 0;) are
randomly chosen points, d. is a correlation length, and the s; are
random numbers on [0, 1], all changed every ..

In Model 3 an extra term V x f(r,0,t) is added to the right
hand side of Eq. (1), where each component of f(r,0,t) is given by
an expression of the form (8), but with an extra factor (x—xo)2(1—
x)2h(0), x = r/R, introduced to avoid possible inconsistent and
troublesome behaviour near the grid boundaries where a and/or
b vanish. (xo is the inner grid boundary, xo = 0 for computations
in a full sphere.) h(0) = cos 0 for f, and sin 6 for fy and f,. Note
that in this case the maximum value of the modulus of f is much
less than ¢, but conversely there is always the possibility that the
perturbation is relatively large where a or b are small within the
computational grid. In the Model 1 and Model 3 computations,
typically n. = 20 (n. = 25 by error in some Model 1 cases). The
various models are briefly summarized in Table 1.

In practice we found very little qualitative difference between
computations for Model 1 and Model 3, and so the results
presented with one of these values can be taken as representative
of those obtained with the other. The gross behaviour of our
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Table 1. Summary of models for stochastic forcing

Model Perturbation Equations
0 f(@) Eq. (6), Eq. (7)
1 f(,0,1) Eq. (6), Eq. (8)

3 F=Vxf(r0:t Eq. (5),Eq@®

solutions is described in terms of two parameters. If E“ and
E® are the energies in the parts of the magnetic field that
are respectively antisymmetric and symmetric with respect to the
equatorial plane, then E = EX + E® is the total magnetic energy
inr <R, and P = (E® — EW)/E is the overall parity. A0 and SO
denote axisymmetric (m = 0) pure parity solutions with P = —1
and P = +1 respectively. We measure nondimensional time, , in
units of the global diffusion time R?/nr.

3. Results

We mostly studied o>« dynamos with Cq = —10*. Calculations
in the full sphere 0 < x < 1 without noise show a variety
of behaviour as C, is increased, from the first bifurcation at
C, = 0.55 to values greater than unity (Brandenburg et al. 1989b).
In brief, the A0 mode is first excited. At C, = 0.73 the SO mode
is also excited, but it is at first unstable to perturbations of
the opposite parity. In the range 0.79 < C, < 0.90 both the
pure parity modes are unstable, but there are one, two or even
three (meta) stable mixed parity modes present for a given value
of C,. These solutions are limit cycles or 2-tori. For C, 2 0.9
only the SO mode is stable. We did study one o> model with
C, = 10 (Sect. 3.6). In this case both pure parity solutions are
steady, and stable to axisymmetric perturbations. In this paper
we use a spatial resolution of 21 x 41 meshpoints. The positions
of the bifurcations are slightly different from those discussed in
Brandenburg et al (1989a,b), where a higher resolution was used.
Our results do not change significantly when the resolution is
increased.

3.1. Perturbations of pure parity solutions

In this subsection we consider solutions with C, = 1.0. For
Model 1 and Model 3 we considered perturbations only to stable
solutions, since an unstable pure parity solution subject to a
disturbance that contains a component of the opposite parity
will inevitably evolve to the neighbourhood of the stable solution.
In principle it is possible to apply Model 0 perturbations to an
unstable solution, but we shall not present any such computations
here as they show no new features.

We considered dynamos operating in the full sphere, 0 < x <
1 and adopted standard values 7, = 0.005 and, for Models 1
and 3, d. = 0.20. We first looked at the limit cycle solution with
P =41, C, = 1. For Model 0 the energy is modulated, but the
parity P necessarily remains always +1, because here the noise
is independent of the spatial coordinates. See the first panel of
Fig. 1, where ¢ = 0.1. For Models 1 and 3, the perturbations also
modulate the parity. Qualitatively the effects of the perturbations
in Models 1 and 3 are very similar, if the values of ¢ are suitably
adjusted. The variation of energy E and parity P for a typical
run of Model 1 with ¢ = 0.1 are shown in Fig. 1. Most of the time
P is near +1, but there are occasional large excursions in P, and
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also large modulations of the total energy E. In the last panel
of Fig. 1 we show the power spectrum of E(t). Note the peak
at a frequency of 130, twice the frequency of the unperturbed
magnetic cycle. We also compared Model 3 computations with
¢=1.0and C, = 1.0 and 1.2. The variation of P(t) from the value
+1 was typically twice as large when C, = 1.0 as when C, = 1.2,
and the variations of E(t) from the unperturbed oscillation were
also larger for C, = 1.0.

Zif : ¥ | il i i J.‘MMIU I
oo M dots ﬁhmi;'; il
m

1.00

:
1

0.90
0.85

5 10 15 20 25

108

102

power

T
b

1072

1 10 100
frequency

1000

Fig. 1. Perturbations to limit cycle with P = +1, C, = 1.0, C,, = —10%,
¢ = 0.1. The first panel shows E(t) for the Model O calculation. The
remaining panels show logE(t), P(t) and the power spectrum for E, for
Model 1

All our calculations in a full sphere have t. = 0.005. Trials
with 7, = 0.01 in this case suggest that, for fixed values of the
other parameters, effects are then somewhat more pronounced
in that the excursions in P and E are larger. We use somewhat
different parameters for calculations in a spherical shell, see Sect.
3.5.

3.2. Perturbations to a mixed parity limit cycle

We also examined the effects of perturbing the stable limit cycle
of mixed parity, found when C, = 0.79. Again the computations
are for the full sphere. For comparison, we show the results of
runs for both Model 1 with ¢ = 0.1 (Fig. 2) and Model 3 with
¢ = 1.0 (Fig. 3). We would emphasize that the magnitude of
the variations in the Model 1 computation would resemble more
closely those of the Model 3 run if the value of ¢ was reduced
somewhat. For comparison, in the third panel of Fig. 3 we also
show the unperturbed solution.

In addition we repeated both the Model 1 and Model 3 com-
putations with C, = 0.78 and the other parameters unchanged.
The fluctuations in both P and E were much smaller, and even-
tually P varied near the value —1, which is the P-value of the
unperturbed solution for this value of C,.
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Fig. 2. Perturbations to the mixed parity limit cycle with C, = 0.79,
Cyp = —10% ¢ =0.1: E(t) and P(r) for Model 1
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Fig. 3. Perturbations to the mixed parity limit cycle with C, = 0.79,
Cy = —10*: E(t) and P(z) for Model 3 (first and second panel), ¢ = 1.0
and P(t) for the unperturbed solution (third panel)

3.3. Perturbations to a torus solution

Next we look at the effect of perturbing a stable 2-torus solution,
found when C, = 0.81. We performed Model 0, 1 and 3 calcula-
tions in the full sphere for this case. For suitably adjusted values
of ¢ we found that the overall differences in behaviour between
these different cases were no larger than the differences between,
say, two computations with Model 3 and different sets of random
numbers. In Fig. 4 we present the results from a computation
with Model 3 and ¢ = 1.0. Note the strong modulation of the
length of the “long” period, and of the overall energy variation
of this period. When ¢ was reduced to 0.5, similar modulations
of the cycle length and energy maxima were found but were, of
course, of smaller magnitude. For both of these cases the basic
torus solution survives and is clearly visible through the noise.
When the strength of the perturbation is increased to ¢ = 5.0
this statement is no longer true, and the nature of the variations
changes quite markedly. In particular the quasi-regular long pe-
riod variations have more-or-less disappeared. This is especially
true of the variation of P(f), which appears now to be under-
going irregular, large departures from P = —1. The maximum
variations of P seem approximately to coincide with episodes of
minimum variation of E(t), see Fig. 5.
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Fig. 4. Perturbations to the torus solution with C, = 0.81, C, = —10%,
¢ = 1.0, Model 3: logE(t), P(t) and power spectrum of E(t)

3.4. Multiple solutions

For C, = 0.80 there are three stable solutions: a pure parity
P = —1 limit cycle, a mixed parity limit cycle with P =~ 0.9 and
a mixed parity 2-torus solution. It might be expected that the
different solutions might have different degree of fragility. We
investigated the effect of noise on the two mixed parity solutions
for the standard parameters ¢ = 1.0 and 7. = 0.005, Model
3. There is no clear evidence that one of the two solutions is
more fragile than the other. The E and P plots for the torus
solution generally resemble those shown in Fig. 4, and those for
the limit cycle are qualitatively similar to those in Fig. 3. We
also looked at Poincare maps showing intersections of the phase
space trajectories of these solutions with arbitrary hyperplanes.
The signatures of these two perturbed mixed parity solutions
were quite similar (the torus is weak), but the mean positions
of the intersections are slightly -different. This result is perhaps
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Fig. 5. Perturbations to the torus solution with C, = 0.81, C,, = —10%,
¢ = 5.0, Model 3: logE(t) and P(t)

somewhat surprising, because the mixed parity limit cycle solution
exists only for a much smaller range of C, than the 2-torus
solution. Obviously, if we applied perturbations of much larger
amplitude, then this situation might be altered. However, in such
a case the perturbations may be already so strong that it would
be hard to identify the solutions as being either a limit cycle or
a 2-torus.

3.5. Effects in a shell dynamo

We also performed a few experiments with a shell dynamo, xo <
x < 1.0, with a perfect electrical conductor boundary condition
at x = xo = 0.7. Because of the reduced time and length scales in
this case, we put 7. = 0.002, d. = 0.1. Again taking C, = —10*,
and starting from an arbitrary mixed parity configuration, we
found unperturbed limit cycle solutions with very slowly varying
parity in the range 0.8 < C, < 1.0. This behaviour appears to be
due to the structure of symmetric and antisymmetric solutions
being much more similar in spherical shells than in spheres.
At C, = 0.81, the unperturbed solution is evolving very slowly
(time scale > 10 diffusion times) to a state with P = +1. When
this solution is perturbed, the rate of evolution towards the
P = +1 state is markedly accelerated. In Fig. 6 the original limit
cycle is shown for © < 2.0, and also the effects of a Model 3
perturbation with ¢ = 100, d. = 0.10, 7. = 0.002. (Because of
the geometrical weighting factors in the definition of f, when
xo = 0.7 the effective value of ¢ is reduced by a factor of about
10 compared to the calculations with xo = 0.) Although we
did not investigate this point in detail for this model, both on
theoretical grounds and from our previous experience we would
expect the rate of evolution to P = +1 to depend on the distance
of C, from the bifurcation value. In Fig. 7 we show the results
of a Model 3 disturbance to the stable solution with P = —1 at
C, = 0.85, again with perturbation parameters ¢ = 100, d, = 0.10,
7. = 0.002. A run with ¢ = 50 and different random numbers
shows a similar pattern of behaviour, with- P =~ —0.97 now
being the maximum excursion from the unperturbed state. These
experiments show episodes of strong variation of P(t) from the
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unperturbed value that are of similar nature to those found in
the full sphere (cf. Fig. 1c), but their duration now seems much
longer than in the previous example.
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Fig. 6. Shell dynamo, x¢ = 0.7, Model 3, for t < 0.2 unperturbed solution
and for t > 0.2 perturbations to mixed parity limit cycle with C, = 0.81,
Cy = —10%, ¢ = 100: P(1)

0.26 _
0.25
0.24
0.23
0.22
0.21

0.2 | | | | J

-0.88 _
-0.9 |
—-0.92 L
-0.94 |
-0.96 |
—-0.98 |
-1 . | Lot N s |

0 5 10 15 20 25

time

Fig. 7. Shell dynamo, x¢ = 0.7, Model 3, perturbations to P = —1 limit
cycle with C, = 0.85, C,, = —10%, ¢ = 100: E(t) and P(t)

3.6. An o? dynamo

We made a Model 1 perturbation to the stable P = +1 model
with C, = 10 in the full sphere. Parameters were ¢ = 0.1, n, =
20, t. = 0.005. This solution is shown in Fig. 8 for 1 < 7 <
20, and can be compared with that shown in Fig. 1. Note, in
particular, that the parity fluctuations for the «> model are much
less (0(0.003)) than for the o’ model (0(0.1)), inasmuch as
it is valid to compare solutions at different distances from the
relevant bifurcations. (We note that the o? solution with P =
+1 is unstable to nonaxisymmetric perturbations, e.g. Rédler &
Wiedemann (1989), in contrast to the o’>w models (Jennings et al
1990). However, there is no reason to anticipate that the response
to our axisymmetric noise of the solution with P = —1, which is
stable to such perturbations, would be qualitatively different.)
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Fig. 8. o> dynamo in full sphere, Model 1, C, = 10, ¢ = 0.1: E(t) and
P(t)

4. Discussion

The results outlined in Sect. 3 show clearly how noise with a
correlation time that is a few percent of the basic period can
modify the long term behaviour of a dynamo over timescales
of many periods. For orientation, a correlation time 7, = 0.002
corresponds to about 1/20 of the cycle period, which is about
one year for the Sun. When we perturb a stable solution of pure
parity, we find substantial departures from the pure parity state,
occurring at irregular intervals and lasting for times that are
long compared with both the correlation time and the basic cycle
period. However changes to the individual cycle durations (quasi-
periods) are small. This could be seen by looking in detail at small
sections of the energy plot of Fig. 1, but is perhaps clearer in the
power spectrum of E(f). The basic oscillation frequency and its
harmonic stand out clearly and cleanly. No other frequency is
selected.

Our solutions over short time intervals are in some ways
similar to those of Choudhuri (1992). In particular, the periods of
his models also did not vary strongly in response to the imposed
noise. Most of our results are for nonlinear «’>w dynamos, but the
solitary «® model discussed in Sect. 3.5 does, however, suggest that
our «2w models may be more sensitive to stochastic perturbations
than the «>. Compare, for example, Fig. 8 with Fig. 1. We note
that Choudhuri found nonlinear o’ models to be the least
sensitive to stochastic perturbations. He did not present results
for models that had been evolved for many diffusion times.
Inspection of, for example, Fig. 7, demonstrates that behaviour
during a short time interval can not necessarily be extrapolated
for several diffusion times. Choudhuri found that nonlinearities
suppressed the effects of noise. The solutions presented here are
always limited in amplitude by the nonlinearity in . Our dynamo
numbers are only modestly supercritical, and it may be that the
effects of noise are more strongly reduced by the nonlinearities
in a more supercritical regime.

The effects of perturbing the mixed parity solutions are more
noticeable. In principle, a wider range of behaviour might be
anticipated, because when C, 2 0.8, there are two or three coex-

isting stable solutions, and so a fragile solution has the possibility
of evolving to a nearby, more robust, attractor. However our ad-
mittedly limited experimentation did not provide any evidence for
such behaviour, even for disturbances of larger magnitude than
those reported on above. When C, = 0.79 (Fig. 2), the underlying
limit cycle solution is unique, with —0.5 < P < —0.2. The per-
turbed solution can exhibit quite strong long period fluctuations
in both P and E. When C, = 0.80 or 0.81, the 2-torus is not the
only stable attractor available to the system. However the basic
solution survives the perturbations, but with marked effects on
the long term behaviour. The short cycle period is again little
affected — see the power spectrum of E(t) in Fig. 4, where the
cycle period and its harmonic are present as sharp peaks. By
direct inspection of E(t) we can estimate the maximum change
of the short period to be of order 5%, and note that this is rarely
attained. The signal from the long period (unperturbed frequency
about 3.8) is almost indiscernable, as might be expected from an
examination of the powerspectrum in Fig. 4.

From our limited evidence (Sect. 3.2), it is not easy to move a
bifurcation, i.e. to kick an oscillator from one sort of behaviour
(limit cycle, P = —1) into another (limit cycle, mixed parity),
that becomes available to the unperturbed system at a slightly
larger C, value. Both in this case and for the pure parity limit
cycle discussed in Sect. 3.1, the sensitivity of the solution seems to
increase nearer to the bifurcation. This behaviour is expected on
general grounds. Similarly it appears difficult to move a solution
from the neighbourhood of one attractor to that of another
unperturbed solution that exists at the same parameter values
(Sect. 3.4).

To estimate the relative size of the perturbing terms, in the
Model 3 calculation we can calculate, as functions of time, the
spatial means of the absolute values of the three source terms
occurring in the equation for the toroidal component of field,
b. These terms are the a-effect, the differential rotation and the
stochastic driving term. For the calculation with ¢ = 1.0 discussed
in Sect. 3.3 and presented in Fig. 4, we find that the mean
stochastic term is nearly always substantially smaller than the
mean o-effect term, which in turn is three orders of magnitude
smaller than the differential rotation. Fig. 9 shows the relative
sizes of the terms over an interval approximately the length of
a long period of the solution. It should also be remembered
that the a-effect and differential rotation vary only slowly in
space, whereas the stochastic perturbation changes sign over
small spatial scales. Note also that we have here an o’ dynamo
operating in a regime where the o term in the toroidal equation
is to a good approximation negligible, and its neglect would not
significantly change the solution (the aw approximation.) Thus
the perturbation is genuinely “small”.

One motive for looking at the shell dynamo, xo, = 0.7, was
that the preference for one or the other of the pure parity states
is only marginal, as evinced by the very slow evolution of P(t)
in the unperturbed system. The first bifurcations of the odd
and even parity modes are at very similar values of C,. Also,
of course, the solar dynamo operates in a shell! Our result
here is that the evolution to pure parity is accelerated by the
presence of noise, at least at intermediate values of P, with
a marked modulation of E and P. An interpretation of the
sustained departure from the stable P = —1 solution apparent
around 7 = 10 in Fig. 7 (comparable behaviour was not found
in the full sphere calculations), is that because of the relatively
weak evolution to the stable state found in this model, once a
substantial departure from P = —1 occurs, relaxation back to
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Fig. 9. The relative sizes of the spatial averages of the absolute values
of the terms from the stochastic perturbation (lower thin curve), the
o-effect (heavy curve) and the differential rotation (upper thin curve) in
the toroidal field equation, for the calculation shown in Fig. 4

this state is slow.

In summary, our experiments do not show any evidence for
marked fragility of the stable dynamo solutions. When stochasti-
cally perturbed, they remain near the basic attractor, even when
there is another attractor that is in some sense not too distant
in phase space. (We do not claim this to be a universal property,
only that it is true of the solutions that we have investigated. It
is quite likely that for other parameter values, corresponding to
weaker attractors, this picture will change.) Nevertheless, in the
case where there are two basic periods present, the longer of these
can be strongly distorted, illustrating the cumulative effect of the
stochastic forcing term. The “torus” solution with ¢ = 5.0 (Sect.
3.3) seems to deviate considerably from the neighbourhood of its
original attractor, but this is in some sense a strong perturbation.
Clearly, other representations of stochasticity are possible. We are
encouraged by the fact that our results do not depend strongly
on the manner in which we introduce stochasticity to believe that
the study of other models might lead to similar conclusions.

Our models are very distant from any realistic model of
the solar dynamo. It is, however, perhaps a little disappointing
that we find generally that the basic oscillation period is only
weakly affected by the introduced stochasticity, although the
energy variation from cycle to cycle does show stronger effects.
Given that the length of the solar cycle routinely varies by about
20%, if these variations are to be explained by stochasticity,
then the driving terms must be considerably larger than we have
considered. However the long term behaviour of the 2-torus
solution might just be reminiscent of the irregular spacing of the
long term (Maunder-like) minima in the solar activity record.
Certainly, we would not want to propose our perturbed torus
model as a model for the occurrence of Maunder-type minima,
but note in passing that if we just look at the variation of E
above a threshold value of about 0.35 in Fig. 4, there might
appear to be a slightly greater resemblance.
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